jde_tracker.py 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
"""

import numpy as np
from collections import defaultdict

from ..matching import jde_matching as matching
from ..motion import KalmanFilter
from .base_jde_tracker import TrackState, STrack
from .base_jde_tracker import joint_stracks, sub_stracks, remove_duplicate_stracks

__all__ = ['JDETracker']


class JDETracker(object):
    __shared__ = ['num_classes']
    """
    JDE tracker, support single class and multi classes

    Args:
35
        use_byte (bool): Whether use ByteTracker, default False
36 37 38 39 40
        num_classes (int): the number of classes
        det_thresh (float): threshold of detection score
        track_buffer (int): buffer for tracker
        min_box_area (int): min box area to filter out low quality boxes
        vertical_ratio (float): w/h, the vertical ratio of the bbox to filter
41
            bad results. If set <= 0 means no need to filter bboxes,usually set
42 43 44 45 46 47 48
            1.6 for pedestrian tracking.
        tracked_thresh (float): linear assignment threshold of tracked 
            stracks and detections
        r_tracked_thresh (float): linear assignment threshold of 
            tracked stracks and unmatched detections
        unconfirmed_thresh (float): linear assignment threshold of 
            unconfirmed stracks and unmatched detections
49 50 51 52 53 54 55 56
        conf_thres (float): confidence threshold for tracking, also used in
            ByteTracker as higher confidence threshold
        match_thres (float): linear assignment threshold of tracked 
            stracks and detections in ByteTracker
        low_conf_thres (float): lower confidence threshold for tracking in
            ByteTracker
        input_size (list): input feature map size to reid model, [h, w] format,
            [64, 192] as default.
57 58 59 60 61 62
        motion (str): motion model, KalmanFilter as default
        metric_type (str): either "euclidean" or "cosine", the distance metric 
            used for measurement to track association.
    """

    def __init__(self,
F
Feng Ni 已提交
63
                 use_byte=False,
64 65 66
                 num_classes=1,
                 det_thresh=0.3,
                 track_buffer=30,
67 68
                 min_box_area=0,
                 vertical_ratio=0,
69 70 71 72
                 tracked_thresh=0.7,
                 r_tracked_thresh=0.5,
                 unconfirmed_thresh=0.7,
                 conf_thres=0,
F
Feng Ni 已提交
73 74
                 match_thres=0.8,
                 low_conf_thres=0.2,
75
                 input_size=[64, 192],
F
Feng Ni 已提交
76
                 motion='KalmanFilter',
77
                 metric_type='euclidean'):
F
Feng Ni 已提交
78
        self.use_byte = use_byte
79
        self.num_classes = num_classes
F
Feng Ni 已提交
80
        self.det_thresh = det_thresh if not use_byte else conf_thres + 0.1
81 82 83 84 85 86 87
        self.track_buffer = track_buffer
        self.min_box_area = min_box_area
        self.vertical_ratio = vertical_ratio

        self.tracked_thresh = tracked_thresh
        self.r_tracked_thresh = r_tracked_thresh
        self.unconfirmed_thresh = unconfirmed_thresh
F
Feng Ni 已提交
88 89 90 91
        self.conf_thres = conf_thres
        self.match_thres = match_thres
        self.low_conf_thres = low_conf_thres

92
        self.input_size = input_size
93 94 95 96 97 98 99 100 101 102 103 104
        if motion == 'KalmanFilter':
            self.motion = KalmanFilter()
        self.metric_type = metric_type

        self.frame_id = 0
        self.tracked_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.lost_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.removed_tracks_dict = defaultdict(list)  # dict(list[STrack])

        self.max_time_lost = 0
        # max_time_lost will be calculated: int(frame_rate / 30.0 * track_buffer)

F
Feng Ni 已提交
105
    def update(self, pred_dets, pred_embs=None):
106 107 108 109 110 111 112
        """
        Processes the image frame and finds bounding box(detections).
        Associates the detection with corresponding tracklets and also handles
            lost, removed, refound and active tracklets.

        Args:
            pred_dets (np.array): Detection results of the image, the shape is
113
                [N, 6], means 'cls_id, score, x0, y0, x1, y1'.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            pred_embs (np.array): Embedding results of the image, the shape is
                [N, 128] or [N, 512].

        Return:
            output_stracks_dict (dict(list)): The list contains information
                regarding the online_tracklets for the recieved image tensor.
        """
        self.frame_id += 1
        if self.frame_id == 1:
            STrack.init_count(self.num_classes)
        activated_tracks_dict = defaultdict(list)
        refined_tracks_dict = defaultdict(list)
        lost_tracks_dict = defaultdict(list)
        removed_tracks_dict = defaultdict(list)
        output_tracks_dict = defaultdict(list)

        pred_dets_dict = defaultdict(list)
        pred_embs_dict = defaultdict(list)

        # unify single and multi classes detection and embedding results
        for cls_id in range(self.num_classes):
135
            cls_idx = (pred_dets[:, 0:1] == cls_id).squeeze(-1)
136
            pred_dets_dict[cls_id] = pred_dets[cls_idx]
F
Feng Ni 已提交
137 138 139 140
            if pred_embs is not None:
                pred_embs_dict[cls_id] = pred_embs[cls_idx]
            else:
                pred_embs_dict[cls_id] = None
141 142 143 144 145

        for cls_id in range(self.num_classes):
            """ Step 1: Get detections by class"""
            pred_dets_cls = pred_dets_dict[cls_id]
            pred_embs_cls = pred_embs_dict[cls_id]
146
            remain_inds = (pred_dets_cls[:, 1:2] > self.conf_thres).squeeze(-1)
147 148
            if remain_inds.sum() > 0:
                pred_dets_cls = pred_dets_cls[remain_inds]
149 150
                if pred_embs_cls is None:
                    # in original ByteTrack
F
Feng Ni 已提交
151 152
                    detections = [
                        STrack(
153 154 155 156 157
                            STrack.tlbr_to_tlwh(tlbrs[2:6]),
                            tlbrs[1],
                            cls_id,
                            30,
                            temp_feat=None) for tlbrs in pred_dets_cls
F
Feng Ni 已提交
158 159 160 161 162
                    ]
                else:
                    pred_embs_cls = pred_embs_cls[remain_inds]
                    detections = [
                        STrack(
163
                            STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id,
164 165
                            30, temp_feat) for (tlbrs, temp_feat) in
                        zip(pred_dets_cls, pred_embs_cls)
F
Feng Ni 已提交
166
                    ]
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            else:
                detections = []
            ''' Add newly detected tracklets to tracked_stracks'''
            unconfirmed_dict = defaultdict(list)
            tracked_tracks_dict = defaultdict(list)
            for track in self.tracked_tracks_dict[cls_id]:
                if not track.is_activated:
                    # previous tracks which are not active in the current frame are added in unconfirmed list
                    unconfirmed_dict[cls_id].append(track)
                else:
                    # Active tracks are added to the local list 'tracked_stracks'
                    tracked_tracks_dict[cls_id].append(track)
            """ Step 2: First association, with embedding"""
            # building tracking pool for the current frame
            track_pool_dict = defaultdict(list)
            track_pool_dict[cls_id] = joint_stracks(
                tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id])

            # Predict the current location with KalmanFilter
            STrack.multi_predict(track_pool_dict[cls_id], self.motion)

188 189
            if pred_embs_cls is None:
                # in original ByteTrack
190 191
                dists = matching.iou_distance(track_pool_dict[cls_id],
                                              detections)
F
Feng Ni 已提交
192
                matches, u_track, u_detection = matching.linear_assignment(
193
                    dists, thresh=self.match_thres)  # not self.tracked_thresh
F
Feng Ni 已提交
194 195
            else:
                dists = matching.embedding_distance(
196 197 198 199 200
                    track_pool_dict[cls_id],
                    detections,
                    metric=self.metric_type)
                dists = matching.fuse_motion(
                    self.motion, dists, track_pool_dict[cls_id], detections)
F
Feng Ni 已提交
201 202
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.tracked_thresh)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

            for i_tracked, idet in matches:
                # i_tracked is the id of the track and idet is the detection
                track = track_pool_dict[cls_id][i_tracked]
                det = detections[idet]
                if track.state == TrackState.Tracked:
                    # If the track is active, add the detection to the track
                    track.update(detections[idet], self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    # We have obtained a detection from a track which is not active,
                    # hence put the track in refind_stracks list
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            # None of the steps below happen if there are no undetected tracks.
            """ Step 3: Second association, with IOU"""
F
Feng Ni 已提交
220
            if self.use_byte:
221 222
                inds_low = pred_dets_dict[cls_id][:, 1:2] > self.low_conf_thres
                inds_high = pred_dets_dict[cls_id][:, 1:2] < self.conf_thres
F
Feng Ni 已提交
223 224 225 226 227
                inds_second = np.logical_and(inds_low, inds_high).squeeze(-1)
                pred_dets_cls_second = pred_dets_dict[cls_id][inds_second]

                # association the untrack to the low score detections
                if len(pred_dets_cls_second) > 0:
228 229 230 231 232 233 234 235 236 237 238 239
                    if pred_embs_dict[cls_id] is None:
                        # in original ByteTrack
                        detections_second = [
                            STrack(
                                STrack.tlbr_to_tlwh(tlbrs[2:6]),
                                tlbrs[1],
                                cls_id,
                                30,
                                temp_feat=None)
                            for tlbrs in pred_dets_cls_second
                        ]
                    else:
240 241
                        pred_embs_cls_second = pred_embs_dict[cls_id][
                            inds_second]
242 243
                        detections_second = [
                            STrack(
244 245 246
                                STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1],
                                cls_id, 30, temp_feat) for (tlbrs, temp_feat) in
                            zip(pred_dets_cls_second, pred_embs_cls_second)
247
                        ]
F
Feng Ni 已提交
248 249 250 251 252 253
                else:
                    detections_second = []
                r_tracked_stracks = [
                    track_pool_dict[cls_id][i] for i in u_track
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked
                ]
254 255
                dists = matching.iou_distance(r_tracked_stracks,
                                              detections_second)
F
Feng Ni 已提交
256
                matches, u_track, u_detection_second = matching.linear_assignment(
257
                    dists, thresh=0.4)  # not r_tracked_thresh
F
Feng Ni 已提交
258 259 260 261 262 263 264
            else:
                detections = [detections[i] for i in u_detection]
                r_tracked_stracks = []
                for i in u_track:
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked:
                        r_tracked_stracks.append(track_pool_dict[cls_id][i])
                dists = matching.iou_distance(r_tracked_stracks, detections)
265

F
Feng Ni 已提交
266 267
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.r_tracked_thresh)
268 269 270

            for i_tracked, idet in matches:
                track = r_tracked_stracks[i_tracked]
271 272
                det = detections[
                    idet] if not self.use_byte else detections_second[idet]
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
                if track.state == TrackState.Tracked:
                    track.update(det, self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            for it in u_track:
                track = r_tracked_stracks[it]
                if not track.state == TrackState.Lost:
                    track.mark_lost()
                    lost_tracks_dict[cls_id].append(track)
            '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
            detections = [detections[i] for i in u_detection]
            dists = matching.iou_distance(unconfirmed_dict[cls_id], detections)
            matches, u_unconfirmed, u_detection = matching.linear_assignment(
                dists, thresh=self.unconfirmed_thresh)
            for i_tracked, idet in matches:
                unconfirmed_dict[cls_id][i_tracked].update(detections[idet],
                                                           self.frame_id)
                activated_tracks_dict[cls_id].append(unconfirmed_dict[cls_id][
                    i_tracked])
            for it in u_unconfirmed:
                track = unconfirmed_dict[cls_id][it]
                track.mark_removed()
                removed_tracks_dict[cls_id].append(track)
            """ Step 4: Init new stracks"""
            for inew in u_detection:
                track = detections[inew]
                if track.score < self.det_thresh:
                    continue
                track.activate(self.motion, self.frame_id)
                activated_tracks_dict[cls_id].append(track)
            """ Step 5: Update state"""
            for track in self.lost_tracks_dict[cls_id]:
                if self.frame_id - track.end_frame > self.max_time_lost:
                    track.mark_removed()
                    removed_tracks_dict[cls_id].append(track)

            self.tracked_tracks_dict[cls_id] = [
                t for t in self.tracked_tracks_dict[cls_id]
                if t.state == TrackState.Tracked
            ]
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], activated_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], refined_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.tracked_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id].extend(lost_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.removed_tracks_dict[cls_id])
            self.removed_tracks_dict[cls_id].extend(removed_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[
                cls_id] = remove_duplicate_stracks(
                    self.tracked_tracks_dict[cls_id],
                    self.lost_tracks_dict[cls_id])

            # get scores of lost tracks
            output_tracks_dict[cls_id] = [
                track for track in self.tracked_tracks_dict[cls_id]
                if track.is_activated
            ]

        return output_tracks_dict