framework.py 91.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
152
@signature_safe_contextmanager
153 154 155 156 157 158 159 160 161 162 163 164
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
165

166 167 168 169
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
170 171
          with name_scope("attention"):
             ...
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
191 192 193
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
194 195 196 197


def grad_var_name(var_name):
    """
198 199
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
200 201 202
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
203

204
def convert_np_dtype_to_dtype_(np_dtype):
205 206
    """
    Convert the data type in numpy to the data type in Paddle
207

208
    Args:
209
        np_dtype(np.dtype): the data type in numpy.
210

211 212
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
213 214

    """
215 216
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
217
        return core.VarDesc.VarType.FP32
218
    elif dtype == np.float64:
219
        return core.VarDesc.VarType.FP64
220
    elif dtype == np.float16:
221
        return core.VarDesc.VarType.FP16
222
    elif dtype == np.int32:
223
        return core.VarDesc.VarType.INT32
224
    elif dtype == np.int16:
225
        return core.VarDesc.VarType.INT16
226
    elif dtype == np.int64:
227
        return core.VarDesc.VarType.INT64
228
    elif dtype == np.bool:
229
        return core.VarDesc.VarType.BOOL
230 231
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
232 233
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
234 235
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
236
    else:
M
minqiyang 已提交
237
        raise ValueError("Not supported numpy dtype %s" % dtype)
238 239 240


def dtype_is_floating(dtype):
241 242 243
    """
    Check the data type is floating or not.
    Args:
244
        dtype(np.dtype|core.VarDesc.VarType): data type.
245 246 247 248 249
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
250
    if not isinstance(dtype, core.VarDesc.VarType):
251 252
        dtype = convert_np_dtype_to_dtype_(dtype)

253 254 255 256
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
257 258


Y
Yang Yang(Tony) 已提交
259
def _debug_string_(proto, throw_on_error=True):
260 261 262 263 264 265 266 267 268 269 270
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
271
    error_fields = list()
Y
Yang Yang(Tony) 已提交
272
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
273 274
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
275 276 277
    return proto.__str__()


X
Xin Pan 已提交
278
class Variable(object):
279
    """
280 281 282
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
283
    two variables in different blocks could have the same name.
284

285 286
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
287

288
    Most of a Variable's member variables can be setted to be None. It mean
289
    it is not available or will be specified later.
290 291

    Args:
292
        block(Block): The block that the variable belongs to.
293 294
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
295 296
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
297
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
298
            Some kinds of variable do not contain shape, just set it to None.
299 300 301
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
302
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
303
            series data.
304
            Default: None
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
327 328
    """

Y
Yu Yang 已提交
329 330
    def __init__(self,
                 block,
Y
Yu Yang 已提交
331
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
332 333 334 335
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
336
                 capacity=None,
Q
QI JUN 已提交
337
                 persistable=None,
F
fengjiayi 已提交
338
                 error_clip=None,
Y
Yu Yang 已提交
339
                 stop_gradient=False,
F
fengjiayi 已提交
340
                 is_data=False,
Y
Yu Yang 已提交
341
                 **kwargs):
Y
Yu Yang 已提交
342
        self.block = block
F
fengjiayi 已提交
343
        self.error_clip = error_clip
Y
Yu Yang 已提交
344 345

        if name is None:
Y
Yu Yang 已提交
346
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
347
        is_new_var = False
M
minqiyang 已提交
348
        name = cpt.to_text(name)
M
minqiyang 已提交
349
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
350 351

        if self.desc is None:
M
minqiyang 已提交
352
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
353
            is_new_var = True
Y
Yu Yang 已提交
354

Y
Yu Yang 已提交
355 356 357 358 359 360 361 362
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
363
        if shape is not None:
Y
Yu Yang 已提交
364
            if is_new_var:
365
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
366 367 368 369 370 371 372 373
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
374
        if dtype is not None:
375
            if not isinstance(dtype, core.VarDesc.VarType):
376
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
377
            if is_new_var:
F
fengjiayi 已提交
378
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
379
            else:
F
fengjiayi 已提交
380
                old_dtype = self.dtype
Q
QI JUN 已提交
381
                if dtype != old_dtype:
Y
Yu Yang 已提交
382 383 384 385 386
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
387 388

        if lod_level is not None:
Y
Yu Yang 已提交
389
            if is_new_var:
390
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
391 392 393 394 395 396 397
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
398 399 400 401 402 403 404 405 406 407 408
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

409 410 411 412 413 414 415 416
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
417
        self.block.vars[name] = self
Y
Yu Yang 已提交
418
        self.op = None
M
minqiyang 已提交
419
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
420
        self.is_data = is_data
X
Xin Pan 已提交
421
        if _in_imperative_mode():
M
minqiyang 已提交
422 423 424
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
425
            self._ivar.desc = self.desc
426
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
427

428
    def _numpy(self):
M
minqiyang 已提交
429
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
430
        return np.array(new_ivar.value().get_tensor())
431 432

    def _backward(self):
X
Xin Pan 已提交
433
        self._ivar._run_backward()
434 435

    def _gradient(self):
M
minqiyang 已提交
436
        return np.array(self._ivar._grad_value())
437

X
Xin Pan 已提交
438 439
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
440

441
    def __str__(self):
Y
Yang Yang(Tony) 已提交
442 443
        return self.to_string(True)

F
update  
fengjiayi 已提交
444
    def to_string(self, throw_on_error, with_details=False):
445 446 447 448
        """
        Get debug string.

        Args:
449 450
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
451
            with_details(bool): more details about variables and parameters
452 453
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
454

455 456
        Returns:
            str: The debug string.
457
        """
F
update  
fengjiayi 已提交
458 459
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
460
        protostr = self.desc.serialize_to_string()
461
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
462 463 464 465
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
466 467
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
468
        return res_str
469 470 471

    __repr__ = __str__

W
Wu Yi 已提交
472
    def _set_desc(self, input):
473 474 475 476 477 478 479 480 481
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
482 483
        self.desc = input

484 485
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
486 487 488 489
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
490 491 492

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
493 494 495
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
496

497 498 499 500
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
501 502 503 504
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
505 506
    @property
    def name(self):
M
minqiyang 已提交
507
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
508

T
typhoonzero 已提交
509 510 511 512
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
513 514 515
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
516
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
517 518

    @property
F
fengjiayi 已提交
519 520
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
521 522 523

    @property
    def lod_level(self):
524
        return self.desc.lod_level()
Y
Yu Yang 已提交
525

Y
Yu Yang 已提交
526 527 528 529
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
530
    def _set_error_clip(self, error_clip):
531 532 533 534 535 536 537 538 539
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
540 541
        self.error_clip = error_clip

Y
Yu Yang 已提交
542

F
fengjiayi 已提交
543 544 545
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
546

547 548
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
549 550 551 552
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
553
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
554 555 556 557 558
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
559 560 561 562
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
563 564 565 566 567 568 569 570 571
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
572
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
573 574 575 576 577 578
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
579 580 581 582 583 584 585 586
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
587 588
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
589 590
        return self.op_proto_map[type]

591 592 593 594
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
595
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
596 597
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
598 599
        }

F
fengjiayi 已提交
600

X
Xin Pan 已提交
601
class Operator(object):
602
    """
603 604 605 606 607 608 609
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
610
        type(str): The type of operator. Default None.
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
631
        Block.append_op or Block._prepend_op instead.
632 633 634 635 636 637 638 639 640 641

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
642
    """
643 644 645
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
646 647
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
648
    }
649

Y
Yu Yang 已提交
650 651
    def __init__(self,
                 block,
Y
Yu Yang 已提交
652
                 desc,
Y
Yu Yang 已提交
653 654 655
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
656
                 attrs=None):
Y
Yu Yang 已提交
657
        self.block = block
Y
Yu Yang 已提交
658
        self.desc = desc
G
gongweibao 已提交
659 660 661 662 663
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
664 665 666 667
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
668 669
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
670 671 672

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
673 674
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
675

G
gongweibao 已提交
676 677
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
678

F
fengjiayi 已提交
679 680 681 682 683
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
684 685 686 687 688
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
689
        self.desc.set_type(type)
F
fengjiayi 已提交
690
        proto = OpProtoHolder.instance().get_op_proto(type)
691

692 693 694
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
695 696
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
697
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
698 699
                    return True
            return False
Q
QI JUN 已提交
700

Y
Yang Yang(Tony) 已提交
701 702 703 704 705 706 707
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
708 709 710 711
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
712 713
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
714 715 716
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
717
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
718
                            in_arg_names.append(arg)
719 720
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
721
                        else:
M
minqiyang 已提交
722
                            in_arg_names.append(cpt.to_text(arg.name))
723
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
724 725
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
726

Y
Yu Yang 已提交
727
        if outputs is not None:
728
            for m in proto.outputs:
Q
qingqing01 已提交
729 730 731 732 733 734
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
735
            for out_proto in proto.outputs:
Q
qingqing01 已提交
736 737
                if out_proto.name not in outputs:
                    continue
738 739 740 741
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
742 743
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
744 745 746
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
747
                    out_arg_names.append(cpt.to_text(arg.name))
748 749
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
750

G
gongweibao 已提交
751 752
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
753
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
754
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
755
                attr_name = attr.name
G
gongweibao 已提交
756
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
757
                    continue
G
gongweibao 已提交
758
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
759 760
                self._update_desc_attr(attr_name, attr_val)

761
        self.desc.check_attrs()
M
minqiyang 已提交
762

W
Wu Yi 已提交
763
        if self._has_kernel(type):
Q
QI JUN 已提交
764
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
765
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
766

X
Xin Pan 已提交
767 768 769
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
770
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
771
            if inputs is not None:
X
Xin Pan 已提交
772 773 774 775 776 777
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
778
            if outputs is not None:
X
Xin Pan 已提交
779 780 781 782 783
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
784

W
Wu Yi 已提交
785
    def _has_kernel(self, op_type):
786 787
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
788
    def to_string(self, throw_on_error):
789
        """
790 791
        Get debug string.

792
        Args:
793 794
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
795

796 797
        Returns:
            str: The debug string.
798 799

        """
800
        protostr = self.desc.serialize_to_string()
801
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
802 803 804 805
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
806 807 808

    __repr__ = __str__

F
fengjiayi 已提交
809 810 811 812 813
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
814
        """
815
        Get the input arguments according to the input parameter name.
816

817 818
        Args:
            name(str): The input parameter name.
819

820 821 822
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
823
        """
F
fengjiayi 已提交
824 825
        return self.desc.input(name)

W
Wu Yi 已提交
826
    def _rename_input(self, old_name, new_name):
827 828 829 830 831 832 833 834 835 836
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
837
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
838

W
Wu Yi 已提交
839
    def _rename_output(self, old_name, new_name):
840 841 842 843 844 845 846 847 848 849
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
850
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
851

F
fengjiayi 已提交
852 853 854 855
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
856 857 858 859 860 861 862 863
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
864
    def output(self, name):
865
        """
866
        Get output arguments by the output parameter name.
867

868 869
        Args:
            name(str): The output parameter name.
870

871 872 873
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
874
        """
F
fengjiayi 已提交
875 876 877 878 879 880
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

881 882 883 884 885 886 887 888
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
889
    def has_attr(self, name):
890
        """
891 892
        Whether this Operator has the attribute with name or not.

893
        Args:
894
            name(str): the attribute name.
895

896 897
        Returns:
            bool: True if has this attribute.
898 899

        """
F
fengjiayi 已提交
900 901 902
        return self.desc.has_attr(name)

    def attr_type(self, name):
903
        """
904
        Get the type of attribute by attribute's name.
905

906 907
        Args:
            name(str): the attribute name.
908

909 910
        Returns:
            core.AttrType: the attribute type.
911
        """
F
fengjiayi 已提交
912 913
        return self.desc.attr_type(name)

W
Wu Yi 已提交
914
    def _set_attr(self, name, val):
915 916 917 918 919 920 921 922 923 924
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
938 939
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
940 941
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
942
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
943 944 945 946
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
947
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
948

F
fengjiayi 已提交
949 950 951 952 953
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
954
        """
955 956
        Get the attribute by name.

957
        Args:
958
            name(str): the attribute name.
959

960 961
        Returns:
            bool|int|str|float|list: The attribute value. The return value
962 963
            can be any valid attribute type.
        """
F
fengjiayi 已提交
964
        return self.desc.attr(name)
Y
Yu Yang 已提交
965

W
Wu Yi 已提交
966
    def _block_attr_id(self, name):
967
        """
G
gongweibao 已提交
968
        Get the block attribute's id by name.
969

970 971
        Args:
            name(str): the attribute name.
972

973 974
        Returns:
            int: the block index.
975
        """
W
Wu Yi 已提交
976
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
977

W
Wu Yi 已提交
978
    def _block_attr(self, name):
G
gongweibao 已提交
979 980 981 982 983 984 985 986 987 988
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
989
        id = self._block_attr_id(name)
G
gongweibao 已提交
990 991 992
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
993
    def _blocks_attr(self, name):
G
gongweibao 已提交
994 995 996 997 998 999 1000 1001 1002 1003
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1004
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1005 1006 1007 1008 1009
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1010
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1021
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1022

J
JiayiFeng 已提交
1023
    def all_attrs(self):
F
fengjiayi 已提交
1024
        """
1025 1026 1027
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1028
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1029 1030 1031 1032
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1033 1034
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1035
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1036 1037 1038
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1039
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1040 1041 1042 1043
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1044 1045
        return attr_map

Y
Yu Yang 已提交
1046

Y
Yu Yang 已提交
1047
class Block(object):
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1062
        use `Program._create_block()` to create a block.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1077
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1078
        self.desc = program.desc.block(idx)
1079
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1080
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1081
        self.program = program
1082
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1083

1084
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1085 1086
        return self.to_string(True)

F
fengjiayi 已提交
1087 1088
    def to_string(self, throw_on_error, with_details=False):
        """
1089 1090
        Get debug string.

F
fengjiayi 已提交
1091 1092
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1093
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1094
            with_details(bool): more details about variables and parameters
1095 1096
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1097

1098 1099
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1100 1101 1102 1103
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1104
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1105 1106
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1107
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1108
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1109
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1110
            for op in self.ops:
F
fengjiayi 已提交
1111 1112
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1113 1114 1115
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1116 1117
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1118 1119
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1120 1121 1122

    __repr__ = __str__

Y
Yu Yang 已提交
1123 1124
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1125
        return self.desc.parent
Y
Yu Yang 已提交
1126

Y
Yu Yang 已提交
1127 1128 1129 1130
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1131
    def _set_forward_block_idx(self, idx):
1132 1133 1134 1135 1136 1137 1138 1139 1140
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1141
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1142

Y
Yu Yang 已提交
1143 1144
    @property
    def idx(self):
Y
Yu Yang 已提交
1145
        return self.desc.id
Y
Yu Yang 已提交
1146

Q
Qiao Longfei 已提交
1147
    def var(self, name):
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1161
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1162 1163 1164
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1165 1166
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1167
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1168
        return v
Q
Qiao Longfei 已提交
1169

X
Xin Pan 已提交
1170
    def _find_var_recursive(self, name):
1171 1172 1173 1174 1175 1176 1177
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1178
            Variable: the Variable with the giving name. Or None if not found.
1179
        """
Y
Yu Yang 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1204
        return None
Y
Yu Yang 已提交
1205

X
Xin Pan 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1225

Q
Qiao Longfei 已提交
1226
    def all_parameters(self):
1227
        return list(self.iter_parameters())
1228

1229
    def iter_parameters(self):
M
minqiyang 已提交
1230
        return (item[1] for item in six.iteritems(self.vars)
1231
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1232

Y
Yu Yang 已提交
1233
    def create_var(self, *args, **kwargs):
1234
        var = Variable(block=self, *args, **kwargs)
1235 1236
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1237
        return var
Y
Yu Yang 已提交
1238

Q
Qiao Longfei 已提交
1239 1240 1241
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1242
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1243 1244
        """
        Rename variable in vars and ops' inputs and outputs
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1257
        """
M
minqiyang 已提交
1258 1259
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1260

T
typhoonzero 已提交
1261
        if not self.has_var(name):
1262
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1263 1264
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1265
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1266 1267 1268 1269 1270 1271 1272
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1273
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1274 1275 1276 1277
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1278
        orig_var_type = v.type
M
minqiyang 已提交
1279
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1280
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1281
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1282
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1283 1284 1285 1286
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1287
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1288 1289 1290 1291 1292 1293 1294
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1295
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1296 1297
            var = Variable(
                self,
T
typhoonzero 已提交
1298
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1299 1300 1301 1302
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1303
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1304 1305 1306
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1307
        self._sync_with_cpp()
1308
        return var
T
typhoonzero 已提交
1309

W
Wu Yi 已提交
1310 1311
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1312
        self.desc._remove_var(cpt.to_bytes(name))
1313 1314
        del self.vars[name]

Y
Yu Yang 已提交
1315 1316
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1317
        param = Parameter(global_block, *args, **kwargs)
1318
        if 'initializer' in kwargs:
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1339
        return param
Y
Yu Yang 已提交
1340

Y
Yu Yang 已提交
1341
    def append_op(self, *args, **kwargs):
1342 1343 1344 1345 1346 1347
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1348
        op_desc = self.desc.append_op()
1349 1350 1351 1352 1353 1354 1355 1356
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1357

M
minqiyang 已提交
1358 1359
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1360 1361 1362 1363
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1364
        if _in_imperative_mode():
1365
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1366
                                       _imperative_current_expected_place_,
1367
                                       stop_gradient)
Y
Yu Yang 已提交
1368

W
Wu Yi 已提交
1369
    def _insert_op(self, index, *args, **kwargs):
1370 1371 1372 1373 1374 1375 1376 1377 1378
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1379 1380
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1381 1382 1383 1384
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1385
    def _remove_op(self, index):
1386 1387 1388 1389 1390 1391 1392 1393 1394
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1395 1396
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1397 1398
        del self.ops[index]

W
Wu Yi 已提交
1399
    def _slice_ops(self, start, end):
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1410
        return self.ops[start:end]
Y
Yancey1989 已提交
1411

W
Wu Yi 已提交
1412 1413
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1414 1415 1416 1417 1418 1419 1420
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1421
        self.ops.insert(0, op)
1422
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1423 1424
        return op

W
Wu Yi 已提交
1425
    def _sync_with_cpp(self):
1426
        """
1427 1428
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1429
        """
Q
Qiao Longfei 已提交
1430 1431 1432 1433 1434
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1435
        # sync variables removed from c++ end
1436
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1437
            if not self.desc.find_var(cpt.to_bytes(var)):
1438 1439
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1440
        # sync operators from cpp
1441 1442 1443 1444
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1461 1462 1463 1464 1465

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1466
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1467 1468 1469 1470 1471 1472 1473

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1487 1488 1489 1490
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1491
    def _copy_param_info_from(self, other):
1492
        """
1493 1494
        Copy the information of parameters from the other block.

1495
        Args:
1496 1497 1498 1499 1500
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1501 1502 1503 1504 1505

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1506 1507
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1508
        for p in other.iter_parameters():
1509 1510 1511
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1512
                raise ValueError("_copy_param_info_from should be invoked with "
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1525
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1526
                error_clip=p.error_clip,
1527 1528 1529
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1530
    def _clone_variable(self, var):
1531 1532
        """
        Clone a variable into current block.
1533

1534 1535 1536 1537
        Args:
            var: the variable to be cloned.

        Returns:
1538
            Variable: the new  variable cloned from 'var' in current block.
1539 1540
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1541 1542 1543 1544 1545
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1546 1547
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1548
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1549 1550 1551 1552 1553 1554
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1555 1556
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1557 1558 1559 1560 1561 1562 1563
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1564 1565
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1566
        return ret_var
1567

Y
Yu Yang 已提交
1568

1569 1570
class IrGraph(object):
    """
1571 1572 1573 1574
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1575 1576 1577 1578
    """

    def __init__(self, graph, for_test=False):
        """
1579 1580
        Construct an IrGraph using core.Graph.

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1591 1592 1593
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1594 1595
        return self._for_test

W
WangZhen 已提交
1596
    def all_nodes(self):
1597 1598 1599
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1600
        return {node for node in self.graph.nodes()}
1601 1602

    def all_vars(self):
1603 1604 1605
        """
        Return all variable nodes included in the graph as a set.
        """
1606 1607
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1608
    def all_persistable_vars(self):
1609 1610 1611
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1612 1613 1614 1615 1616 1617 1618
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1619
    def all_ops(self):
1620 1621 1622
        """
        Return all operator nodes included in the graph as a set.
        """
1623 1624
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1625 1626
    def var_node(self, name):
        """
1627 1628
        Get a variable node by name from the graph.

W
WangZhen 已提交
1629 1630
        Args:
            name(str): the name of the variable node.
1631

W
WangZhen 已提交
1632 1633 1634
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1635

W
WangZhen 已提交
1636
        Returns:
1637
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1652
    def create_param_node(self, name, var_type, shape, var_dtype):
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1666 1667 1668 1669 1670 1671 1672 1673
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1688 1689 1690 1691 1692 1693 1694
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1705 1706 1707
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1720 1721
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1722
        for attr, value in six.iteritems(attrs):
1723
            self._update_desc_attr(op_desc, attr, value)
1724
        for input_name, var_nodes in six.iteritems(inputs):
1725 1726 1727 1728
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1729
        for output_name, var_nodes in six.iteritems(outputs):
1730 1731 1732 1733 1734 1735 1736
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1737 1738 1739 1740 1741 1742 1743 1744 1745
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1746 1747 1748
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1749 1750 1751 1752 1753 1754 1755 1756
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1757 1758 1759
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1760 1761 1762 1763 1764 1765 1766
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1767 1768 1769 1770 1771 1772 1773
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1774
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1775
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1776 1777 1778 1779
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1780 1781 1782 1783 1784 1785 1786
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1787
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1788 1789 1790 1791
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1792 1793
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1794
    def has_circle(self):
1795 1796 1797 1798 1799 1800
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1801 1802 1803
        return core.has_circle(self.graph)

    def graph_num(self):
1804 1805 1806 1807 1808 1809
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1810 1811 1812
        return core.graph_num(self.graph)

    def topology_sort(self):
1813 1814 1815 1816 1817 1818 1819 1820
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1821 1822 1823
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1824 1825 1826 1827 1828 1829
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1830 1831
        return core.build_adjacency_list(self.graph)

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1846 1847 1848 1849 1850 1851 1852 1853 1854
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1855 1856 1857 1858 1859 1860
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1861 1862
        ops_num = 0
        for node in self.graph.nodes():
1863
            if node.is_op():
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1890
        convert_pass = core.get_pass('graph_to_program_pass')
1891 1892
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1913
class Program(object):
D
dzhwinter 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1925
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1926 1927

    Returns:
Y
yuyang18 已提交
1928
        A empty program.
D
dzhwinter 已提交
1929 1930

    Examples:
Y
yuyang18 已提交
1931 1932 1933 1934 1935 1936
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1937 1938 1939

    """

1940 1941
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1942 1943
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1944
        self._seed = 0
Y
yuyang18 已提交
1945
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1946
        self._op_role_var = []
T
tangwei12 已提交
1947

1948 1949
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1950
        self._is_distributed = False
1951
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1952
        self._is_chief = False
1953 1954 1955
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1956
        self._endpoints = []
1957 1958 1959
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1960
        self._trainers_endpoints = []
1961
        # the distributed lookup table names
T
tangwei12 已提交
1962
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1963
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1964
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1965
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1966 1967

    @property
D
dzhwinter 已提交
1968
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1969 1970
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1971
        return self.__is_mem_optimized
D
dzhwinter 已提交
1972

D
dzhwinter 已提交
1973 1974 1975
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1976 1977 1978

    @property
    def op_role(self):
Y
yuyang18 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1992 1993 1994
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1995
    def op_role(self, role):
Y
yuyang18 已提交
1996 1997 1998 1999
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2000 2001 2002 2003 2004 2005 2006
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2007 2008 2009 2010
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2011
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2012

S
rename  
sneaxiy 已提交
2013
    @signature_safe_contextmanager
W
Wu Yi 已提交
2014
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2015 2016 2017 2018 2019 2020 2021
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2022
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2023 2024 2025 2026

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2027
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2028 2029
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2030 2031 2032
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2033 2034
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2035 2036 2037 2038
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2039
        yield
X
Xin Pan 已提交
2040 2041
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2042

S
rename  
sneaxiy 已提交
2043
    @signature_safe_contextmanager
X
Xin Pan 已提交
2044
    def _lr_schedule_guard(self, is_with_opt=False):
2045 2046 2047 2048 2049 2050 2051
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2052 2053 2054 2055
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2056 2057 2058 2059 2060 2061 2062

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2063 2064 2065 2066

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2067 2068
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2069 2070
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2071 2072 2073
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2074 2075
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2076

2077
    def __str__(self):
Y
yuyang18 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2087 2088
        return self.to_string(True)

F
fengjiayi 已提交
2089 2090 2091
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2092

F
fengjiayi 已提交
2093
        Args:
Y
yuyang18 已提交
2094 2095
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2096

Y
yuyang18 已提交
2097 2098 2099 2100
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2101 2102
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2103 2104 2105 2106

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2117 2118
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2119 2120
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2121

W
Wu Yi 已提交
2122
    def _get_desc(self):
Y
yuyang18 已提交
2123 2124 2125 2126 2127 2128 2129
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2130 2131
        return self.desc

X
version  
Xin Pan 已提交
2132 2133 2134
    def _version(self):
        return self.desc._version()

2135
    def clone(self, for_test=False):
Y
yuyang18 已提交
2136 2137 2138
        """
        Create a new, duplicated program.

2139

Y
yuyang18 已提交
2140 2141 2142 2143
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2144

Y
yuyang18 已提交
2145 2146 2147 2148
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2149 2150 2151 2152 2153
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2154 2155

        Args:
Y
yuyang18 已提交
2156 2157
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2158

D
dzhwinter 已提交
2159
        Returns:
Y
yuyang18 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2213 2214
        """
        if for_test:
X
Xin Pan 已提交
2215
            p = self._inference_optimize(prune_read_op=False)
2216
        else:
2217
            p = Program()
G
gongweibao 已提交
2218 2219
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2220
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2221 2222 2223
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2224 2225 2226 2227

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2228
            p._sync_with_cpp()
2229

W
Wu Yi 已提交
2230
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2231
        p._copy_data_info_from(self)
2232
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2233
        return p
2234

W
Wu Yi 已提交
2235
    def _prune(self, targets):
Y
yuyang18 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2251 2252 2253 2254 2255 2256
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2257 2258
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2259
                    # and we need to find the current op that generate this
2260 2261 2262 2263 2264 2265 2266 2267
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2268
                    t = t.op
2269 2270 2271 2272
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2273
                else:
2274 2275
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2276 2277 2278 2279

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2280 2281 2282
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2283
        res._sync_with_cpp()
2284 2285
        return res

X
Xin Pan 已提交
2286
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2287
        """
F
fengjiayi 已提交
2288 2289 2290 2291 2292
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2293
        3. change the :code:`is_test`
Y
yuyang18 已提交
2294 2295 2296
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2297
        Args:
X
Xin Pan 已提交
2298 2299
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2300

Y
yuyang18 已提交
2301 2302 2303 2304 2305 2306
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2307
        res = Program()
2308
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2309 2310 2311 2312

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2313
        if prune_read_op:
2314 2315 2316 2317 2318 2319 2320 2321 2322
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2323
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2324 2325

        # change all `is_test` attributes to True
M
minqiyang 已提交
2326
        for i in six.moves.range(res.desc.num_blocks()):
2327
            block = res.desc.block(i)
M
minqiyang 已提交
2328
            for j in six.moves.range(block.op_size()):
2329 2330
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2331
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2332 2333 2334
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2335
        res._sync_with_cpp()
2336 2337
        return res

2338 2339
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2340 2341 2342 2343 2344 2345 2346
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2347
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2348 2349 2350 2351

        Returns:
            Program: A deserialized program desc.
        """
2352 2353
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2354
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2355
        p._sync_with_cpp()
2356
        return p
Y
Yu Yang 已提交
2357

2358
    @staticmethod
2359
    def _construct_from_desc(desc):
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2375 2376
    @property
    def random_seed(self):
Y
yuyang18 已提交
2377 2378 2379 2380 2381 2382
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2383 2384
        return self._seed

Q
qiaolongfei 已提交
2385 2386
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2387 2388 2389
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2390 2391
        return self.desc.num_blocks()

D
dzhwinter 已提交
2392 2393 2394 2395 2396 2397
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2398
    def __repr__(self):
2399
        return self.__str__()
2400

Y
Yu Yang 已提交
2401
    def global_block(self):
Y
yuyang18 已提交
2402 2403 2404
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2405 2406
        return self.blocks[0]

Q
Qiao Longfei 已提交
2407
    def block(self, index):
Y
yuyang18 已提交
2408 2409 2410 2411 2412 2413 2414 2415
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2416 2417
        return self.blocks[index]

Y
Yu Yang 已提交
2418
    def current_block(self):
Y
yuyang18 已提交
2419 2420 2421 2422
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2423 2424
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2425
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2436
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2437 2438 2439
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2440 2441 2442 2443
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2444
    def _rollback(self):
Y
yuyang18 已提交
2445 2446 2447 2448 2449
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2450 2451
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2452
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2463 2464 2465
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2466
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2467

W
Wu Yi 已提交
2468
    def _copy_param_info_from(self, other):
2469
        """
2470
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2471

Y
yuyang18 已提交
2472 2473 2474
        Notes: This is a very low level API. Users should not invoke it
        directly.

2475 2476 2477 2478 2479 2480 2481
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2482
            raise TypeError("_copy_param_info_from should be invoked with "
2483 2484 2485
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2486
            raise ValueError("_copy_param_info_from should be invoked with two "
2487
                             "program, with represent the same topology")
W
Wu Yi 已提交
2488
        self.global_block()._copy_param_info_from(other.global_block())
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2505
        self._parameters_on_pservers = other._parameters_on_pservers
2506
        self._endpoints = other._endpoints
2507
        self._ps_endpoint = other._ps_endpoint
2508 2509
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2510
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2511 2512
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2513

Y
yuyang18 已提交
2514 2515 2516
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2517 2518 2519 2520 2521 2522 2523
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2524
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2525 2526 2527
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2528
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2529
                             "program, with represent the same topology")
2530
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2531 2532 2533
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2534
    def list_vars(self):
Y
yuyang18 已提交
2535 2536 2537 2538 2539 2540
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2541
        for each_block in self.blocks:
2542
            for each_var in list(each_block.vars.values()):
2543 2544
                yield each_var

Y
Yu Yang 已提交
2545

Y
Yu Yang 已提交
2546
class Parameter(Variable):
2547
    """
2548
    Parameter is derived from Variable. A parameter is a persistable
2549
    Variable, and will be updated by optimizers after each iteration.
2550
    The training of a neural network is essentially the updating of
2551 2552
    its parameters.

2553
    Relative to a general Variable, a Parameter has several its own
2554 2555
    member variables:

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2568 2569
    """

Y
Yu Yang 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2580 2581 2582

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2583 2584 2585 2586
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2587 2588
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2589
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2590

W
wanghaoshuang 已提交
2591
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2592

F
fengjiayi 已提交
2593 2594 2595
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2596 2597 2598
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2599

F
update  
fengjiayi 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2614
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2615
            for attr_name in additional_attr:
2616 2617
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2618 2619
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2620 2621 2622 2623
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2624

Y
Yu Yang 已提交
2625
# program is a global instance.
Y
Yu Yang 已提交
2626 2627
_main_program_ = Program()
_startup_program_ = Program()
2628

2629

2630
def default_startup_program():
Y
Yu Yang 已提交
2631
    """
Y
yuyang18 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2641

Y
Yu Yang 已提交
2642 2643 2644
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2645
    return _startup_program_
2646

2647

2648
def default_main_program():
Y
Yu Yang 已提交
2649
    """
Y
yuyang18 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2659

Y
Yu Yang 已提交
2660 2661 2662
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2663
    return _main_program_
Y
Yu Yang 已提交
2664 2665 2666 2667 2668


def switch_main_program(program):
    """
    Switch the main program to a new program.
2669

Y
Yu Yang 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2684
    Switch the startup program to a new program
Y
Yu Yang 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2697
@signature_safe_contextmanager
Y
Yu Yang 已提交
2698 2699
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2700 2701 2702
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2703

Y
Yu Yang 已提交
2704
    Examples:
Y
yuyang18 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2715

Y
Yu Yang 已提交
2716
    Examples:
Y
yuyang18 已提交
2717 2718 2719 2720 2721 2722

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2723

Y
Yu Yang 已提交
2724
    Args:
Y
yuyang18 已提交
2725
        main_program(Program): New main program inside `with` statement.
2726
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2740 2741


W
Wu Yi 已提交
2742
def _get_var(name, program=None):
X
xuwei06 已提交
2743
    """
Y
yuyang18 已提交
2744
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2745

X
xuwei06 已提交
2746 2747 2748
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2749
        If None, default_global_program() will be used.
X
xuwei06 已提交
2750 2751 2752 2753 2754 2755 2756

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2757
    assert isinstance(program, Program)
X
xuwei06 已提交
2758 2759

    return program.global_block().var(name)
2760 2761


S
rename  
sneaxiy 已提交
2762
@signature_safe_contextmanager
2763 2764 2765 2766
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2767

2768
    yield
P
Paddle CI 已提交
2769

2770
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2771 2772


S
rename  
sneaxiy 已提交
2773
@signature_safe_contextmanager
P
Paddle CI 已提交
2774
def _imperative_place_guard(place):
M
minqiyang 已提交
2775 2776 2777
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2778

2779
    yield
M
minqiyang 已提交
2780

M
minqiyang 已提交
2781
    _imperative_current_expected_place_ = tmp_place