task_aligned_assigner.py 6.9 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..bbox_utils import iou_similarity
25
from .utils import (gather_topk_anchors, check_points_inside_bboxes,
S
shangliang Xu 已提交
26 27
                    compute_max_iou_anchor)

28 29
__all__ = ['TaskAlignedAssigner']

S
shangliang Xu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

@register
class TaskAlignedAssigner(nn.Layer):
    """TOOD: Task-aligned One-stage Object Detection
    """

    def __init__(self, topk=13, alpha=1.0, beta=6.0, eps=1e-9):
        super(TaskAlignedAssigner, self).__init__()
        self.topk = topk
        self.alpha = alpha
        self.beta = beta
        self.eps = eps

    @paddle.no_grad()
    def forward(self,
                pred_scores,
                pred_bboxes,
                anchor_points,
48
                num_anchors_list,
S
shangliang Xu 已提交
49 50
                gt_labels,
                gt_bboxes,
51
                pad_gt_mask,
S
shangliang Xu 已提交
52 53
                bg_index,
                gt_scores=None):
54 55 56 57
        r"""This code is based on
            https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/task_aligned_assigner.py

        The assignment is done in following steps
S
shangliang Xu 已提交
58 59 60 61 62 63 64 65 66 67
        1. compute alignment metric between all bbox (bbox of all pyramid levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free detector
           only can predict positive distance)
        4. if an anchor box is assigned to multiple gts, the one with the
           highest iou will be selected.
        Args:
            pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
            pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
            anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
68 69 70 71
            num_anchors_list (List): num of anchors in each level, shape(L)
            gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
            gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
            pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
S
shangliang Xu 已提交
72
            bg_index (int): background index
73
            gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
S
shangliang Xu 已提交
74 75 76 77 78 79 80 81 82 83 84 85
        Returns:
            assigned_labels (Tensor): (B, L)
            assigned_bboxes (Tensor): (B, L, 4)
            assigned_scores (Tensor): (B, L, C)
        """
        assert pred_scores.ndim == pred_bboxes.ndim
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3

        batch_size, num_anchors, num_classes = pred_scores.shape
        _, num_max_boxes, _ = gt_bboxes.shape

86 87
        # negative batch
        if num_max_boxes == 0:
S
shangliang Xu 已提交
88 89
            assigned_labels = paddle.full(
                [batch_size, num_anchors], bg_index, dtype=gt_labels.dtype)
90 91 92 93 94
            assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
            assigned_scores = paddle.zeros(
                [batch_size, num_anchors, num_classes])
            return assigned_labels, assigned_bboxes, assigned_scores

S
shangliang Xu 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        # compute iou between gt and pred bbox, [B, n, L]
        ious = iou_similarity(gt_bboxes, pred_bboxes)
        # gather pred bboxes class score
        pred_scores = pred_scores.transpose([0, 2, 1])
        batch_ind = paddle.arange(
            end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
        gt_labels_ind = paddle.stack(
            [batch_ind.tile([1, num_max_boxes]), gt_labels.squeeze(-1)],
            axis=-1)
        bbox_cls_scores = paddle.gather_nd(pred_scores, gt_labels_ind)
        # compute alignment metrics, [B, n, L]
        alignment_metrics = bbox_cls_scores.pow(self.alpha) * ious.pow(
            self.beta)

        # check the positive sample's center in gt, [B, n, L]
        is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes)

        # select topk largest alignment metrics pred bbox as candidates
        # for each gt, [B, n, L]
        is_in_topk = gather_topk_anchors(
115
            alignment_metrics * is_in_gts, self.topk, topk_mask=pad_gt_mask)
S
shangliang Xu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

        # select positive sample, [B, n, L]
        mask_positive = is_in_topk * is_in_gts * pad_gt_mask

        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected, [B, n, L]
        mask_positive_sum = mask_positive.sum(axis=-2)
        if mask_positive_sum.max() > 1:
            mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
                [1, num_max_boxes, 1])
            is_max_iou = compute_max_iou_anchor(ious)
            mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        assigned_gt_index = mask_positive.argmax(axis=-2)

        # assigned target
        assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
        assigned_labels = paddle.gather(
            gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
        assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
        assigned_labels = paddle.where(
            mask_positive_sum > 0, assigned_labels,
            paddle.full_like(assigned_labels, bg_index))

        assigned_bboxes = paddle.gather(
            gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
        assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])

S
shangliang Xu 已提交
145 146 147 148 149
        assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
        ind = list(range(num_classes + 1))
        ind.remove(bg_index)
        assigned_scores = paddle.index_select(
            assigned_scores, paddle.to_tensor(ind), axis=-1)
S
shangliang Xu 已提交
150 151 152 153 154 155 156 157 158 159 160
        # rescale alignment metrics
        alignment_metrics *= mask_positive
        max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
        max_ious_per_instance = (ious * mask_positive).max(axis=-1,
                                                           keepdim=True)
        alignment_metrics = alignment_metrics / (
            max_metrics_per_instance + self.eps) * max_ious_per_instance
        alignment_metrics = alignment_metrics.max(-2).unsqueeze(-1)
        assigned_scores = assigned_scores * alignment_metrics

        return assigned_labels, assigned_bboxes, assigned_scores