center_tracker.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/xingyizhou/CenterTrack/blob/master/src/lib/utils/tracker.py
"""

import copy
import numpy as np
import sklearn

__all__ = ['CenterTracker']


class CenterTracker(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=1,
                 min_box_area=0,
                 vertical_ratio=-1,
                 track_thresh=0.4,
                 pre_thresh=0.5,
                 new_thresh=0.4,
                 out_thresh=0.4,
                 hungarian=False):
        self.num_classes = num_classes
        self.min_box_area = min_box_area
        self.vertical_ratio = vertical_ratio

        self.track_thresh = track_thresh
        self.pre_thresh = max(track_thresh, pre_thresh)
        self.new_thresh = max(track_thresh, new_thresh)
        self.out_thresh = max(track_thresh, out_thresh)
        self.hungarian = hungarian

        self.reset()

    def init_track(self, results):
        print('Initialize tracking!')
        for item in results:
            if item['score'] > self.new_thresh:
                self.id_count += 1
                item['tracking_id'] = self.id_count
                if not ('ct' in item):
                    bbox = item['bbox']
                    item['ct'] = [(bbox[0] + bbox[2]) / 2,
                                  (bbox[1] + bbox[3]) / 2]
                self.tracks.append(item)

    def reset(self):
        self.id_count = 0
        self.tracks = []

    def update(self, results, public_det=None):
        N = len(results)
        M = len(self.tracks)

        dets = np.array([det['ct'] + det['tracking'] for det in results],
                        np.float32)  # N x 2
        track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
            (track['bbox'][3] - track['bbox'][1])) \
            for track in self.tracks], np.float32) # M
        track_cat = np.array([track['class'] for track in self.tracks],
                             np.int32)  # M
        item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
            (item['bbox'][3] - item['bbox'][1])) \
            for item in results], np.float32) # N
        item_cat = np.array([item['class'] for item in results], np.int32)  # N
        tracks = np.array([pre_det['ct'] for pre_det in self.tracks],
                          np.float32)  # M x 2
        dist = (((tracks.reshape(1, -1, 2) - \
            dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M

        invalid = ((dist > track_size.reshape(1, M)) + \
            (dist > item_size.reshape(N, 1)) + \
            (item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0
        dist = dist + invalid * 1e18

        if self.hungarian:
            item_score = np.array([item['score'] for item in results],
                                  np.float32)
            dist[dist > 1e18] = 1e18
            from sklearn.utils.linear_assignment_ import linear_assignment
            matched_indices = linear_assignment(dist)
        else:
            matched_indices = greedy_assignment(copy.deepcopy(dist))

        unmatched_dets = [d for d in range(dets.shape[0]) \
            if not (d in matched_indices[:, 0])]
        unmatched_tracks = [d for d in range(tracks.shape[0]) \
            if not (d in matched_indices[:, 1])]

        if self.hungarian:
            matches = []
            for m in matched_indices:
                if dist[m[0], m[1]] > 1e16:
                    unmatched_dets.append(m[0])
                    unmatched_tracks.append(m[1])
                else:
                    matches.append(m)
            matches = np.array(matches).reshape(-1, 2)
        else:
            matches = matched_indices

        ret = []
        for m in matches:
            track = results[m[0]]
            track['tracking_id'] = self.tracks[m[1]]['tracking_id']
            ret.append(track)

        # Private detection: create tracks for all un-matched detections
        for i in unmatched_dets:
            track = results[i]
            if track['score'] > self.new_thresh:
                self.id_count += 1
                track['tracking_id'] = self.id_count
                ret.append(track)

        self.tracks = ret
        return ret


def greedy_assignment(dist):
    matched_indices = []
    if dist.shape[1] == 0:
        return np.array(matched_indices, np.int32).reshape(-1, 2)
    for i in range(dist.shape[0]):
        j = dist[i].argmin()
        if dist[i][j] < 1e16:
            dist[:, j] = 1e18
            matched_indices.append([i, j])
    return np.array(matched_indices, np.int32).reshape(-1, 2)