layer.py 18.0 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69
import collections
Y
Yu Yang 已提交
70
import inspect
Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
75 76
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
77
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
78
from paddle.trainer_config_helpers.layers import layer_support
79 80 81
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
82

L
Luo Tao 已提交
83
import activation
Q
qiaolongfei 已提交
84
import data_type
Q
qiaolongfei 已提交
85

Y
Yu Yang 已提交
86
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
87

D
dangqingqing 已提交
88 89 90 91 92 93 94
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
95

Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
111
class Layer(object):
Q
qiaolongfei 已提交
112
    def __init__(self, name=None, size=None, parent_layers=None):
Q
qiaolongfei 已提交
113
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
114
        self.name = name
Q
qiaolongfei 已提交
115
        self.size = size
Q
qiaolongfei 已提交
116
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
117 118 119 120 121 122

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
123 124
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
125
                              collections.Sequence):
Q
qiaolongfei 已提交
126
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
127 128
                    context=context)
            else:
Q
qiaolongfei 已提交
129 130 131
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
132

133
        if self.context_name() is None:
134
            return self.to_proto_impl(**kwargs)
135 136
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
137 138 139 140 141

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]
Q
qiaolongfei 已提交
142 143 144 145

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()

146 147 148 149 150 151 152 153
    def context_name(self):
        """
        Context name means the context which stores `to_proto_impl` result.
        If multiple layer share same context_name, the `to_proto_impl` of them
        will be invoked only once.
        """
        return self.name

Q
qiaolongfei 已提交
154 155 156
    def use_context_name(self):
        return False

Q
qiaolongfei 已提交
157

L
Luo Tao 已提交
158 159 160
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
161 162 163
    else:
        wrapper = None

Q
qiaolongfei 已提交
164
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
165
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
166 167 168
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
169 170
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
171 172 173 174 175

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
176
            name = kwargs.get('name', None)
Q
qiaolongfei 已提交
177 178
            size = kwargs.get('size', None)
            super(V2LayerImpl, self).__init__(name, size, parent_layers)
Q
qiaolongfei 已提交
179 180 181 182 183 184 185 186 187 188 189
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
190
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
191

Q
qiaolongfei 已提交
192
    return V2LayerImpl
Q
qiaolongfei 已提交
193 194


Q
qiaolongfei 已提交
195 196 197 198 199 200 201
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
202
    def __init__(self, name, type, **kwargs):
203
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
204

Q
qiaolongfei 已提交
205
        self.type = type
Q
qiaolongfei 已提交
206 207
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
208 209 210 211 212

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
213
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
214 215
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
216 217
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
218 219 220
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Y
Yu Yang 已提交
221 222 223
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
224

Q
qiaolongfei 已提交
225
    def __init__(self, name=None, size=None, parent_layers=None):
Y
Yu Yang 已提交
226
        self.__extra_parent__ = []
Q
qiaolongfei 已提交
227 228
        super(WithExtraParent, self).__init__(
            name=name, size=size, parent_layers=parent_layers)
Q
qiaolongfei 已提交
229

Y
Yu Yang 已提交
230 231
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
232

Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
267 268
        super(MemoryV2, self).__init__(
            name=name, size=size, parent_layers=dict())
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
278 279 280
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
294 295 296 297 298
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
299

Y
Yu Yang 已提交
300 301
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
302 303
        return conf_helps.memory(name=self.name, size=self.size, **args)

304 305 306
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
307 308 309 310 311 312 313
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
314

315
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
316 317 318 319 320
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

321 322 323 324 325 326 327 328 329 330
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
331 332 333 334 335 336 337 338 339
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
        # TODO(qiaolongfei): add size
        # assert input.size is not None or size is not None
340 341


342 343 344 345 346 347 348 349 350 351
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
352
        pass
353 354 355 356 357 358 359 360 361 362

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
363
        self.__inputs__ = []
364
        if input is not None:
D
dangqingqing 已提交
365
            self.__inputs__ = input
366

D
dangqingqing 已提交
367 368
        other_kwargs = dict()
        other_kwargs['name'] = name
369 370 371 372
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
373
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
374
        super(MixedLayerV2, self).__init__(name, size, parent_layers)
375 376 377 378
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
379
            self.__inputs__.append(other)
380 381
            return self
        else:
Y
Yu Yang 已提交
382
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
383 384

    def __enter__(self):
D
dangqingqing 已提交
385
        assert len(self.__inputs__) == 0
386 387 388 389 390 391 392 393 394 395 396
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
397
        return getattr(conf_helps, self.__method_name__)(**args)
398 399 400


@wrap_name_default("mixed")
D
dangqingqing 已提交
401
@wrap_act_default(act=activation.Linear())
402 403 404 405 406 407 408 409 410 411 412
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
413
class RecurrentLayerInput(WithExtraParent):
414 415 416 417 418 419 420 421 422 423
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
424
    def to_proto_impl(self, context, **kwargs):
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

Q
qiaolongfei 已提交
454 455 456 457 458 459
    # TODO(qiaolongfei) convert StaticInput to memory according to v2 recurrent_group
    for i in xrange(len(input)):
        cur_input = input[i]
        if isinstance(cur_input, StaticInputV2):
            input[i] = cur_input.input

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': input})
        for i in xrange(len(input))
    ]

    actual_output = step(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv


Q
qiaolongfei 已提交
486
LayerV2 = Layer
Q
qiaolongfei 已提交
487
data = DataLayerV2
L
Luo Tao 已提交
488 489
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
490
recurrent_group = recurrent_group
Q
qiaolongfei 已提交
491
memory = MemoryV2
Q
qiaolongfei 已提交
492

Y
Yu Yang 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
517 518 519
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
520
                        'right', 'output_mem'],
Y
Yu Yang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
540

541
# convert projection
D
dangqingqing 已提交
542
for prj in __projection_names__:
L
Luo Tao 已提交
543 544
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
545 546 547 548 549 550 551 552

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
553 554
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)