README.md 3.0 KB
Newer Older
P
pk_hk 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
# PicoDet OpenVINO Benchmark Demo

本文件夹提供利用[Intel's OpenVINO Toolkit](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)进行PicoDet测速的Benchmark Demo

## 安装 OpenVINO Toolkit

前往 [OpenVINO HomePage](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html),下载对应版本并安装。

本demo安装的是 OpenVINO 2022.1.0,可直接运行如下指令安装:
```shell
pip install openvino==2022.1.0
```

详细安装步骤,可参考官网: https://docs.openvinotoolkit.org/latest/get_started_guides.html

## 测试

准备测试模型,根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中模型导出与转换步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx(可在下文链接中直接下载)
在本目录下新建```out_onnxsim```文件夹:
```shell
mkdir out_onnxsim
```
将导出的onnx模型放在该目录下

准备测试所用图片,本demo默认利用PaddleDetection/demo/[000000570688.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000570688.jpg)

在本目录下直接运行:

```shell
#Windows
python '.\openvino_ppdet2 copy.py' --img_path ..\..\..\..\demo\000000570688.jpg --onnx_path out_onnxsim\picodet_xs_320_coco_lcnet.onnx --in_shape 320
#Linux
python './openvino_ppdet2 copy.py' --img_path ../../../../demo/000000570688.jpg --onnx_path out_onnxsim/picodet_xs_320_coco_lcnet.onnx --in_shape 320
```
注意:```--in_shape```为对应模型输入size,默认为320


## 结果

在英特尔酷睿i7 10750H 的CPU(MKLDNN 12线程)上测试结果如下:

| 模型     | 输入尺寸 | ONNX  | 预测时延<sup><small>[ms](#latency)|
| :-------- | :--------: | :---------------------: | :----------------: |
| PicoDet-XS |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | 3.9ms |
| PicoDet-XS |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | 6.1ms |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) |     4.8ms |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) |     6.6ms |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | 8.2ms  |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | 12.7ms |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | 11.5ms |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) |     20.7ms |
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) |     62.5ms |