fleet_wrapper.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include "paddle/fluid/framework/data_feed.h"
31 32 33 34 35 36

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
37 38
bool FleetWrapper::is_initialized_ = false;

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#ifdef PADDLE_WITH_PSLIB
template<class AR>
paddle::ps::Archive<AR>& operator << (
    paddle::ps::Archive<AR>& ar,
    const MultiSlotType& ins) {
  ar << ins.GetType();
  ar << ins.GetOffset();
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
return ar;
}

template<class AR>
paddle::ps::Archive<AR>& operator >> (
    paddle::ps::Archive<AR>& ar,
    MultiSlotType& ins) {
  ar >> ins.MutableType();
  ar >> ins.MutableOffset();
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
return ar;
}
#endif

63 64 65
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
66 67 68 69

void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
70
    VLOG(3) << "Going to init server";
71 72 73 74 75
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
76
    VLOG(3) << "Server can be initialized only once";
77 78 79 80 81 82 83 84 85
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
86
    VLOG(3) << "Going to init worker";
87 88 89 90 91 92 93
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
94
    VLOG(3) << "Worker can be initialized only once";
95 96 97 98 99 100
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
101
  VLOG(3) << "Going to stop server";
102 103 104 105 106 107
  pslib_ptr_->stop_server();
#endif
}

uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
108
  VLOG(3) << "Going to run server";
109 110 111 112 113 114 115 116 117
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
118
  VLOG(3) << "Going to gather server ips";
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
    fea_values->resize(fea_keys->size() + 1);
    for (auto& t : *fea_values) {
      t.resize(fea_value_dim);
    }
    std::vector<float*> pull_result_ptr;
    for (auto& t : *fea_values) {
      pull_result_ptr.push_back(t.data());
    }
    auto status = pslib_ptr_->_worker_ptr->pull_sparse(
        pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
    pull_sparse_status.push_back(std::move(status));
  }
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
174 175 176
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
177 178 179
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
180
    regions[i] = std::move(reg);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* push_sparse_status) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
    std::vector<::std::future<int32_t>>* push_sparse_status) {
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
  uint64_t fea_idx = 0u;
  for (size_t i = 0; i < sparse_key_names.size(); ++i) {
238 239 240 241
    LOG(WARNING) << "sparse key names[" << i << "]: " << sparse_key_names[i];
    LOG(WARNING) << "sparse grad names[" << i << "]: " << sparse_grad_names[i];
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
    CHECK(g_var != nullptr) << "var[" << sparse_grad_names[i] << "] not found";
242 243 244 245 246 247 248 249 250 251 252 253 254 255
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
      LOG(ERROR) << "var[" << sparse_key_names[i] << "] not found";
      exit(-1);
    }
    float* g = g_tensor->data<float>();
    Variable* var = scope.FindVar(sparse_key_names[i]);
    CHECK(var != nullptr) << "var[" << sparse_key_names[i] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << sparse_key_names[i] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
256
    LOG(WARNING) << " tensor len: " << len;
257
    int64_t* ids = tensor->data<int64_t>();
258 259 260 261 262
    push_values->resize(fea_keys.size() + 1);
    for (auto& t : *push_values) {
      t.resize(emb_dim + offset);
    }

263 264 265 266 267
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
268
      LOG(WARNING) << "going to memcpy";
269 270
      memcpy((*push_values)[fea_idx].data() + offset, g,
             sizeof(float) * emb_dim);
271
      LOG(WARNING) << "show";
272
      (*push_values)[fea_idx][0] = 1.0f;
273
      LOG(WARNING) << "click";
274
      (*push_values)[fea_idx][1] = static_cast<float>(fea_labels[fea_idx]);
275
      LOG(WARNING) << "offset";
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      g += emb_dim;
      fea_idx++;
    }
  }
  CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx
                                    << "features size: " << fea_keys.size();
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < fea_keys.size(); ++i) {
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, fea_keys.data(), (const float**)push_g_vec.data(),
      fea_keys.size());
  push_sparse_status->push_back(std::move(status));

#endif
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
// todo registe_client2client_msg_handler
int FleetWrapper::registe_client2client_msg_handler(int msg_type, MsgHandlerFunc handler) {
    return 0;
}

// todo send_client2client_msg
int FleetWrapper::send_client2client_msg(int msg_type, int to_client_id, const std::string& msg) {
    return 0;
}

template<typename T>
void FleetWrapper::Serialize(const T& t, std::string& str) {
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
  ar << t;
  str = std::string(ar.buffer(), ar.length());
#else
  VLOG(0) << "FleetWrapper::Serialize do nothing when no pslib";
#endif
}

template<typename T>
void FleetWrapper::Deserialize(T& t, const std::string& str) {
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
  ar.set_read_buffer(const_cast<char*>(str.c_str()), str.length(), nullptr);
  t = ar.get<T>();
#else
  VLOG(0) << "FleetWrapper::Deserialize do nothing when no pslib";
#endif
}

template void FleetWrapper::Serialize<std::vector<MultiSlotType>>(
    const std::vector<MultiSlotType>&, std::string&);
template void FleetWrapper::Deserialize(
    std::vector<MultiSlotType>&, const std::string&);

331 332
}  // end namespace framework
}  // end namespace paddle
新手
引导
客服 返回
顶部