“9c47c42ad1953e2fbe89ff234c3d35494b5b751a”上不存在“paddle/git@gitcode.net:s920243400/PaddleDetection.git”
dist_se_resnext.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            conv = self.conv_bn_layer(
                input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
        out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
        scale = self.squeeze_excitation(
            input=conv2,
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) / 2,
            groups=groups,
            act=None,
W
Wu Yi 已提交
177 178 179
            # avoid pserver CPU init differs from GPU
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant()),
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        squeeze = fluid.layers.fc(input=pool,
                                  size=num_channels / reduction_ratio,
                                  act='relu')
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
        excitation = fluid.layers.fc(input=squeeze,
                                     size=num_channels,
                                     act='sigmoid')
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


def get_model(batch_size):
    # Input data
W
Wu Yi 已提交
200 201
    image = fluid.layers.data(name="data", shape=[3, 224, 224], dtype='float32')
    label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    # Train program
    model = SE_ResNeXt(layers=50)
    out = model.net(input=image, class_dim=102)
    cost = fluid.layers.cross_entropy(input=out, label=label)

    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    # Evaluator
    test_program = fluid.default_main_program().clone(for_test=True)

    # Optimization
    total_images = 6149  # flowers
    epochs = [30, 60, 90]
    step = int(total_images / batch_size + 1)

    bd = [step * e for e in epochs]
    base_lr = 0.1
    lr = []
    lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]

    optimizer = fluid.optimizer.Momentum(
W
Wu Yi 已提交
226 227 228 229
        # FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
        #learning_rate=fluid.layers.piecewise_decay(
        #    boundaries=bd, values=lr),
        learning_rate=base_lr,
230 231 232 233 234 235 236 237
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))
    optimizer.minimize(avg_cost)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.flowers.train(), batch_size=batch_size)
    test_reader = paddle.batch(
W
Wu Yi 已提交
238
        paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    return test_program, avg_cost, train_reader, test_reader, acc_top1, out


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


class DistSeResneXt2x2:
    def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
                    trainer_id):
        get_model(batch_size=2)
        t = get_transpiler(trainer_id,
                           fluid.default_main_program(), pserver_endpoints,
                           trainers)
        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

    def _wait_ps_ready(self, pid):
        retry_times = 20
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            print("waiting ps ready: ", pid)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
            except os.error:
                retry_times -= 1

    def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
W
Wu Yi 已提交
283
            batch_size=2)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        if is_dist:
            t = get_transpiler(trainer_id,
                               fluid.default_main_program(), endpoints,
                               trainers)
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
W
Wu Yi 已提交
299
            True, loss_name=avg_cost.name, exec_strategy=strategy)
300 301 302 303 304 305 306

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.itervalues()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
W
Wu Yi 已提交
307 308 309 310 311
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
312
        print(first_loss)
W
Wu Yi 已提交
313

314
        for i in xrange(5):
W
Wu Yi 已提交
315 316 317 318 319
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        print(last_loss)


def main(role="pserver",
         endpoints="127.0.0.1:9123",
         trainer_id=0,
         current_endpoint="127.0.0.1:9123",
         trainers=1,
         is_dist=True):
    model = DistSeResneXt2x2()
    if role == "pserver":
        model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)


if __name__ == "__main__":
    if len(sys.argv) != 7:
        print(
            "Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
        )
    role = sys.argv[1]
    endpoints = sys.argv[2]
    trainer_id = int(sys.argv[3])
    current_endpoint = sys.argv[4]
    trainers = int(sys.argv[5])
    is_dist = True if sys.argv[6] == "TRUE" else False
    main(
        role=role,
        endpoints=endpoints,
        trainer_id=trainer_id,
        current_endpoint=current_endpoint,
        trainers=trainers,
        is_dist=is_dist)