dataset.py 9.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
F
Feng Ni 已提交
8
# 
Q
qingqing01 已提交
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
F
Feng Ni 已提交
16
import copy
Q
qingqing01 已提交
17 18 19 20 21 22 23 24
import numpy as np
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from paddle.io import Dataset
from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path
W
wangguanzhong 已提交
25
from ppdet.data import source
Q
qingqing01 已提交
26

F
Feng Ni 已提交
27 28 29
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

Q
qingqing01 已提交
30 31 32

@serializable
class DetDataset(Dataset):
F
Feng Ni 已提交
33 34 35 36 37 38 39 40 41 42
    """
    Load detection dataset.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
        use_default_label (bool): whether to load default label list.
43
        repeat (int): repeat times for dataset, use in benchmark.
F
Feng Ni 已提交
44 45
    """

Q
qingqing01 已提交
46 47 48 49 50 51 52
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 use_default_label=None,
53
                 repeat=1,
Q
qingqing01 已提交
54 55 56 57 58 59 60 61
                 **kwargs):
        super(DetDataset, self).__init__()
        self.dataset_dir = dataset_dir if dataset_dir is not None else ''
        self.anno_path = anno_path
        self.image_dir = image_dir if image_dir is not None else ''
        self.data_fields = data_fields
        self.sample_num = sample_num
        self.use_default_label = use_default_label
62
        self.repeat = repeat
Q
qingqing01 已提交
63
        self._epoch = 0
W
wangguanzhong 已提交
64
        self._curr_iter = 0
Q
qingqing01 已提交
65 66

    def __len__(self, ):
67
        return len(self.roidbs) * self.repeat
Q
qingqing01 已提交
68

69 70 71
    def __call__(self, *args, **kwargs):
        return self

Q
qingqing01 已提交
72
    def __getitem__(self, idx):
73
        n = len(self.roidbs)
74
        if self.repeat > 1:
75
            idx %= n
Q
qingqing01 已提交
76 77 78 79 80 81 82 83 84 85 86
        # data batch
        roidb = copy.deepcopy(self.roidbs[idx])
        if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
            roidb = [roidb, ] + [
                copy.deepcopy(self.roidbs[np.random.randint(n)])
F
Feng Ni 已提交
87
                for _ in range(4)
Q
qingqing01 已提交
88
            ]
89 90 91 92 93 94
        elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch:
            # Add previous image as input, only used in CenterTrack
            idx_pre_img = idx - 1
            if idx_pre_img < 0:
                idx_pre_img = idx + 1
            roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])]
W
wangguanzhong 已提交
95 96 97 98 99
        if isinstance(roidb, Sequence):
            for r in roidb:
                r['curr_iter'] = self._curr_iter
        else:
            roidb['curr_iter'] = self._curr_iter
W
wangguanzhong 已提交
100
        self._curr_iter += 1
Q
qingqing01 已提交
101 102 103

        return self.transform(roidb)

K
Kaipeng Deng 已提交
104
    def check_or_download_dataset(self):
G
George Ni 已提交
105 106
        self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
                                            self.image_dir)
K
Kaipeng Deng 已提交
107

Q
qingqing01 已提交
108 109 110 111
    def set_kwargs(self, **kwargs):
        self.mixup_epoch = kwargs.get('mixup_epoch', -1)
        self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
        self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
112
        self.pre_img_epoch = kwargs.get('pre_img_epoch', -1)
Q
qingqing01 已提交
113 114 115 116 117 118 119

    def set_transform(self, transform):
        self.transform = transform

    def set_epoch(self, epoch_id):
        self._epoch = epoch_id

120
    def parse_dataset(self, ):
121
        raise NotImplementedError(
Q
qingqing01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135
            "Need to implement parse_dataset method of Dataset")

    def get_anno(self):
        if self.anno_path is None:
            return
        return os.path.join(self.dataset_dir, self.anno_path)


def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
    return f.lower().endswith(extensions)


def _make_dataset(dir):
    dir = os.path.expanduser(dir)
136
    if not os.path.isdir(dir):
Q
qingqing01 已提交
137 138 139 140 141
        raise ('{} should be a dir'.format(dir))
    images = []
    for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
        for fname in sorted(fnames):
            path = os.path.join(root, fname)
142
            if _is_valid_file(path):
Q
qingqing01 已提交
143 144 145 146 147 148 149 150 151 152
                images.append(path)
    return images


@register
@serializable
class ImageFolder(DetDataset):
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
G
George Ni 已提交
153
                 anno_path=None,
Q
qingqing01 已提交
154 155 156
                 sample_num=-1,
                 use_default_label=None,
                 **kwargs):
157 158 159
        super(ImageFolder, self).__init__(
            dataset_dir,
            image_dir,
G
George Ni 已提交
160
            anno_path,
161 162
            sample_num=sample_num,
            use_default_label=use_default_label)
Q
qingqing01 已提交
163 164
        self._imid2path = {}
        self.roidbs = None
G
George Ni 已提交
165
        self.sample_num = sample_num
Q
qingqing01 已提交
166

167
    def check_or_download_dataset(self):
168 169 170 171 172
        return

    def get_anno(self):
        if self.anno_path is None:
            return
173
        if self.dataset_dir:
174 175 176
            return os.path.join(self.dataset_dir, self.anno_path)
        else:
            return self.anno_path
177

178
    def parse_dataset(self, ):
Q
qingqing01 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        if not self.roidbs:
            self.roidbs = self._load_images()

    def _parse(self):
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
        images = self._parse()
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
G
Guanghua Yu 已提交
202
            if self.sample_num > 0 and ct >= self.sample_num:
Q
qingqing01 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    def set_slice_images(self,
                         images,
                         slice_size=[640, 640],
                         overlap_ratio=[0.25, 0.25]):
        self.image_dir = images
        ori_records = self._load_images()
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e

        sub_img_ids = 0
        ct = 0
        ct_sub = 0
        records = []
        for i, ori_rec in enumerate(ori_records):
            im_path = ori_rec['im_file']
            slice_image_result = sahi.slicing.slice_image(
                image=im_path,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])

            sub_img_num = len(slice_image_result)
            for _ind in range(sub_img_num):
                im = slice_image_result.images[_ind]
                rec = {
                    'image': im,
                    'im_id': np.array([sub_img_ids + _ind]),
                    'h': im.shape[0],
                    'w': im.shape[1],
                    'ori_im_id': np.array([ori_rec['im_id'][0]]),
                    'st_pix': np.array(
                        slice_image_result.starting_pixels[_ind],
                        dtype=np.float32),
                    'is_last': 1 if _ind == sub_img_num - 1 else 0,
                } if 'image' in self.data_fields else {}
                records.append(rec)
            ct_sub += sub_img_num
            ct += 1
264 265
        logger.info('{} samples and slice to {} sub_samples.'.format(ct,
                                                                     ct_sub))
266 267
        self.roidbs = records

268 269 270 271
    def get_label_list(self):
        # Only VOC dataset needs label list in ImageFold 
        return self.anno_path

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

@register
class CommonDataset(object):
    def __init__(self, **dataset_args):
        super(CommonDataset, self).__init__()
        dataset_args = copy.deepcopy(dataset_args)
        type = dataset_args.pop("name")
        self.dataset = getattr(source, type)(**dataset_args)

    def __call__(self):
        return self.dataset


@register
class TrainDataset(CommonDataset):
    pass


@register
class EvalMOTDataset(CommonDataset):
    pass


@register
class TestMOTDataset(CommonDataset):
    pass


@register
class EvalDataset(CommonDataset):
    pass


@register
class TestDataset(CommonDataset):
    pass