affine_channel_op.cu 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "cub/cub.cuh"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T, framework::DataLayout layout, bool HasBias>
__global__ void KeAffineChannelCUDA(const T* x, const T* scale, const T* bias,
                                    const int C, const int HxW, const int num,
                                    T* y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    if (HasBias) {
      y[i] = scale[c] * x[i] + bias[c];
    } else {
      y[i] = scale[c] * x[i];
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* y = ctx.Output<framework::Tensor>("Out");
    y->mutable_data<T>(ctx.GetPlace());

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto dims = x->dims();
    const int num = x->numel();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* x_d = x->data<T>();
    const T* scale_d = scale->data<T>();
    const T* bias_d = bias->data<T>();
    T* y_d = y->data<T>();

    int block = 1024;
    int grid = (num + block - 1) / block;
    if (layout == framework::DataLayout::kNCHW) {
      KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    } else {
      KeAffineChannelCUDA<T, framework::DataLayout::kNHWC,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    }
  }
};

template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void AffineChannelScaleBiasGradientCUDAKernel(
    const T* dy, const T* x, const int N, const int C, const int HxW, T* dscale,
    T* dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
86
  typedef cub::BlockReduce<double, BlockDim> BlockReduce;
87 88 89 90 91 92 93 94 95 96 97 98 99
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T ds_sum = 0;
    T db_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += dy[index] * x[index];
      db_sum += dy[index];
    }
100 101 102 103 104 105
    __syncthreads();
    auto ds_out =
        BlockReduce(ds_storage).Reduce(static_cast<double>(ds_sum), cub::Sum());
    auto db_out =
        BlockReduce(db_storage).Reduce(static_cast<double>(db_sum), cub::Sum());
    __syncthreads();
106
    if (threadIdx.x == 0) {
107 108
      dscale[i] = ds_out;
      dbias[i] = db_out;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");
    auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dscale =
        ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

Z
Zeng Jinle 已提交
131 132
    auto dims = dy->dims();
    const int num = dy->numel();
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* dy_d = dy->data<T>();
    const T* s_d = scale->data<T>();

    T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* ds_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* db_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;

    const int block = 1024;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
    if (layout == framework::DataLayout::kNCHW) {
      if (dx) {
        KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
157
        const T* x_d = x->data<T>();
158 159 160 161 162 163 164 165 166 167 168 169
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNCHW><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
    } else {
      if (dx) {
        KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
170
        const T* x_d = x->data<T>();
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNHWC><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(affine_channel,
                        ops::AffineChannelCUDAKernel<CUDA, float>,
                        ops::AffineChannelCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(affine_channel_grad,
                        ops::AffineChannelGradCUDAKernel<CUDA, float>,
                        ops::AffineChannelGradCUDAKernel<CUDA, double>);