utils.py 10.6 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
Z
zhiboniu 已提交
30 31 32 33 34 35 36 37
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
    parser.add_argument("--rec_batch_num", type=int, default=6)
G
Guanghua Yu 已提交
38 39 40 41 42 43 44
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
C
cnn 已提交
45
    parser.add_argument(
W
wangguanzhong 已提交
46
        "--batch_size", type=int, default=1, help="batch_size for inference.")
G
Guanghua Yu 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
68 69
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
70 71 72 73 74 75
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
G
Guanghua Yu 已提交
76 77 78 79
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
80
        help="Deprecated, please use `--device`.")
G
Guanghua Yu 已提交
81 82 83 84 85 86 87 88 89 90
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
91 92 93 94 95
    parser.add_argument(
        "--enable_mkldnn_bfloat16",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn bfloat16 inference with CPU.")
G
Guanghua Yu 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
G
George Ni 已提交
116 117 118
    parser.add_argument(
        '--save_images',
        action='store_true',
119
        help='Save visualization image results.')
G
George Ni 已提交
120
    parser.add_argument(
121
        '--save_mot_txts',
G
George Ni 已提交
122 123
        action='store_true',
        help='Save tracking results (txt).')
124 125 126 127 128 129 130 131 132 133
    parser.add_argument(
        '--save_mot_txt_per_img',
        action='store_true',
        help='Save tracking results (txt) for each image.')
    parser.add_argument(
        '--scaled',
        type=bool,
        default=False,
        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
        "True in general detector.")
W
wangguanzhong 已提交
134 135
    parser.add_argument(
        "--tracker_config", type=str, default=None, help=("tracker donfig"))
G
George Ni 已提交
136 137 138 139 140 141
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
142 143 144 145 146
    parser.add_argument(
        "--reid_batch_size",
        type=int,
        default=50,
        help="max batch_size for reid model inference.")
Z
zhiboniu 已提交
147 148
    parser.add_argument(
        '--use_dark',
149
        type=ast.literal_eval,
Z
zhiboniu 已提交
150 151
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
J
JYChen 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    parser.add_argument(
        "--action_file",
        type=str,
        default=None,
        help="Path of input file for action recognition.")
    parser.add_argument(
        "--window_size",
        type=int,
        default=50,
        help="Temporal size of skeleton feature for action recognition.")
    parser.add_argument(
        "--random_pad",
        type=ast.literal_eval,
        default=False,
        help="Whether do random padding for action recognition.")
167 168 169 170 171 172
    parser.add_argument(
        "--save_results",
        type=bool,
        default=False,
        help="Whether save detection result to file using coco format")

G
Guanghua Yu 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
W
wangguanzhong 已提交
204
    def __init__(self, with_tracker=False):
G
Guanghua Yu 已提交
205
        super(Timer, self).__init__()
W
wangguanzhong 已提交
206
        self.with_tracker = with_tracker
207 208 209
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
W
wangguanzhong 已提交
210
        self.tracking_time_s = Times()
G
Guanghua Yu 已提交
211 212 213
        self.img_num = 0

    def info(self, average=False):
W
wangguanzhong 已提交
214 215 216 217 218 219 220 221
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            total_time = total_time + track_time
G
Guanghua Yu 已提交
222 223 224 225
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
W
wangguanzhong 已提交
226 227 228 229 230 231 232 233
        preprocess_time = round(pre_time / max(1, self.img_num),
                                4) if average else pre_time
        postprocess_time = round(post_time / max(1, self.img_num),
                                 4) if average else post_time
        inference_time = round(infer_time / max(1, self.img_num),
                               4) if average else infer_time
        tracking_time = round(track_time / max(1, self.img_num),
                              4) if average else track_time
G
Guanghua Yu 已提交
234

235
        average_latency = total_time / max(1, self.img_num)
236 237 238
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
G
Guanghua Yu 已提交
239
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
240
            average_latency * 1000, qps))
W
wangguanzhong 已提交
241 242 243 244 245 246 247 248 249 250
        if self.with_tracker:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000, tracking_time * 1000))
        else:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000))
G
Guanghua Yu 已提交
251 252 253

    def report(self, average=False):
        dic = {}
W
wangguanzhong 已提交
254 255 256 257 258 259 260 261 262 263 264
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
                                         4) if average else pre_time
        dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
                                        4) if average else infer_time
        dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
                                          4) if average else post_time
G
Guanghua Yu 已提交
265
        dic['img_num'] = self.img_num
W
wangguanzhong 已提交
266 267
        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
268
            dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
J
JYChen 已提交
269
                                           4) if average else track_time
W
wangguanzhong 已提交
270
            total_time = total_time + track_time
271
        dic['total_time_s'] = round(total_time, 4)
G
Guanghua Yu 已提交
272 273 274 275 276 277 278 279 280 281 282
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
283
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
G
Guanghua Yu 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)