keypoint_postprocess.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include "include/keypoint_postprocess.h"
#define PI 3.1415926535
#define HALF_CIRCLE_DEGREE 180

cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
  cv::Point2f direct{a.x - b.x, a.y - b.y};
  return cv::Point2f(a.x - direct.y, a.y + direct.x);
}

std::vector<float> get_dir(float src_point_x,
                           float src_point_y,
                           float rot_rad) {
  float sn = sin(rot_rad);
  float cs = cos(rot_rad);
  std::vector<float> src_result{0.0, 0.0};
  src_result[0] = src_point_x * cs - src_point_y * sn;
  src_result[1] = src_point_x * sn + src_point_y * cs;
  return src_result;
}

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p) {
  double new1[3] = {pt_x, pt_y, 1.0};
  cv::Mat new_pt(3, 1, trans.type(), new1);
  cv::Mat w = trans * new_pt;
  preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
  preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
}

void get_affine_transform(std::vector<float>& center,
                          std::vector<float>& scale,
                          float rot,
                          std::vector<int>& output_size,
                          cv::Mat& trans,
                          int inv) {
  float src_w = scale[0];
  float dst_w = static_cast<float>(output_size[0]);
  float dst_h = static_cast<float>(output_size[1]);
  float rot_rad = rot * PI / HALF_CIRCLE_DEGREE;
  std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
  std::vector<float> dst_dir{-0.5 * dst_w, 0.0};
  cv::Point2f srcPoint2f[3], dstPoint2f[3];
  srcPoint2f[0] = cv::Point2f(center[0], center[1]);
  srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
  srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);

  dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
  dstPoint2f[1] =
      cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
  dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
  if (inv == 0) {
    trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
  } else {
    trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
  }
}

void transform_preds(std::vector<float>& coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<int>& dim,
                     std::vector<float>& target_coords) {
  cv::Mat trans(2, 3, CV_64FC1);
  get_affine_transform(center, scale, 0, output_size, trans, 1);
  for (int p = 0; p < dim[1]; ++p) {
    affine_tranform(coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
  }
}

// only for batchsize == 1
void get_max_preds(float* heatmap,
                   std::vector<int>& dim,
                   std::vector<float>& preds,
                   float* maxvals,
                   int batchid,
                   int joint_idx) {
  int num_joints = dim[1];
  int width = dim[3];
  std::vector<int> idx;
  idx.resize(num_joints * 2);

  for (int j = 0; j < dim[1]; j++) {
    float* index = &(
        heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
    float* end = index + dim[2] * dim[3];
    float* max_dis = std::max_element(index, end);
    auto max_id = std::distance(index, max_dis);
    maxvals[j] = *max_dis;
    if (*max_dis > 0) {
      preds[j * 2] = static_cast<float>(max_id % width);
      preds[j * 2 + 1] = static_cast<float>(max_id / width);
    }
  }
}

void dark_parse(std::vector<float>& heatmap,
                std::vector<int>& dim,
                std::vector<float>& coords,
                int px, 
                int py, 
                int index,
                int ch){
  /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
  Representation for Human Pose Estimation (CVPR 2020).
  1) offset = - hassian.inv() * derivative
  2) dx = (heatmap[x+1] - heatmap[x-1])/2.
  3) dxx = (dx[x+1] - dx[x-1])/2.
  4) derivative = Mat([dx, dy])
  5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
  */
  std::vector<float>::const_iterator first1 = heatmap.begin() + index;
Z
zhiboniu 已提交
127
  std::vector<float>::const_iterator last1 = heatmap.begin() + index + dim[2] * dim[3];
128
  std::vector<float> heatmap_ch(first1, last1);
Z
zhiboniu 已提交
129 130 131 132 133
  cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0,dim[2]);
  heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
  cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
  heatmap_mat = heatmap_mat.reshape(1,1);
  heatmap_ch = std::vector<float>(heatmap_mat.reshape(1,1));
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

  float epsilon = 1e-10;
  //sample heatmap to get values in around target location
  float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
  float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
  float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));

  float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
  float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
  float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
  float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
  float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
  float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
  float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
  float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
  float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
  float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));

  //compute dx/dy and dxx/dyy with sampled values
  float dx = 0.5 * (xr - xl);
  float dy = 0.5 * (yu - yd);
  float dxx = 0.25 * (xr2 - 2*xy + xl2);
  float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
  float dyy = 0.25 * (yu2 - 2*xy + yd2);

  //finally get offset by derivative and hassian, which combined by dx/dy and dxx/dyy
  if(dxx * dyy - dxy*dxy != 0){
    float M[2][2] = {dxx, dxy, dxy, dyy};
    float D[2] = {dx, dy};
    cv::Mat hassian(2,2,CV_32F,M);
    cv::Mat derivative(2,1,CV_32F,D);
    cv::Mat offset = - hassian.inv() * derivative;
    coords[ch * 2] += offset.at<float>(0,0);
    coords[ch * 2 + 1] += offset.at<float>(1,0);
  }
}

void get_final_preds(std::vector<float>& heatmap,
                     std::vector<int>& dim,
                     std::vector<int64_t>& idxout,
                     std::vector<int>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     std::vector<float>& preds,
                     int batchid,
                     bool DARK) {
  std::vector<float> coords;
  coords.resize(dim[1] * 2);
  int heatmap_height = dim[2];
  int heatmap_width = dim[3];

  for (int j = 0; j < dim[1]; ++j) {
    int index = (batchid * dim[1] + j) * dim[2] * dim[3];

    int idx = idxout[batchid * dim[1] + j];
    preds[j * 3] = heatmap[index + idx];
    coords[j * 2] = idx % heatmap_width;
    coords[j * 2 + 1] = idx / heatmap_width;

    int px = int(coords[j * 2] + 0.5);
    int py = int(coords[j * 2 + 1] + 0.5);

    if(DARK && px > 1 && px < heatmap_width - 2){
      dark_parse(heatmap, dim, coords, px, py, index, j);
    }
    else{
      if (px > 0 && px < heatmap_width - 1) {
        float diff_x = heatmap[index + py * dim[3] + px + 1] -
                      heatmap[index + py * dim[3] + px - 1];
        coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
      }
      if (py > 0 && py < heatmap_height - 1) {
        float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
                      heatmap[index + (py - 1) * dim[3] + px];
        coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
      }
    }
  }

  std::vector<int> img_size{heatmap_width, heatmap_height};
  transform_preds(coords, center, scale, img_size, dim, preds);
}