linux_build.md 4.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3
# Linux平台编译指南

## 说明
4
本文档在 `Linux`平台使用`GCC 8.2`测试过,如果需要使用其他G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://paddleinference.paddlepaddle.org.cn/user_guides/source_compile.html)。本文档使用的预置的opencv库是在ubuntu 16.04上用gcc4.8编译的,如果需要在ubuntu 16.04以外的系统环境编译,那么需自行编译opencv库。
Q
qingqing01 已提交
5 6

## 前置条件
7
* G++ 8.2
Q
qingqing01 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
* CUDA 9.0 / CUDA 10.0, cudnn 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+

请确保系统已经安装好上述基本软件,**下面所有示例以工作目录为 `/root/projects/`演示**

### Step1: 下载代码

 `git clone https://github.com/PaddlePaddle/PaddleDetection.git`

**说明**:其中`C++`预测代码在`/root/projects/PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。


### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference

22
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载:  [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html)
Q
qingqing01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```

**注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)


### Step4: 编译

编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:

```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=OFF

# 使用MKL or openblas
WITH_MKL=ON

# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF

# TensorRT 的include路径
TENSORRT_LIB_DIR=/path/to/TensorRT/include

# TensorRT 的lib路径
TENSORRT_LIB_DIR=/path/to/TensorRT/lib

# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference

61 62 63
# Paddle 预测库名称
PADDLE_LIB_NAME=paddle_inference

Q
qingqing01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib

# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib

# 请检查以上各个路径是否正确

# 以下无需改动
cmake .. \
    -DWITH_GPU=${WITH_GPU} \
    -DWITH_MKL=${WITH_MKL} \
    -DWITH_TENSORRT=${WITH_TENSORRT} \
    -DTENSORRT_LIB_DIR=${TENSORRT_LIB_DIR} \
    -DTENSORRT_INC_DIR=${TENSORRT_INC_DIR} \
    -DPADDLE_DIR=${PADDLE_DIR} \
    -DCUDA_LIB=${CUDA_LIB} \
    -DCUDNN_LIB=${CUDNN_LIB} \
82 83
    -DOPENCV_DIR=${OPENCV_DIR} \
    -DPADDLE_LIB_NAME={PADDLE_LIB_NAME}
Q
qingqing01 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
make

```

修改脚本设置好主要参数后,执行`build`脚本:
 ```shell
 sh ./scripts/build.sh
 ```

**注意**: OPENCV依赖OPENBLAS,Ubuntu用户需确认系统是否已存在`libopenblas.so`。如未安装,可执行apt-get install libopenblas-dev进行安装。

### Step5: 预测及可视化
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
|  参数   | 说明  |
|  ----  | ----  |
| --model_dir  | 导出的预测模型所在路径 |
G
Guanghua Yu 已提交
100 101 102
| --image_file  | 要预测的图片文件路径 |
| --image_dir  |  要预测的图片文件夹路径   |
| --video_file  | 要预测的视频文件路径 |
Q
qingqing01 已提交
103
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
G
Guanghua Yu 已提交
104
| --device  | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|
Q
qingqing01 已提交
105
| --gpu_id  |  指定进行推理的GPU device id(默认值为0)|
106
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
107
| --batch_size  | 预测时的batch size,在指定`image_dir`时有效 |
Q
qingqing01 已提交
108 109
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
G
Guanghua Yu 已提交
110 111
| --use_mkldnn | CPU预测中是否开启MKLDNN加速 |
| --cpu_threads | 设置cpu线程数,默认为1 |
Q
qingqing01 已提交
112

G
Guanghua Yu 已提交
113
**注意**: 优先级顺序:`camera_id` > `video_file` > `image_dir` > `image_file`
Q
qingqing01 已提交
114 115 116 117 118


`样例一`
```shell
#不使用`GPU`测试图片 `/root/projects/images/test.jpeg`  
119
./build/main --model_dir=/root/projects/models/yolov3_darknet --image_file=/root/projects/images/test.jpeg
Q
qingqing01 已提交
120 121 122 123 124 125 126 127
```

图片文件`可视化预测结果`会保存在当前目录下`output.jpg`文件中。


`样例二`:
```shell
#使用 `GPU`预测视频`/root/projects/videos/test.mp4`
G
Guanghua Yu 已提交
128
./build/main --model_dir=/root/projects/models/yolov3_darknet --video_path=/root/projects/images/test.mp4 --device=GPU
Q
qingqing01 已提交
129 130
```
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
C
cnn 已提交
131 132 133

## 性能测试
benchmark请查看[BENCHMARK_INFER](../../BENCHMARK_INFER.md)