ld_gfl_head.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/ld_head.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance, batch_distance2bbox
from ppdet.data.transform.atss_assigner import bbox_overlaps
from .gfl_head import GFLHead


@register
class LDGFLHead(GFLHead):
    """
    GFLHead for LD distill
    Args:
        conv_feat (object): Instance of 'FCOSFeat'
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        loss_class (object): Instance of QualityFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
                n QFL setting. Default: 16.
    """
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'loss_ld', 'loss_ld_vlr', 'loss_kd', 'nms'
    ]
    __shared__ = ['num_classes']

    def __init__(self,
                 conv_feat='FCOSFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
                 loss_class='QualityFocalLoss',
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
                 loss_ld='KnowledgeDistillationKLDivLoss',
                 loss_ld_vlr='KnowledgeDistillationKLDivLoss',
                 loss_kd='KnowledgeDistillationKLDivLoss',
                 reg_max=16,
                 feat_in_chan=256,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0):

        super(LDGFLHead, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
            loss_class=loss_class,
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset)
        self.loss_ld = loss_ld
        self.loss_kd = loss_kd
        self.loss_ld_vlr = loss_ld_vlr

    def forward(self, fpn_feats):
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
        cls_logits_list = []
        bboxes_reg_list = []
        for stride, scale_reg, fpn_feat in zip(self.fpn_stride,
                                               self.scales_regs, fpn_feats):
            conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat)
            cls_score = self.gfl_head_cls(conv_cls_feat)
            bbox_pred = scale_reg(self.gfl_head_reg(conv_reg_feat))

            if self.dgqp_module:
                quality_score = self.dgqp_module(bbox_pred)
                cls_score = F.sigmoid(cls_score) * quality_score
            if not self.training:
                cls_score = F.sigmoid(cls_score.transpose([0, 2, 3, 1]))
                bbox_pred = bbox_pred.transpose([0, 2, 3, 1])
                b, cell_h, cell_w, _ = paddle.shape(cls_score)
                y, x = self.get_single_level_center_point(
                    [cell_h, cell_w], stride, cell_offset=self.cell_offset)
                center_points = paddle.stack([x, y], axis=-1)
                cls_score = cls_score.reshape([b, -1, self.cls_out_channels])
                bbox_pred = self.distribution_project(bbox_pred) * stride
                bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4])

                # NOTE: If keep_ratio=False and image shape value that
                # multiples of 32, distance2bbox not set max_shapes parameter
                # to speed up model prediction. If need to set max_shapes,
                # please use inputs['im_shape'].
                bbox_pred = batch_distance2bbox(
                    center_points, bbox_pred, max_shapes=None)

            cls_logits_list.append(cls_score)
            bboxes_reg_list.append(bbox_pred)

        return (cls_logits_list, bboxes_reg_list)

    def get_loss(self, gfl_head_outs, gt_meta, soft_label_list,
                 soft_targets_list):
        cls_logits, bboxes_reg = gfl_head_outs

        num_level_anchors = [
            featmap.shape[-2] * featmap.shape[-1] for featmap in cls_logits
        ]

        grid_cells_list = self._images_to_levels(gt_meta['grid_cells'],
                                                 num_level_anchors)

        labels_list = self._images_to_levels(gt_meta['labels'],
                                             num_level_anchors)

        label_weights_list = self._images_to_levels(gt_meta['label_weights'],
                                                    num_level_anchors)
        bbox_targets_list = self._images_to_levels(gt_meta['bbox_targets'],
                                                   num_level_anchors)
        # vlr regions                                         
        vlr_regions_list = self._images_to_levels(gt_meta['vlr_regions'],
                                                  num_level_anchors)

        num_total_pos = sum(gt_meta['pos_num'])
        try:
U
ucsk 已提交
156 157 158
            paddle.distributed.all_reduce(num_total_pos)
            num_total_pos = paddle.clip(
                num_total_pos / paddle.distributed.get_world_size(), min=1.)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        except:
            num_total_pos = max(num_total_pos, 1)

        loss_bbox_list, loss_dfl_list, loss_qfl_list, loss_ld_list, avg_factor = [], [], [], [], []
        loss_ld_vlr_list, loss_kd_list = [], []

        for cls_score, bbox_pred, grid_cells, labels, label_weights, bbox_targets, stride, soft_targets,\
                soft_label, vlr_region in zip(
                cls_logits, bboxes_reg, grid_cells_list, labels_list,
                label_weights_list, bbox_targets_list, self.fpn_stride, soft_targets_list,
                soft_label_list, vlr_regions_list):

            grid_cells = grid_cells.reshape([-1, 4])
            cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
                [-1, self.cls_out_channels])
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [-1, 4 * (self.reg_max + 1)])

            soft_targets = soft_targets.transpose([0, 2, 3, 1]).reshape(
                [-1, 4 * (self.reg_max + 1)])

            soft_label = soft_label.transpose([0, 2, 3, 1]).reshape(
                [-1, self.cls_out_channels])

            # feture im
            # teacher_x = teacher_x.transpose([0, 2, 3, 1]).reshape([-1, 256])
            # x = x.transpose([0, 2, 3, 1]).reshape([-1, 256])  

            bbox_targets = bbox_targets.reshape([-1, 4])
            labels = labels.reshape([-1])
            label_weights = label_weights.reshape([-1])

            vlr_region = vlr_region.reshape([-1])

            bg_class_ind = self.num_classes
            pos_inds = paddle.nonzero(
                paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
                as_tuple=False).squeeze(1)
            score = np.zeros(labels.shape)

            remain_inds = (vlr_region > 0).nonzero()

            if len(pos_inds) > 0:
                pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
                pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
                pos_grid_cells = paddle.gather(grid_cells, pos_inds, axis=0)

                pos_grid_cell_centers = self._grid_cells_to_center(
                    pos_grid_cells) / stride

                weight_targets = F.sigmoid(cls_score.detach())
                weight_targets = paddle.gather(
                    weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
                pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
                pos_decode_bbox_pred = distance2bbox(pos_grid_cell_centers,
                                                     pos_bbox_pred_corners)
                pos_decode_bbox_targets = pos_bbox_targets / stride
                bbox_iou = bbox_overlaps(
                    pos_decode_bbox_pred.detach().numpy(),
                    pos_decode_bbox_targets.detach().numpy(),
                    is_aligned=True)
                score[pos_inds.numpy()] = bbox_iou
                pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])

                pos_soft_targets = paddle.gather(soft_targets, pos_inds, axis=0)
                soft_corners = pos_soft_targets.reshape([-1, self.reg_max + 1])

                target_corners = bbox2distance(pos_grid_cell_centers,
                                               pos_decode_bbox_targets,
                                               self.reg_max).reshape([-1])
                # regression loss
                loss_bbox = paddle.sum(
                    self.loss_bbox(pos_decode_bbox_pred,
                                   pos_decode_bbox_targets) * weight_targets)

                # dfl loss
                loss_dfl = self.loss_dfl(
                    pred_corners,
                    target_corners,
                    weight=weight_targets.expand([-1, 4]).reshape([-1]),
                    avg_factor=4.0)

                # ld loss
                loss_ld = self.loss_ld(
                    pred_corners,
                    soft_corners,
                    weight=weight_targets.expand([-1, 4]).reshape([-1]),
                    avg_factor=4.0)

                loss_kd = self.loss_kd(
                    paddle.gather(
                        cls_score, pos_inds, axis=0),
                    paddle.gather(
                        soft_label, pos_inds, axis=0),
                    weight=paddle.gather(
                        label_weights, pos_inds, axis=0),
                    avg_factor=pos_inds.shape[0])

            else:
                loss_bbox = bbox_pred.sum() * 0
                loss_dfl = bbox_pred.sum() * 0
                loss_ld = bbox_pred.sum() * 0
                loss_kd = bbox_pred.sum() * 0
                weight_targets = paddle.to_tensor([0], dtype='float32')

            if len(remain_inds) > 0:
                neg_pred_corners = bbox_pred[remain_inds].reshape(
                    [-1, self.reg_max + 1])
                neg_soft_corners = soft_targets[remain_inds].reshape(
                    [-1, self.reg_max + 1])

                remain_targets = vlr_region[remain_inds]

                loss_ld_vlr = self.loss_ld_vlr(
                    neg_pred_corners,
                    neg_soft_corners,
                    weight=remain_targets.expand([-1, 4]).reshape([-1]),
                    avg_factor=16.0)
            else:
                loss_ld_vlr = bbox_pred.sum() * 0

            # qfl loss
            score = paddle.to_tensor(score)
            loss_qfl = self.loss_qfl(
                cls_score, (labels, score),
                weight=label_weights,
                avg_factor=num_total_pos)

            loss_bbox_list.append(loss_bbox)
            loss_dfl_list.append(loss_dfl)
            loss_qfl_list.append(loss_qfl)
            loss_ld_list.append(loss_ld)
            loss_ld_vlr_list.append(loss_ld_vlr)
            loss_kd_list.append(loss_kd)
            avg_factor.append(weight_targets.sum())

        avg_factor = sum(avg_factor)  # + 1e-6
        try:
U
ucsk 已提交
297
            paddle.distributed.all_reduce(avg_factor)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            avg_factor = paddle.clip(
                avg_factor / paddle.distributed.get_world_size(), min=1)
        except:
            avg_factor = max(avg_factor.item(), 1)

        if avg_factor <= 0:
            loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_bbox = paddle.to_tensor(
                0, dtype='float32', stop_gradient=False)
            loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_ld = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_ld_vlr = paddle.to_tensor(
                0, dtype='float32', stop_gradient=False)
            loss_kd = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
        else:
            losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
            losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
            loss_qfl = sum(loss_qfl_list)
            loss_bbox = sum(losses_bbox)
            loss_dfl = sum(losses_dfl)
            loss_ld = sum(loss_ld_list)
            loss_ld_vlr = sum(loss_ld_vlr_list)
            loss_kd = sum(loss_kd_list)

        loss_states = dict(
            loss_qfl=loss_qfl,
            loss_bbox=loss_bbox,
            loss_dfl=loss_dfl,
            loss_ld=loss_ld,
            loss_ld_vlr=loss_ld_vlr,
            loss_kd=loss_kd)

        return loss_states