centertrack_head.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from .centernet_head import ConvLayer
from ..keypoint_utils import get_affine_transform

__all__ = ['CenterTrackHead']


@register
class CenterTrackHead(nn.Layer):
    """
    Args:
        in_channels (int): the channel number of input to CenterNetHead.
        num_classes (int): the number of classes, 1 (MOT17 dataset) by default.
        head_planes (int): the channel number in all head, 256 by default.
        task (str): the type of task for regression, 'tracking' by default.
        loss_weight (dict): the weight of each loss.
        add_ltrb_amodal (bool): whether to add ltrb_amodal branch, False by default.
    """

    __shared__ = ['num_classes']

    def __init__(self,
                 in_channels,
                 num_classes=1,
                 head_planes=256,
                 task='tracking',
                 loss_weight={
                     'tracking': 1.0,
                     'ltrb_amodal': 0.1,
                 },
                 add_ltrb_amodal=True):
        super(CenterTrackHead, self).__init__()
        self.task = task
        self.loss_weight = loss_weight
        self.add_ltrb_amodal = add_ltrb_amodal

        # tracking head
        self.tracking = nn.Sequential(
            ConvLayer(
                in_channels, head_planes, kernel_size=3, padding=1, bias=True),
            nn.ReLU(),
            ConvLayer(
                head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))

        # ltrb_amodal head
        if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
            self.ltrb_amodal = nn.Sequential(
                ConvLayer(
                    in_channels,
                    head_planes,
                    kernel_size=3,
                    padding=1,
                    bias=True),
                nn.ReLU(),
                ConvLayer(
                    head_planes,
                    4,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    bias=True))

        # TODO: add more tasks

    @classmethod
    def from_config(cls, cfg, input_shape):
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channels': input_shape.channels}

    def forward(self,
                feat,
                inputs,
                bboxes=None,
                bbox_inds=None,
                topk_clses=None,
                topk_ys=None,
                topk_xs=None):
        tracking = self.tracking(feat)
        head_outs = {'tracking': tracking}
        if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
            ltrb_amodal = self.ltrb_amodal(feat)
            head_outs.update({'ltrb_amodal': ltrb_amodal})

        if self.training:
            losses = self.get_loss(inputs, self.loss_weight, head_outs)
            return losses
        else:
            ret = self.generic_decode(head_outs, bboxes, bbox_inds, topk_ys,
                                      topk_xs)
            return ret

    def get_loss(self, inputs, weights, head_outs):
        index = inputs['index'].unsqueeze(2)
        mask = inputs['index_mask'].unsqueeze(2)
        batch_inds = list()
        for i in range(head_outs['tracking'].shape[0]):
            batch_ind = paddle.full(
                shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
            batch_inds.append(batch_ind)
        batch_inds = paddle.concat(batch_inds, axis=0)
        index = paddle.concat(x=[batch_inds, index], axis=2)

        # 1.tracking head loss: L1 loss
        tracking = head_outs['tracking'].transpose([0, 2, 3, 1])
        tracking_target = inputs['tracking']
        bs, _, _, c = tracking.shape
        tracking = tracking.reshape([bs, -1, c])
        pos_tracking = paddle.gather_nd(tracking, index=index)
        tracking_mask = paddle.cast(
            paddle.expand_as(mask, pos_tracking), dtype=pos_tracking.dtype)
        pos_num = tracking_mask.sum()
        tracking_mask.stop_gradient = True
        tracking_target.stop_gradient = True
        tracking_loss = F.l1_loss(
            pos_tracking * tracking_mask,
            tracking_target * tracking_mask,
            reduction='sum')
        tracking_loss = tracking_loss / (pos_num + 1e-4)

        # 2.ltrb_amodal head loss(optinal): L1 loss
        if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
            ltrb_amodal = head_outs['ltrb_amodal'].transpose([0, 2, 3, 1])
            ltrb_amodal_target = inputs['ltrb_amodal']
            bs, _, _, c = ltrb_amodal.shape
            ltrb_amodal = ltrb_amodal.reshape([bs, -1, c])
            pos_ltrb_amodal = paddle.gather_nd(ltrb_amodal, index=index)
            ltrb_amodal_mask = paddle.cast(
                paddle.expand_as(mask, pos_ltrb_amodal),
                dtype=pos_ltrb_amodal.dtype)
            pos_num = ltrb_amodal_mask.sum()
            ltrb_amodal_mask.stop_gradient = True
            ltrb_amodal_target.stop_gradient = True
            ltrb_amodal_loss = F.l1_loss(
                pos_ltrb_amodal * ltrb_amodal_mask,
                ltrb_amodal_target * ltrb_amodal_mask,
                reduction='sum')
            ltrb_amodal_loss = ltrb_amodal_loss / (pos_num + 1e-4)

        losses = {'tracking_loss': tracking_loss, }
        plugin_loss = weights['tracking'] * tracking_loss

        if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
            losses.update({'ltrb_amodal_loss': ltrb_amodal_loss})
            plugin_loss += weights['ltrb_amodal'] * ltrb_amodal_loss
        losses.update({'plugin_loss': plugin_loss})
        return losses

    def generic_decode(self, head_outs, bboxes, bbox_inds, topk_ys, topk_xs):
        topk_ys = paddle.floor(topk_ys)  # note: More accurate
        topk_xs = paddle.floor(topk_xs)
        cts = paddle.concat([topk_xs, topk_ys], 1)
        ret = {'bboxes': bboxes, 'cts': cts}

        regression_heads = ['tracking']  # todo: add more tasks
        for head in regression_heads:
            if head in head_outs:
                ret[head] = _tranpose_and_gather_feat(head_outs[head],
                                                      bbox_inds)

        if 'ltrb_amodal' in head_outs:
            ltrb_amodal = head_outs['ltrb_amodal']
            ltrb_amodal = _tranpose_and_gather_feat(ltrb_amodal, bbox_inds)
            bboxes_amodal = paddle.concat(
                [
                    topk_xs * 1.0 + ltrb_amodal[..., 0:1],
                    topk_ys * 1.0 + ltrb_amodal[..., 1:2],
                    topk_xs * 1.0 + ltrb_amodal[..., 2:3],
                    topk_ys * 1.0 + ltrb_amodal[..., 3:4]
                ],
                axis=1)
            ret['bboxes'] = paddle.concat([bboxes[:, 0:2], bboxes_amodal], 1)
            # cls_id, score, x0, y0, x1, y1

        return ret

    def centertrack_post_process(self, dets, meta, out_thresh):
        if not ('bboxes' in dets):
            return [{}]

        preds = []
        c, s = meta['center'].numpy(), meta['scale'].numpy()
        h, w = meta['out_height'].numpy(), meta['out_width'].numpy()
        trans = get_affine_transform(
            center=c[0],
            input_size=s[0],
            rot=0,
            output_size=[w[0], h[0]],
            shift=(0., 0.),
            inv=True).astype(np.float32)
        for i, dets_bbox in enumerate(dets['bboxes']):
            if dets_bbox[1] < out_thresh:
                break
            item = {}
            item['score'] = dets_bbox[1]
            item['class'] = int(dets_bbox[0]) + 1
            item['ct'] = transform_preds_with_trans(
                dets['cts'][i].reshape([1, 2]), trans).reshape(2)

            if 'tracking' in dets:
                tracking = transform_preds_with_trans(
                    (dets['tracking'][i] + dets['cts'][i]).reshape([1, 2]),
                    trans).reshape(2)
                item['tracking'] = tracking - item['ct']

            if 'bboxes' in dets:
                bbox = transform_preds_with_trans(
                    dets_bbox[2:6].reshape([2, 2]), trans).reshape(4)
                item['bbox'] = bbox

            preds.append(item)
        return preds


def transform_preds_with_trans(coords, trans):
    target_coords = np.ones((coords.shape[0], 3), np.float32)
    target_coords[:, :2] = coords
    target_coords = np.dot(trans, target_coords.transpose()).transpose()
    return target_coords[:, :2]


def _tranpose_and_gather_feat(feat, bbox_inds):
    feat = feat.transpose([0, 2, 3, 1])
    feat = feat.reshape([-1, feat.shape[3]])
    feat = paddle.gather(feat, bbox_inds)
    return feat