BlockExpandLayer.cpp 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BlockExpandLayer.h"

#include "paddle/utils/Logging.h"

namespace paddle {

REGISTER_LAYER(blockexpand, BlockExpandLayer);

bool BlockExpandLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(config_.inputs_size(), 1);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  blockH_ = blockConf.block_y();
  blockW_ = blockConf.block_x();
  strideH_ = blockConf.stride_y();
  strideW_ = blockConf.stride_x();
  paddingH_ = blockConf.padding_y();
  paddingW_ = blockConf.padding_x();
  channels_ = blockConf.channels();
  imgSizeH_ = blockConf.img_size_y();
  imgSizeW_ = blockConf.img_size_x();

40 41 42 43 44 45 46 47 48
  std::vector<size_t> strides = {(size_t)strideH_, (size_t)strideW_};
  std::vector<size_t> paddings = {(size_t)paddingH_, (size_t)paddingW_};
  std::vector<size_t> blocks = {(size_t)blockH_, (size_t)blockW_};
  createFunction(forward_,
                 "ImageExpand",
                 FuncConfig()
                     .set("strides", strides)
                     .set("paddings", paddings)
                     .set("blocks", blocks));
49
  if (!useGpu_) {
H
hedaoyuan 已提交
50 51 52 53 54 55
    createFunction(backward_,
                   "ImageExpandGrad",
                   FuncConfig()
                       .set("strides", strides)
                       .set("paddings", paddings)
                       .set("blocks", blocks));
56 57
  }

Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
  return true;
}

size_t BlockExpandLayer::getBlockNum() {
  CHECK_EQ(inputLayers_.size(), 1UL);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imgSizeH_ == 0) {
    imgSizeH_ = blockConf.img_size_y();
  }
  if (imgSizeW_ == 0) {
    imgSizeW_ = blockConf.img_size_x();
  }
72
  size_t tmpH = 2 * paddingH_ + imgSizeH_ - blockH_;
Z
zhangjinchao01 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  outputH_ = (int)tmpH < 0 ? 1 : 1 + (tmpH + strideH_ - 1) / strideH_;
  size_t tmpW = 2 * paddingW_ + imgSizeW_ - blockW_;
  outputW_ = (int)tmpW < 0 ? 1 : 1 + (tmpW + strideW_ - 1) / strideW_;

  return outputH_ * outputW_;
}

void BlockExpandLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  size_t blockNum = getBlockNum();
  size_t blockSize = blockH_ * blockW_ * channels_;
  resetOutput(blockNum * batchSize, blockSize);

88 89 90 91 92 93 94 95 96 97 98
  // calculate output_.value
  inputShape_ = TensorShape({batchSize, channels_, imgSizeH_, imgSizeW_});
  outputShape_ = TensorShape({batchSize, blockNum, blockSize});
  BufferArgs inputs;
  BufferArgs outputs;
  inputs.addArg(*getInputValue(0), inputShape_);
  outputs.addArg(*getOutputValue(), outputShape_, ASSIGN_TO);
  forward_[0]->calc(inputs, outputs);

  // calculate output_.sequenceStartPositions and output_.cpuSequenceDims
  Argument& out = getOutput();
99 100
  ICpuGpuVector::resizeOrCreate(
      out.sequenceStartPositions, batchSize + 1, false);
Z
zhangjinchao01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  IVector::resizeOrCreate(out.cpuSequenceDims, 2 * batchSize, false);
  int* start = out.sequenceStartPositions->getMutableData(false);
  int* dims = out.cpuSequenceDims->getData();
  for (size_t i = 0; i < batchSize; i++) {
    start[i] = i * blockNum;
    dims[2 * i] = outputH_;
    dims[2 * i + 1] = outputW_;
  }
  start[batchSize] = batchSize * blockNum;
}

void BlockExpandLayer::backward(const UpdateCallback& callback) {
  size_t blockNum = outputH_ * outputW_;
  size_t blockSize = blockH_ * blockW_ * channels_;
  /* Calculate the input layers error */
  MatrixPtr preGrad = inputLayers_[0]->getOutputGrad();
  if (!preGrad) {
    return;
  }

H
hedaoyuan 已提交
121 122 123 124
  if (useGpu_) {
    MatrixPtr grad = getOutputGrad();
    MatrixPtr gradTrans = Matrix::create(blockSize, blockNum, false, useGpu_);
    size_t batchSize = preGrad->getHeight();
Z
zhangjinchao01 已提交
125

H
hedaoyuan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    CHECK_EQ(batchSize * blockNum, grad->getHeight());
    CHECK_EQ(blockSize, grad->getWidth());

    for (size_t i = 0; i < batchSize; i++) {
      MatrixPtr gradTmp =
          Matrix::create(grad->getData() + i * blockNum * blockSize,
                         blockNum,
                         blockSize,
                         false,
                         useGpu_);
      gradTmp->transpose(gradTrans, false);
      MatrixPtr preGradTmp =
          Matrix::create(preGrad->getData() + i * preGrad->getWidth(),
                         1,
                         preGrad->getWidth(),
                         false,
                         useGpu_);
      preGradTmp->convShrink(*gradTrans,
                             imgSizeH_,
                             imgSizeW_,
                             channels_,
                             blockH_,
                             blockW_,
                             strideH_,
                             strideW_,
                             paddingH_,
                             paddingW_,
                             outputH_,
                             outputW_,
                             1.0,
                             1.0);
    }
  } else {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getOutputGrad(), outputShape_);
    outputs.addArg(*getInputGrad(0), inputShape_, ADD_TO);
    backward_[0]->calc(inputs, outputs);
Z
zhangjinchao01 已提交
164 165 166 167
  }
}

}  // namespace paddle