README.md 18.3 KB
Newer Older
J
JYChen 已提交
1 2
简体中文 | [English](README_en.md)

3
# 关键点检测系列模型
4

5 6 7
<div align="center">
  <img src="./football_keypoint.gif" width='800'/>
</div>
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 目录

- [简介](#简介)
- [模型推荐](#模型推荐)
- [模型库](#模型库)
- [快速开始](#快速开始)
  - [环境安装](#1环境安装)
  - [数据准备](#2数据准备)
  - [训练与测试](#3训练与测试)
    - [单卡训练](#单卡训练)
    - [多卡训练](#多卡训练)
    - [模型评估](#模型评估)
    - [模型预测](#模型预测)
    - [模型部署](#模型部署)
      - [Top-Down模型联合部署](#top-down模型联合部署)
      - [Bottom-Up模型独立部署](#bottom-up模型独立部署)
      - [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署)
    - [完整部署教程及Demo](#4完整部署教程及Demo)
Z
zhiboniu 已提交
27
- [自定义数据训练](#自定义数据训练)
28
- [BenchMark](#benchmark)
29 30 31

## 简介

32
PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。
33

34
同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。
Z
zhiboniu 已提交
35

36
## 模型推荐
37

38
### 移动端模型推荐
39

40 41 42 43 44 45
| 检测模型                                                                                                | 关键点模型                                 | 输入尺寸                      | COCO数据集精度                | 平均推理耗时 (FP16)               | 模型权重                                                                                                                                                                             | Paddle-Lite部署模型(FP16)                                                                                                                                                           |
|:--------------------------------------------------------------------------------------------------- |:------------------------------------- |:-------------------------:|:------------------------:|:---------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml)  | 检测:192x192<br>关键点:128x96  | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb)  |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |

*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
46

47 48 49 50 51 52 53 54 55 56
### 服务端模型推荐

| 检测模型                                                                                                                          | 关键点模型                                      | 输入尺寸                      | COCO数据集精度                | 模型权重                                                                                                                                                                    |
|:----------------------------------------------------------------------------------------------------------------------------- |:------------------------------------------ |:-------------------------:|:------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |

## 模型库

COCO数据集
Z
zhiboniu 已提交
57
| 模型              |  方案              |输入尺寸 | AP(coco val) |                           模型下载                           | 配置文件 |  
58 59 60 61 62 63 64 65 66 67 68 69 70
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
| HigherHRNet-w32       |Bottom-Up| 512      |     67.1     | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml)       |
| HigherHRNet-w32       | Bottom-Up| 640      |     68.3     | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml)       |
| HigherHRNet-w32+SWAHR |Bottom-Up|  512      |     68.9     | [higherhrnet_hrnet_w32_512_swahr.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml) |
| HRNet-w32             | Top-Down| 256x192  |     76.9     | [hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) | [config](./hrnet/hrnet_w32_256x192.yml)                     |
| HRNet-w32             |Top-Down| 384x288  |     77.8     | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 256x192  |     78.0     | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 384x288  |     78.3     | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml)                     |
| WiderNaiveHRNet-18         | Top-Down|256x192  |     67.6(+DARK 68.4)     | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 256x192  |     66.5     | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 384x288  |     69.7     | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml)     |
| LiteHRNet-30                   | Top-Down|256x192  |     69.4     | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml)     |
| LiteHRNet-30                   |Top-Down| 384x288  |     72.5     | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml)     |
71

Z
zhiboniu 已提交
72
备注: Top-Down模型测试AP结果基于GroundTruth标注框
73

Z
zhiboniu 已提交
74
MPII数据集
75 76 77
| 模型  | 方案| 输入尺寸 | PCKh(Mean) | PCKh(Mean@0.1) |                           模型下载                           | 配置文件                                     |
| :---- | ---|----- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | Top-Down|256x256  |    90.6    |      38.5      | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |
Z
zhiboniu 已提交
78

79
我们同时推出了基于LiteHRNet(Top-Down)针对移动端设备优化的实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md), 欢迎体验。
J
JYChen 已提交
80

81 82 83 84
## 快速开始

### 1、环境安装

85
​    请参考PaddleDetection [安装文档](../../docs/tutorials/INSTALL_cn.md)正确安装PaddlePaddle和PaddleDetection即可。
86 87 88

### 2、数据准备

89 90
​    目前KeyPoint模型支持[COCO](https://cocodataset.org/#keypoints-2017)数据集和[MPII](http://human-pose.mpi-inf.mpg.de/#overview)数据集,数据集的准备方式请参考[关键点数据准备](../../docs/tutorials/PrepareKeypointDataSet_cn.md)

Z
zhiboniu 已提交
91 92
​    关于config配置文件内容说明请参考[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)

93
- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
94 95 96

### 3、训练与测试

97
#### 单卡训练
98 99

```shell
100
#COCO DataSet
101
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
102 103

#MPII DataSet
104
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
105 106
```

107
#### 多卡训练
108 109

```shell
110
#COCO DataSet
111
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
112 113

#MPII DataSet
114
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
115 116
```

117
#### 模型评估
118 119

```shell
120
#COCO DataSet
121
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
122 123 124

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
125 126 127

#当只需要保存评估预测的结果时,可以通过设置save_prediction_only参数实现,评估预测结果默认保存在output/keypoints_results.json文件中
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml --save_prediction_only
128 129
```

130
#### 模型预测
131

Z
zhiboniu 已提交
132 133
​    注意:top-down模型只支持单人截图预测,如需使用多人图,请使用[联合部署推理]方式。或者使用bottom-up模型。

134 135 136 137
```shell
CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True
```

138 139 140 141 142 143
#### 模型部署

##### Top-Down模型联合部署

```shell
#导出检测模型
Z
zhiboniu 已提交
144
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
145 146 147 148 149 150 151 152 153

#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams

#detector 检测 + keypoint top-down模型联合部署(联合推理只支持top-down方式)
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4  --device=gpu
```

##### Bottom-Up模型独立部署
154 155 156 157 158 159

```shell
#导出模型
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams

#部署推理
Z
zhiboniu 已提交
160
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
161
```
162

163
##### 与多目标跟踪模型FairMOT联合部署
164 165 166 167 168 169 170 171

```shell
#导出FairMOT跟踪模型
python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

#用导出的跟踪和关键点模型Python联合预测
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
172

173
**注意:**
174 175 176
 跟踪模型导出教程请参考[文档](../mot/README.md)

### 4、完整部署教程及Demo
177

178
​ 我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。
Z
zhiboniu 已提交
179

Z
zhiboniu 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
## 自定义数据训练

我们以[tinypose_256x192](.tiny_pose/README.md)为例来说明对于自定义数据如何修改:

#### 1、配置文件[tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)

基本的修改内容及其含义如下:

```
num_joints: &num_joints 17    #自定义数据的关键点数量
train_height: &train_height 256   #训练图片尺寸-高度h
train_width: &train_width 192   #训练图片尺寸-宽度w
hmsize: &hmsize [48, 64]  #对应训练尺寸的输出尺寸,这里是输入[w,h]的1/4
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #关键点定义中左右对称的关键点,用于flip增强。若没有对称结构在 TrainReader 的 RandomFlipHalfBodyTransform 一栏中 flip_pairs 后面加一行 "flip: False"(注意缩紧对齐)
num_joints_half_body: 8   #半身关键点数量,用于半身增强
prob_half_body: 0.3   #半身增强实现概率,若不需要则修改为0
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]    #上半身对应关键点id,用于半身增强中获取上半身对应的关键点。
```

上述是自定义数据时所需要的修改部分,完整的配置及含义说明可参考文件:[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)

#### 2、其他代码修改(影响测试、可视化)
- keypoint_utils.py中的sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,.87, .87, .89, .89]) / 10.0,表示每个关键点的确定范围方差,根据实际关键点可信区域设置,区域精确的一般0.25-0.5,例如眼睛。区域范围大的一般0.5-1.0,例如肩膀。若不确定建议0.75。
- visualizer.py中的draw_pose函数中的EDGES,表示可视化时关键点之间的连接线关系。
- pycocotools工具中的sigmas,同第一个keypoint_utils.py中的设置。用于coco指标评估时计算。

#### 3、数据准备注意
- 训练数据请按coco数据格式处理。需要包括关键点[Nx3]、检测框[N]标注。
- 请注意area>0,area=0时数据会被过滤掉。

如有遗漏,欢迎反馈

212
## BenchMark
Z
zhiboniu 已提交
213

214
我们给出了不同运行环境下的测试结果,供您在选用模型时参考。详细数据请见[Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md)
215 216

## 引用
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
```
@inproceedings{cheng2020bottom,
  title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
  author={Bowen Cheng and Bin Xiao and Jingdong Wang and Honghui Shi and Thomas S. Huang and Lei Zhang},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{wang2019deep,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Wang, Jingdong and Sun, Ke and Cheng, Tianheng and Jiang, Borui and Deng, Chaorui and Zhao, Yang and Liu, Dong and Mu, Yadong and Tan, Mingkui and Wang, Xinggang and Liu, Wenyu and Xiao, Bin},
  journal={TPAMI},
  year={2019}
}

@InProceedings{Zhang_2020_CVPR,
    author = {Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
    title = {Distribution-Aware Coordinate Representation for Human Pose Estimation},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}
247 248 249 250 251 252 253

@inproceedings{Yulitehrnet21,
  title={Lite-HRNet: A Lightweight High-Resolution Network},
  author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
  booktitle={CVPR},
  year={2021}
}
254
```