framework.py 73.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VarBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
Y
Yu Yang 已提交
279
        self.block = block
F
fengjiayi 已提交
280
        self.error_clip = error_clip
Y
Yu Yang 已提交
281 282

        if name is None:
Y
Yu Yang 已提交
283
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
284
        is_new_var = False
M
minqiyang 已提交
285
        name = cpt.to_text(name)
X
Xin Pan 已提交
286
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
287

X
Xin Pan 已提交
288
        if self.desc is None:
M
minqiyang 已提交
289
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
290
            is_new_var = True
Y
Yu Yang 已提交
291

Y
Yu Yang 已提交
292 293 294
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
295
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
296 297 298 299 300
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
301
        if shape is not None:
Y
Yu Yang 已提交
302
            if is_new_var:
303
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
312
        if dtype is not None:
313
            if not isinstance(dtype, core.VarDesc.VarType):
314
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
315
            if is_new_var:
F
fengjiayi 已提交
316
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
317
            else:
F
fengjiayi 已提交
318
                old_dtype = self.dtype
Q
QI JUN 已提交
319
                if dtype != old_dtype:
Y
Yu Yang 已提交
320 321 322 323 324
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
325 326

        if lod_level is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
329 330 331 332 333 334 335
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
336 337 338 339 340 341 342 343 344 345 346
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

347 348 349 350 351 352 353 354
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
355
        self.block.vars[name] = self
Y
Yu Yang 已提交
356
        self.op = None
Y
Yu Yang 已提交
357
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
358
        self.is_data = is_data
Y
Yu Yang 已提交
359

X
Xin Pan 已提交
360 361 362 363
    def numpy(self, scope):
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

364
    def __str__(self):
Y
Yang Yang(Tony) 已提交
365 366
        return self.to_string(True)

F
update  
fengjiayi 已提交
367
    def to_string(self, throw_on_error, with_details=False):
368 369 370 371
        """
        Get debug string.

        Args:
372 373
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
374
            with_details(bool): more details about variables and parameters
375 376
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
377

378 379
        Returns:
            str: The debug string.
380
        """
F
update  
fengjiayi 已提交
381 382
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
383
        protostr = self.desc.serialize_to_string()
384
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
385 386 387 388
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
389 390
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
391
        return res_str
392 393 394

    __repr__ = __str__

W
Wu Yi 已提交
395
    def _set_desc(self, input):
396 397 398 399 400 401 402 403 404
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
405 406
        self.desc = input

407 408 409 410
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
411 412 413 414
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
415 416
    @property
    def name(self):
M
minqiyang 已提交
417
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
418

T
typhoonzero 已提交
419 420 421 422
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
423 424 425
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
426
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
427 428

    @property
F
fengjiayi 已提交
429 430
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
431 432 433

    @property
    def lod_level(self):
434
        return self.desc.lod_level()
Y
Yu Yang 已提交
435

Y
Yu Yang 已提交
436 437 438 439
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
440
    def _set_error_clip(self, error_clip):
441 442 443 444 445 446 447 448 449
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
450 451
        self.error_clip = error_clip

Y
Yu Yang 已提交
452

F
fengjiayi 已提交
453 454 455
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
456

457 458
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
459 460 461 462
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
463
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
464 465 466 467 468
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
469 470 471 472
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
473 474 475 476 477 478 479 480 481
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
482
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
483 484 485 486 487 488
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
489 490 491 492 493 494 495 496
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
497 498
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
499 500
        return self.op_proto_map[type]

501 502 503 504
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
505
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
506
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
507 508
        }

F
fengjiayi 已提交
509

X
Xin Pan 已提交
510
class Operator(core.OpBase):
511
    """
512 513 514 515 516 517 518
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
519
        type(str): The type of operator. Default None.
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
540
        Block.append_op or Block._prepend_op instead.
541 542 543 544 545 546 547 548 549 550

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
551
    """
552 553 554 555
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
556
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
557
    }
558

Y
Yu Yang 已提交
559 560
    def __init__(self,
                 block,
Y
Yu Yang 已提交
561
                 desc,
Y
Yu Yang 已提交
562 563 564 565
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
X
Xin Pan 已提交
566
        core.OpBase.__init__(self)
Y
Yu Yang 已提交
567
        self.block = block
Y
Yu Yang 已提交
568
        self.desc = desc
G
gongweibao 已提交
569 570 571 572 573
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
574 575 576 577
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
578 579
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
580 581 582

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
583 584
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
585

G
gongweibao 已提交
586 587
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
588

F
fengjiayi 已提交
589 590 591 592 593
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
594
        self.desc.set_type(type)
F
fengjiayi 已提交
595
        proto = OpProtoHolder.instance().get_op_proto(type)
596

597 598 599
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
600 601
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
602
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
603 604
                    return True
            return False
Q
QI JUN 已提交
605

X
Xin Pan 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        if isinstance(arg, six.string_types):
                            in_arg_names.append(arg)
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
                        else:
                            in_arg_names.append(cpt.to_text(arg.name))
                    self.desc.set_input(in_proto.name, in_arg_names)
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
631

Y
Yu Yang 已提交
632
        if outputs is not None:
633 634 635 636 637 638 639
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
640 641
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
642 643 644
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
645

F
fengjiayi 已提交
646
            for out_proto in proto.outputs:
647 648 649 650
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
651 652
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
653 654 655
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
656
                    out_arg_names.append(cpt.to_text(arg.name))
657 658
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
659

X
Xin Pan 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        input_vars = []
        for inp in inputs.values():
            if isinstance(inp, Variable):
                input_vars.append(inp)
            elif isinstance(inp, list):
                input_vars.extend(inp[:])
        self.inputs = input_vars
        output_vars = []
        for out in outputs.values():
            if isinstance(out, Variable):
                output_vars.append(out)
            elif isinstance(inp, list):
                output_vars.extend(out[:])
        self.outputs = output_vars

G
gongweibao 已提交
675 676
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
677
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
678
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
679
                attr_name = attr.name
G
gongweibao 已提交
680
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
681
                    continue
G
gongweibao 已提交
682
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
683 684
                self._update_desc_attr(attr_name, attr_val)

685
        self.desc.check_attrs()
W
Wu Yi 已提交
686
        if self._has_kernel(type):
Q
QI JUN 已提交
687
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
688
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
689

W
Wu Yi 已提交
690
    def _has_kernel(self, op_type):
691 692
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
693
    def to_string(self, throw_on_error):
694
        """
695 696
        Get debug string.

697
        Args:
698 699
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
700

701 702
        Returns:
            str: The debug string.
703 704

        """
705
        protostr = self.desc.serialize_to_string()
706
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
707 708 709 710
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
711 712 713

    __repr__ = __str__

F
fengjiayi 已提交
714 715 716 717 718
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
719
        """
720
        Get the input arguments according to the input parameter name.
721

722 723
        Args:
            name(str): The input parameter name.
724

725 726 727
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
728
        """
F
fengjiayi 已提交
729 730
        return self.desc.input(name)

W
Wu Yi 已提交
731
    def _rename_input(self, old_name, new_name):
732 733 734 735 736 737 738 739 740 741
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
742
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
743

W
Wu Yi 已提交
744
    def _rename_output(self, old_name, new_name):
745 746 747 748 749 750 751 752 753 754
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
755
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
756

F
fengjiayi 已提交
757 758 759 760
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
761 762 763 764 765 766 767 768
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
769
    def output(self, name):
770
        """
771
        Get output arguments by the output parameter name.
772

773 774
        Args:
            name(str): The output parameter name.
775

776 777 778
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
779
        """
F
fengjiayi 已提交
780 781 782 783 784 785
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

786 787 788 789 790 791 792 793
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
794
    def has_attr(self, name):
795
        """
796 797
        Whether this Operator has the attribute with name or not.

798
        Args:
799
            name(str): the attribute name.
800

801 802
        Returns:
            bool: True if has this attribute.
803 804

        """
F
fengjiayi 已提交
805 806 807
        return self.desc.has_attr(name)

    def attr_type(self, name):
808
        """
809
        Get the type of attribute by attribute's name.
810

811 812
        Args:
            name(str): the attribute name.
813

814 815
        Returns:
            core.AttrType: the attribute type.
816
        """
F
fengjiayi 已提交
817 818
        return self.desc.attr_type(name)

W
Wu Yi 已提交
819
    def _set_attr(self, name, val):
820 821 822 823 824 825 826 827 828 829
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
843 844
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
845 846
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
847
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
848 849 850 851
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
852
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
853

F
fengjiayi 已提交
854 855 856 857 858
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
859
        """
860 861
        Get the attribute by name.

862
        Args:
863
            name(str): the attribute name.
864

865 866
        Returns:
            bool|int|str|float|list: The attribute value. The return value
867 868
            can be any valid attribute type.
        """
F
fengjiayi 已提交
869
        return self.desc.attr(name)
Y
Yu Yang 已提交
870

W
Wu Yi 已提交
871
    def _block_attr_id(self, name):
872
        """
G
gongweibao 已提交
873
        Get the block attribute's id by name.
874

875 876
        Args:
            name(str): the attribute name.
877

878 879
        Returns:
            int: the block index.
880
        """
W
Wu Yi 已提交
881
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
882

W
Wu Yi 已提交
883
    def _block_attr(self, name):
G
gongweibao 已提交
884 885 886 887 888 889 890 891 892 893
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
894
        id = self._block_attr_id(name)
G
gongweibao 已提交
895 896 897
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
898
    def _blocks_attr(self, name):
G
gongweibao 已提交
899 900 901 902 903 904 905 906 907 908
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
909
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
910 911 912 913 914
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
915
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
916 917 918 919 920 921 922 923 924 925
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
926
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
927

J
JiayiFeng 已提交
928
    def all_attrs(self):
F
fengjiayi 已提交
929
        """
930 931 932
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
933
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
934 935 936 937
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
938 939
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
940
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
941 942 943
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
944
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
945 946 947 948
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
949 950
        return attr_map

Y
Yu Yang 已提交
951

Y
Yu Yang 已提交
952
class Block(object):
953 954 955 956 957 958 959 960 961 962 963 964 965 966
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
967
        use `Program._create_block()` to create a block.
968 969 970 971 972 973 974 975 976 977 978 979 980 981

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
982
    def __init__(self, program, idx):
Y
Yu Yang 已提交
983
        self.desc = program.desc.block(idx)
984
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
985
        self.ops = list()  # operator list
Y
Yu Yang 已提交
986
        self.program = program
987
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
988

989
    def __str__(self):
Y
Yang Yang(Tony) 已提交
990 991
        return self.to_string(True)

F
fengjiayi 已提交
992 993
    def to_string(self, throw_on_error, with_details=False):
        """
994 995
        Get debug string.

F
fengjiayi 已提交
996 997
        Args:
            throw_on_error(bool): raise exception when self is not initialized
998
                when throw_on_error is True.
F
update  
fengjiayi 已提交
999
            with_details(bool): more details about variables and parameters
1000 1001
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1002

1003 1004
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1005 1006 1007 1008
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1009
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1010 1011
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1012
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1013
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1014
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1015
            for op in self.ops:
F
fengjiayi 已提交
1016 1017
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1018 1019 1020
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1021 1022
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1023 1024
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1025 1026 1027

    __repr__ = __str__

Y
Yu Yang 已提交
1028 1029
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1030
        return self.desc.parent
Y
Yu Yang 已提交
1031

Y
Yu Yang 已提交
1032 1033 1034 1035
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1036
    def _set_forward_block_idx(self, idx):
1037 1038 1039 1040 1041 1042 1043 1044 1045
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1046
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1047

Y
Yu Yang 已提交
1048 1049
    @property
    def idx(self):
Y
Yu Yang 已提交
1050
        return self.desc.id
Y
Yu Yang 已提交
1051

Q
Qiao Longfei 已提交
1052
    def var(self, name):
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1066
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1067 1068 1069
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1070 1071
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1072
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1073
        return v
Q
Qiao Longfei 已提交
1074

W
Wu Yi 已提交
1075
    def _var_recursive(self, name):
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1115

Q
Qiao Longfei 已提交
1116
    def all_parameters(self):
1117
        return list(self.iter_parameters())
1118

1119
    def iter_parameters(self):
M
minqiyang 已提交
1120
        return (item[1] for item in six.iteritems(self.vars)
1121
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1122

Y
Yu Yang 已提交
1123
    def create_var(self, *args, **kwargs):
1124
        var = Variable(block=self, *args, **kwargs)
1125 1126
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1127
        return var
Y
Yu Yang 已提交
1128

Q
Qiao Longfei 已提交
1129 1130 1131
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1132
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1133 1134
        """
        Rename variable in vars and ops' inputs and outputs
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1147
        """
M
minqiyang 已提交
1148 1149
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1150

T
typhoonzero 已提交
1151
        if not self.has_var(name):
1152
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1153 1154
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1155
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1156 1157 1158 1159 1160 1161 1162
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1163
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1164 1165 1166 1167
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1168
        orig_var_type = v.type
M
minqiyang 已提交
1169
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1170
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1171
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1172
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1173 1174 1175 1176
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1177
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1178 1179 1180 1181 1182 1183 1184
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1185
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1186 1187
            var = Variable(
                self,
T
typhoonzero 已提交
1188
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1189 1190 1191 1192
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1193
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1194 1195 1196
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1197
        self._sync_with_cpp()
1198
        return var
T
typhoonzero 已提交
1199

W
Wu Yi 已提交
1200 1201
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1202
        self.desc._remove_var(cpt.to_bytes(name))
1203 1204
        del self.vars[name]

Y
Yu Yang 已提交
1205 1206
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1207
        param = Parameter(global_block, *args, **kwargs)
1208
        if 'initializer' in kwargs:
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1229
        return param
Y
Yu Yang 已提交
1230

Y
Yu Yang 已提交
1231
    def append_op(self, *args, **kwargs):
1232 1233 1234 1235 1236 1237
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1238 1239 1240
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
X
Xin Pan 已提交
1241 1242
            sys.stderr.write('%s %s!!!\n' % (type(op.inputs), type(op.outputs)))
            _imperative_tracer().trace(op, op.inputs, op.outputs)
X
Xin Pan 已提交
1243 1244
            return

Y
Yu Yang 已提交
1245
        op_desc = self.desc.append_op()
1246
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1247 1248 1249
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1250
    def _insert_op(self, index, *args, **kwargs):
1251 1252 1253 1254 1255 1256 1257 1258 1259
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1260 1261
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1262 1263 1264 1265
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1266
    def _remove_op(self, index):
1267 1268 1269 1270 1271 1272 1273 1274 1275
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1276 1277
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1278 1279
        del self.ops[index]

W
Wu Yi 已提交
1280
    def _slice_ops(self, start, end):
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1291
        return self.ops[start:end]
Y
Yancey1989 已提交
1292

W
Wu Yi 已提交
1293 1294
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1295
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1296
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1297 1298
        return op

W
Wu Yi 已提交
1299
    def _sync_with_cpp(self):
1300
        """
1301 1302
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1303
        """
Q
Qiao Longfei 已提交
1304 1305 1306 1307 1308
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1309
        # sync variables removed from c++ end
1310
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1311
            if not self.desc.find_var(cpt.to_bytes(var)):
1312 1313
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1314
        # sync operators from cpp
1315 1316 1317 1318
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1335 1336 1337 1338 1339

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1340
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1341 1342 1343 1344 1345 1346 1347

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1361 1362 1363 1364
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1365
    def _copy_param_info_from(self, other):
1366
        """
1367 1368
        Copy the information of parameters from the other block.

1369
        Args:
1370 1371 1372 1373 1374
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1375 1376 1377 1378 1379

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1380 1381
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1382
        for p in other.iter_parameters():
1383 1384 1385
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1386
                raise ValueError("_copy_param_info_from should be invoked with "
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1399
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1400
                error_clip=p.error_clip,
1401 1402 1403
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1404
    def _clone_variable(self, var):
1405 1406
        """
        Clone a variable into current block.
1407

1408 1409 1410 1411
        Args:
            var: the variable to be cloned.

        Returns:
1412
            Variable: the new  variable cloned from 'var' in current block.
1413 1414
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1415 1416 1417 1418 1419
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1420 1421
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1422
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1423 1424 1425 1426 1427 1428
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1429 1430
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1431 1432 1433 1434 1435 1436 1437
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1438 1439
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1440
        return ret_var
1441

Y
Yu Yang 已提交
1442 1443

class Program(object):
D
dzhwinter 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1455
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1456 1457

    Returns:
Y
yuyang18 已提交
1458
        A empty program.
D
dzhwinter 已提交
1459 1460

    Examples:
Y
yuyang18 已提交
1461 1462 1463 1464 1465 1466
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1467 1468 1469

    """

1470 1471
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1472 1473
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1474
        self._seed = 0
Y
yuyang18 已提交
1475
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1476
        self._op_role_var = []
T
tangwei12 已提交
1477 1478 1479 1480

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1481
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1482 1483
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1484 1485 1486

    @property
    def op_role(self):
Y
yuyang18 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1500 1501 1502 1503 1504 1505 1506 1507
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1508 1509 1510 1511 1512 1513 1514
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1515 1516 1517 1518
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1519
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1520 1521

    @contextlib.contextmanager
W
Wu Yi 已提交
1522
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1523 1524 1525 1526 1527 1528 1529
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1530
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1531 1532 1533 1534

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1535
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1536 1537
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1538 1539 1540
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1541 1542
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1543 1544 1545 1546
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1547
        yield
X
Xin Pan 已提交
1548 1549
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1550

1551
    @contextlib.contextmanager
X
Xin Pan 已提交
1552
    def _lr_schedule_guard(self, is_with_opt=False):
1553 1554 1555 1556 1557 1558 1559
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1560 1561 1562 1563
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1564 1565 1566 1567 1568 1569 1570

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1571 1572 1573 1574

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1575 1576
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1577 1578
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1579 1580 1581
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1582 1583
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1584

1585
    def __str__(self):
Y
yuyang18 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1595 1596
        return self.to_string(True)

F
fengjiayi 已提交
1597 1598 1599
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1600

F
fengjiayi 已提交
1601
        Args:
Y
yuyang18 已提交
1602 1603
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1604

Y
yuyang18 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1625 1626
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1627 1628
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1629

W
Wu Yi 已提交
1630
    def _get_desc(self):
Y
yuyang18 已提交
1631 1632 1633 1634 1635 1636 1637
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1638 1639
        return self.desc

X
version  
Xin Pan 已提交
1640 1641 1642
    def _version(self):
        return self.desc._version()

1643
    def clone(self, for_test=False):
Y
yuyang18 已提交
1644 1645 1646
        """
        Create a new, duplicated program.

1647

Y
yuyang18 已提交
1648 1649 1650 1651
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1652

Y
yuyang18 已提交
1653 1654 1655 1656
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1657 1658 1659 1660 1661
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1662 1663

        Args:
Y
yuyang18 已提交
1664 1665
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1666

D
dzhwinter 已提交
1667
        Returns:
Y
yuyang18 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1721 1722
        """
        if for_test:
X
Xin Pan 已提交
1723
            p = self._inference_optimize(prune_read_op=False)
1724
        else:
1725
            p = Program()
G
gongweibao 已提交
1726 1727
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1728
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1729 1730 1731
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1732 1733 1734 1735

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1736
            p._sync_with_cpp()
1737

W
Wu Yi 已提交
1738
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1739
        p._copy_data_info_from(self)
1740
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1741
        return p
1742

W
Wu Yi 已提交
1743
    def _prune(self, targets):
Y
yuyang18 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1759 1760 1761 1762 1763 1764
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1765 1766
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1767
                    # and we need to find the current op that generate this
1768 1769 1770 1771 1772 1773 1774 1775
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1776
                    t = t.op
1777 1778 1779 1780
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1781
                else:
1782 1783
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1784 1785 1786 1787

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1788 1789 1790
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1791
        res._sync_with_cpp()
1792 1793
        return res

X
Xin Pan 已提交
1794
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1795
        """
F
fengjiayi 已提交
1796 1797 1798 1799 1800
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1801
        3. change the :code:`is_test`
Y
yuyang18 已提交
1802 1803 1804
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1805
        Args:
X
Xin Pan 已提交
1806 1807
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1808

Y
yuyang18 已提交
1809 1810 1811 1812 1813 1814
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1815
        res = Program()
1816
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1817 1818 1819 1820

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1821
        if prune_read_op:
1822 1823 1824 1825 1826 1827 1828 1829 1830
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1831
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1832 1833

        # change all `is_test` attributes to True
M
minqiyang 已提交
1834
        for i in six.moves.range(res.desc.num_blocks()):
1835
            block = res.desc.block(i)
M
minqiyang 已提交
1836
            for j in six.moves.range(block.op_size()):
1837 1838
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1839
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1840 1841 1842
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1843
        res._sync_with_cpp()
1844 1845
        return res

1846 1847
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1848 1849 1850 1851 1852 1853 1854
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1855
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1856 1857 1858 1859

        Returns:
            Program: A deserialized program desc.
        """
1860 1861
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1862
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1863
        p._sync_with_cpp()
1864
        return p
Y
Yu Yang 已提交
1865

D
dzhwinter 已提交
1866 1867
    @property
    def random_seed(self):
Y
yuyang18 已提交
1868 1869 1870 1871 1872 1873
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1874 1875
        return self._seed

Q
qiaolongfei 已提交
1876 1877
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1878 1879 1880
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1881 1882
        return self.desc.num_blocks()

D
dzhwinter 已提交
1883 1884 1885 1886 1887 1888
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1889
    def __repr__(self):
1890
        return self.__str__()
1891

Y
Yu Yang 已提交
1892
    def global_block(self):
Y
yuyang18 已提交
1893 1894 1895
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1896 1897
        return self.blocks[0]

Q
Qiao Longfei 已提交
1898
    def block(self, index):
Y
yuyang18 已提交
1899 1900 1901 1902 1903 1904 1905 1906
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1907 1908
        return self.blocks[index]

Y
Yu Yang 已提交
1909
    def current_block(self):
Y
yuyang18 已提交
1910 1911 1912 1913
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1914 1915
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1916
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1927
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1928 1929 1930
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1931 1932 1933 1934
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1935
    def _rollback(self):
Y
yuyang18 已提交
1936 1937 1938 1939 1940
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1941 1942
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1943
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1954 1955 1956
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1957
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1958

W
Wu Yi 已提交
1959
    def _copy_param_info_from(self, other):
1960
        """
1961
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1962

Y
yuyang18 已提交
1963 1964 1965
        Notes: This is a very low level API. Users should not invoke it
        directly.

1966 1967 1968 1969 1970 1971 1972
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1973
            raise TypeError("_copy_param_info_from should be invoked with "
1974 1975 1976
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1977
            raise ValueError("_copy_param_info_from should be invoked with two "
1978
                             "program, with represent the same topology")
W
Wu Yi 已提交
1979
        self.global_block()._copy_param_info_from(other.global_block())
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2000
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2001 2002
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2003

Y
yuyang18 已提交
2004 2005 2006
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2007 2008 2009 2010 2011 2012 2013
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2014
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2015 2016 2017
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2018
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2019
                             "program, with represent the same topology")
2020
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2021 2022 2023
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2024
    def list_vars(self):
Y
yuyang18 已提交
2025 2026 2027 2028 2029 2030
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2031
        for each_block in self.blocks:
2032
            for each_var in list(each_block.vars.values()):
2033 2034
                yield each_var

Y
Yu Yang 已提交
2035

Y
Yu Yang 已提交
2036
class Parameter(Variable):
2037
    """
2038
    Parameter is derived from Variable. A parameter is a persistable
2039
    Variable, and will be updated by optimizers after each iteration.
2040
    The training of a neural network is essentially the updating of
2041 2042
    its parameters.

2043
    Relative to a general Variable, a Parameter has several its own
2044 2045
    member variables:

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2058 2059
    """

Y
Yu Yang 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2070 2071 2072

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2073 2074 2075 2076
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2077 2078
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2079
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2080

W
wanghaoshuang 已提交
2081
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2082

F
fengjiayi 已提交
2083 2084 2085
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2086 2087 2088
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2089

F
update  
fengjiayi 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2104
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2105
            for attr_name in additional_attr:
2106 2107
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2108 2109
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2110 2111 2112 2113
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2114

Y
Yu Yang 已提交
2115
# program is a global instance.
Y
Yu Yang 已提交
2116 2117
_main_program_ = Program()
_startup_program_ = Program()
2118

2119

2120
def default_startup_program():
Y
Yu Yang 已提交
2121
    """
Y
yuyang18 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2131

Y
Yu Yang 已提交
2132 2133 2134
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2135
    return _startup_program_
2136

2137

2138
def default_main_program():
Y
Yu Yang 已提交
2139
    """
Y
yuyang18 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2149

Y
Yu Yang 已提交
2150 2151 2152
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2153
    return _main_program_
Y
Yu Yang 已提交
2154 2155 2156 2157 2158


def switch_main_program(program):
    """
    Switch the main program to a new program.
2159

Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2174
    Switch the startup program to a new program
Y
Yu Yang 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2190 2191 2192
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2193

Y
Yu Yang 已提交
2194
    Examples:
Y
yuyang18 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2205

Y
Yu Yang 已提交
2206
    Examples:
Y
yuyang18 已提交
2207 2208 2209 2210 2211 2212

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2213

Y
Yu Yang 已提交
2214
    Args:
Y
yuyang18 已提交
2215
        main_program(Program): New main program inside `with` statement.
2216
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2230 2231


W
Wu Yi 已提交
2232
def _get_var(name, program=None):
X
xuwei06 已提交
2233
    """
Y
yuyang18 已提交
2234
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2235

X
xuwei06 已提交
2236 2237 2238
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2239
        If None, default_global_program() will be used.
X
xuwei06 已提交
2240 2241 2242 2243 2244 2245 2246

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2247
    assert isinstance(program, Program)
X
xuwei06 已提交
2248 2249

    return program.global_block().var(name)
X
Xin Pan 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258


@contextlib.contextmanager
def _imperative_guard():
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = core.Tracer()
    yield
    _imperative_tracer_ = tmp_trace