layer.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24

25 26 27 28
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
29
#include "paddle/fluid/platform/device_context.h"
30

M
minqiyang 已提交
31 32
#include "paddle/fluid/imperative/type_defs.h"

33 34 35
namespace paddle {
namespace imperative {

M
minqiyang 已提交
36 37
class VarBase;

X
Xin Pan 已提交
38 39
namespace py = ::pybind11;

X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
66
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
87 88
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
89 90 91 92 93
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
94

95 96
class OpBase;

M
minqiyang 已提交
97 98 99 100 101
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
102 103
class VarBase {
 public:
104
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
105 106

  // Owns `var` and `grad`
107
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
108
      : pre_op_(nullptr),
109
        pre_op_out_name_(),
M
minqiyang 已提交
110 111
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
112 113
        var_(var),
        grads_(grad),
M
minqiyang 已提交
114 115 116
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
117
      : pre_op_(nullptr),
118
        pre_op_out_name_(),
119 120
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
121
        var_(new framework::Variable()),
M
minqiyang 已提交
122
        grads_(stop_gradient ? nullptr : new VarBase(true)),
123
        stop_gradient_(stop_gradient) {}
124

M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
134

X
Xin Pan 已提交
135
  void RunBackward();
136

M
minqiyang 已提交
137
  framework::LoDTensor& GradValue();
138

M
minqiyang 已提交
139 140
  framework::LoDTensor* CopiedTensor() const;

M
minqiyang 已提交
141 142 143 144 145 146 147
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

148
  OpBase* pre_op_;
X
Xin Pan 已提交
149
  std::string pre_op_out_name_;
150 151 152
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
M
minqiyang 已提交
153

M
minqiyang 已提交
154 155
  framework::Variable* var_;
  VarBase* grads_;
156 157

  bool stop_gradient_;
158 159
};

M
minqiyang 已提交
160 161 162
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
163 164
class OpBase {
 public:
X
Xin Pan 已提交
165 166 167
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
168
        grad_op_desc_(nullptr),
M
minqiyang 已提交
169 170
        backward_id_(-1),
        expected_place_(platform::CPUPlace()) {}
171 172 173 174 175

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
176
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
177

X
polish  
Xin Pan 已提交
178 179
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
180
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
181
  int forward_id_;
X
polish  
Xin Pan 已提交
182 183
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
184
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
185
  int backward_id_;
X
Xin Pan 已提交
186

M
minqiyang 已提交
187 188
  platform::Place expected_place_;

M
minqiyang 已提交
189 190 191
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
192
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
193

M
minqiyang 已提交
194 195
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
196 197 198 199 200 201 202 203 204 205 206
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
207
};
208

X
Xin Pan 已提交
209 210 211 212
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
Xin Pan 已提交
213
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
214

X
polish  
Xin Pan 已提交
215 216
  static int NumFuncs();

X
Xin Pan 已提交
217
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
218 219
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
220 221
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
222

X
polish  
Xin Pan 已提交
223 224 225
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
226 227 228 229
};

}  // namespace imperative
}  // namespace paddle