framework.py 73.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VarBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
X
Xin Pan 已提交
279
        core.VarBase.__init__(self)
Y
Yu Yang 已提交
280
        self.block = block
F
fengjiayi 已提交
281
        self.error_clip = error_clip
Y
Yu Yang 已提交
282 283

        if name is None:
Y
Yu Yang 已提交
284
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
285
        is_new_var = False
M
minqiyang 已提交
286
        name = cpt.to_text(name)
X
Xin Pan 已提交
287
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
288

X
Xin Pan 已提交
289
        if self.desc is None:
M
minqiyang 已提交
290
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
291
            is_new_var = True
Y
Yu Yang 已提交
292

Y
Yu Yang 已提交
293 294 295 296 297 298 299 300
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
301
        if shape is not None:
Y
Yu Yang 已提交
302
            if is_new_var:
303
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
312
        if dtype is not None:
313
            if not isinstance(dtype, core.VarDesc.VarType):
314
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
315
            if is_new_var:
F
fengjiayi 已提交
316
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
317
            else:
F
fengjiayi 已提交
318
                old_dtype = self.dtype
Q
QI JUN 已提交
319
                if dtype != old_dtype:
Y
Yu Yang 已提交
320 321 322 323 324
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
325 326

        if lod_level is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
329 330 331 332 333 334 335
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
336 337 338 339 340 341 342 343 344 345 346
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

347 348 349 350 351 352 353 354
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
355
        self.block.vars[name] = self
Y
Yu Yang 已提交
356
        self.op = None
Y
Yu Yang 已提交
357
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
358
        self.is_data = is_data
Y
Yu Yang 已提交
359

X
polish  
Xin Pan 已提交
360
    def _numpy(self):
X
polish  
Xin Pan 已提交
361
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
362 363 364
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

X
polish  
Xin Pan 已提交
365
    def _backward(self):
X
polish  
Xin Pan 已提交
366
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
367 368
        self._run_backward(scope)

X
polish  
Xin Pan 已提交
369
    def _gradient(self):
X
Xin Pan 已提交
370 371
        return np.array(self._grad())

372
    def __str__(self):
Y
Yang Yang(Tony) 已提交
373 374
        return self.to_string(True)

F
update  
fengjiayi 已提交
375
    def to_string(self, throw_on_error, with_details=False):
376 377 378 379
        """
        Get debug string.

        Args:
380 381
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
382
            with_details(bool): more details about variables and parameters
383 384
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
385

386 387
        Returns:
            str: The debug string.
388
        """
F
update  
fengjiayi 已提交
389 390
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
391
        protostr = self.desc.serialize_to_string()
392
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
393 394 395 396
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
397 398
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
399
        return res_str
400 401 402

    __repr__ = __str__

W
Wu Yi 已提交
403
    def _set_desc(self, input):
404 405 406 407 408 409 410 411 412
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
413 414
        self.desc = input

415 416 417 418
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
419 420 421 422
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
423 424
    @property
    def name(self):
M
minqiyang 已提交
425
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
426

T
typhoonzero 已提交
427 428 429 430
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
431 432 433
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
434
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
435 436

    @property
F
fengjiayi 已提交
437 438
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
439 440 441

    @property
    def lod_level(self):
442
        return self.desc.lod_level()
Y
Yu Yang 已提交
443

Y
Yu Yang 已提交
444 445 446 447
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
448
    def _set_error_clip(self, error_clip):
449 450 451 452 453 454 455 456 457
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
458 459
        self.error_clip = error_clip

Y
Yu Yang 已提交
460

F
fengjiayi 已提交
461 462 463
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
464

465 466
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
467 468 469 470
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
471
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
472 473 474 475 476
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
477 478 479 480
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
481 482 483 484 485 486 487 488 489
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
490
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
491 492 493 494 495 496
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
497 498 499 500 501 502 503 504
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
505 506
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
507 508
        return self.op_proto_map[type]

509 510 511 512
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
513
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
514
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
515 516
        }

F
fengjiayi 已提交
517

X
Xin Pan 已提交
518
class Operator(core.OpBase):
519
    """
520 521 522 523 524 525 526
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
527
        type(str): The type of operator. Default None.
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
548
        Block.append_op or Block._prepend_op instead.
549 550 551 552 553 554 555 556 557 558

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
559
    """
560 561 562 563
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
564
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
565
    }
566

Y
Yu Yang 已提交
567 568
    def __init__(self,
                 block,
Y
Yu Yang 已提交
569
                 desc,
Y
Yu Yang 已提交
570 571 572 573
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
X
Xin Pan 已提交
574
        core.OpBase.__init__(self)
Y
Yu Yang 已提交
575
        self.block = block
Y
Yu Yang 已提交
576
        self.desc = desc
G
gongweibao 已提交
577 578 579 580 581
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
582 583 584 585
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
586 587
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
588 589 590

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
591 592
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
593

G
gongweibao 已提交
594 595
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
596

F
fengjiayi 已提交
597 598 599 600 601
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
602
        self.desc.set_type(type)
F
fengjiayi 已提交
603
        proto = OpProtoHolder.instance().get_op_proto(type)
604

605 606 607
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
608 609
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
610
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
611 612
                    return True
            return False
Q
QI JUN 已提交
613

X
polish  
Xin Pan 已提交
614
        self.inputs = []
X
Xin Pan 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        if isinstance(arg, six.string_types):
                            in_arg_names.append(arg)
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
                        else:
                            in_arg_names.append(cpt.to_text(arg.name))
                    self.desc.set_input(in_proto.name, in_arg_names)
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
640

X
polish  
Xin Pan 已提交
641 642 643 644 645 646 647
            for inp in inputs.values():
                if isinstance(inp, Variable):
                    self.inputs.append(inp)
                elif isinstance(inp, list) or isinstance(inp, tuple):
                    self.inputs.extend(inp[:])

        self.outputs = []
Y
Yu Yang 已提交
648
        if outputs is not None:
649 650 651 652 653 654 655
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
656 657
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
658 659 660
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
661

F
fengjiayi 已提交
662
            for out_proto in proto.outputs:
663 664 665 666
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
667 668
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
669 670 671
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
672
                    out_arg_names.append(cpt.to_text(arg.name))
673 674
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
675

X
polish  
Xin Pan 已提交
676 677 678 679 680
            for out in outputs.values():
                if isinstance(out, Variable):
                    self.outputs.append(out)
                elif isinstance(out, list) or isinstance(out, tuple):
                    self.outputs.extend(out[:])
X
Xin Pan 已提交
681

G
gongweibao 已提交
682 683
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
684
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
685
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
686
                attr_name = attr.name
G
gongweibao 已提交
687
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
688
                    continue
G
gongweibao 已提交
689
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
690 691
                self._update_desc_attr(attr_name, attr_val)

692
        self.desc.check_attrs()
W
Wu Yi 已提交
693
        if self._has_kernel(type):
Q
QI JUN 已提交
694
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
695
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
696

W
Wu Yi 已提交
697
    def _has_kernel(self, op_type):
698 699
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
700
    def to_string(self, throw_on_error):
701
        """
702 703
        Get debug string.

704
        Args:
705 706
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
707

708 709
        Returns:
            str: The debug string.
710 711

        """
712
        protostr = self.desc.serialize_to_string()
713
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
714 715 716 717
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
718 719 720

    __repr__ = __str__

F
fengjiayi 已提交
721 722 723 724 725
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
726
        """
727
        Get the input arguments according to the input parameter name.
728

729 730
        Args:
            name(str): The input parameter name.
731

732 733 734
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
735
        """
F
fengjiayi 已提交
736 737
        return self.desc.input(name)

W
Wu Yi 已提交
738
    def _rename_input(self, old_name, new_name):
739 740 741 742 743 744 745 746 747 748
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
749
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
750

W
Wu Yi 已提交
751
    def _rename_output(self, old_name, new_name):
752 753 754 755 756 757 758 759 760 761
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
762
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
763

F
fengjiayi 已提交
764 765 766 767
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
768 769 770 771 772 773 774 775
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
776
    def output(self, name):
777
        """
778
        Get output arguments by the output parameter name.
779

780 781
        Args:
            name(str): The output parameter name.
782

783 784 785
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
786
        """
F
fengjiayi 已提交
787 788 789 790 791 792
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

793 794 795 796 797 798 799 800
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
801
    def has_attr(self, name):
802
        """
803 804
        Whether this Operator has the attribute with name or not.

805
        Args:
806
            name(str): the attribute name.
807

808 809
        Returns:
            bool: True if has this attribute.
810 811

        """
F
fengjiayi 已提交
812 813 814
        return self.desc.has_attr(name)

    def attr_type(self, name):
815
        """
816
        Get the type of attribute by attribute's name.
817

818 819
        Args:
            name(str): the attribute name.
820

821 822
        Returns:
            core.AttrType: the attribute type.
823
        """
F
fengjiayi 已提交
824 825
        return self.desc.attr_type(name)

W
Wu Yi 已提交
826
    def _set_attr(self, name, val):
827 828 829 830 831 832 833 834 835 836
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
850 851
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
852 853
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
854
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
855 856 857 858
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
859
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
860

F
fengjiayi 已提交
861 862 863 864 865
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
866
        """
867 868
        Get the attribute by name.

869
        Args:
870
            name(str): the attribute name.
871

872 873
        Returns:
            bool|int|str|float|list: The attribute value. The return value
874 875
            can be any valid attribute type.
        """
F
fengjiayi 已提交
876
        return self.desc.attr(name)
Y
Yu Yang 已提交
877

W
Wu Yi 已提交
878
    def _block_attr_id(self, name):
879
        """
G
gongweibao 已提交
880
        Get the block attribute's id by name.
881

882 883
        Args:
            name(str): the attribute name.
884

885 886
        Returns:
            int: the block index.
887
        """
W
Wu Yi 已提交
888
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
889

W
Wu Yi 已提交
890
    def _block_attr(self, name):
G
gongweibao 已提交
891 892 893 894 895 896 897 898 899 900
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
901
        id = self._block_attr_id(name)
G
gongweibao 已提交
902 903 904
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
905
    def _blocks_attr(self, name):
G
gongweibao 已提交
906 907 908 909 910 911 912 913 914 915
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
916
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
917 918 919 920 921
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
922
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
923 924 925 926 927 928 929 930 931 932
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
933
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
934

J
JiayiFeng 已提交
935
    def all_attrs(self):
F
fengjiayi 已提交
936
        """
937 938 939
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
940
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
941 942 943 944
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
945 946
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
947
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
948 949 950
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
951
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
952 953 954 955
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
956 957
        return attr_map

Y
Yu Yang 已提交
958

Y
Yu Yang 已提交
959
class Block(object):
960 961 962 963 964 965 966 967 968 969 970 971 972 973
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
974
        use `Program._create_block()` to create a block.
975 976 977 978 979 980 981 982 983 984 985 986 987 988

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
989
    def __init__(self, program, idx):
Y
Yu Yang 已提交
990
        self.desc = program.desc.block(idx)
991
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
992
        self.ops = list()  # operator list
Y
Yu Yang 已提交
993
        self.program = program
994
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
995

996
    def __str__(self):
Y
Yang Yang(Tony) 已提交
997 998
        return self.to_string(True)

F
fengjiayi 已提交
999 1000
    def to_string(self, throw_on_error, with_details=False):
        """
1001 1002
        Get debug string.

F
fengjiayi 已提交
1003 1004
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1005
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1006
            with_details(bool): more details about variables and parameters
1007 1008
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1009

1010 1011
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1012 1013 1014 1015
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1016
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1017 1018
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1019
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1020
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1021
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1022
            for op in self.ops:
F
fengjiayi 已提交
1023 1024
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1025 1026 1027
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1028 1029
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1030 1031
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1032 1033 1034

    __repr__ = __str__

Y
Yu Yang 已提交
1035 1036
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1037
        return self.desc.parent
Y
Yu Yang 已提交
1038

Y
Yu Yang 已提交
1039 1040 1041 1042
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1043
    def _set_forward_block_idx(self, idx):
1044 1045 1046 1047 1048 1049 1050 1051 1052
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1053
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1054

Y
Yu Yang 已提交
1055 1056
    @property
    def idx(self):
Y
Yu Yang 已提交
1057
        return self.desc.id
Y
Yu Yang 已提交
1058

Q
Qiao Longfei 已提交
1059
    def var(self, name):
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1073
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1074 1075 1076
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1077 1078
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1079
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1080
        return v
Q
Qiao Longfei 已提交
1081

W
Wu Yi 已提交
1082
    def _var_recursive(self, name):
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1122

Q
Qiao Longfei 已提交
1123
    def all_parameters(self):
1124
        return list(self.iter_parameters())
1125

1126
    def iter_parameters(self):
M
minqiyang 已提交
1127
        return (item[1] for item in six.iteritems(self.vars)
1128
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1129

Y
Yu Yang 已提交
1130
    def create_var(self, *args, **kwargs):
1131
        var = Variable(block=self, *args, **kwargs)
1132 1133
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1134
        return var
Y
Yu Yang 已提交
1135

Q
Qiao Longfei 已提交
1136 1137 1138
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1139
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1140 1141
        """
        Rename variable in vars and ops' inputs and outputs
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1154
        """
M
minqiyang 已提交
1155 1156
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1157

T
typhoonzero 已提交
1158
        if not self.has_var(name):
1159
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1160 1161
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1162
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1163 1164 1165 1166 1167 1168 1169
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1170
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1171 1172 1173 1174
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1175
        orig_var_type = v.type
M
minqiyang 已提交
1176
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1177
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1178
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1179
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1180 1181 1182 1183
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1184
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1185 1186 1187 1188 1189 1190 1191
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1192
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1193 1194
            var = Variable(
                self,
T
typhoonzero 已提交
1195
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1196 1197 1198 1199
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1200
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1201 1202 1203
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1204
        self._sync_with_cpp()
1205
        return var
T
typhoonzero 已提交
1206

W
Wu Yi 已提交
1207 1208
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1209
        self.desc._remove_var(cpt.to_bytes(name))
1210 1211
        del self.vars[name]

Y
Yu Yang 已提交
1212 1213
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1214
        param = Parameter(global_block, *args, **kwargs)
1215
        if 'initializer' in kwargs:
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1236
        return param
Y
Yu Yang 已提交
1237

Y
Yu Yang 已提交
1238
    def append_op(self, *args, **kwargs):
1239 1240 1241 1242 1243 1244
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1245 1246
        op_desc = self.desc.append_op()
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
X
Xin Pan 已提交
1247
        if _in_imperative_mode():
X
polish  
Xin Pan 已提交
1248
            _imperative_tracer().trace(op, op.inputs, op.outputs, self.desc)
Y
Yu Yang 已提交
1249 1250 1251
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1252
    def _insert_op(self, index, *args, **kwargs):
1253 1254 1255 1256 1257 1258 1259 1260 1261
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1262 1263
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1264 1265 1266 1267
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1268
    def _remove_op(self, index):
1269 1270 1271 1272 1273 1274 1275 1276 1277
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1278 1279
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1280 1281
        del self.ops[index]

W
Wu Yi 已提交
1282
    def _slice_ops(self, start, end):
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1293
        return self.ops[start:end]
Y
Yancey1989 已提交
1294

W
Wu Yi 已提交
1295 1296
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1297
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1298
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1299 1300
        return op

W
Wu Yi 已提交
1301
    def _sync_with_cpp(self):
1302
        """
1303 1304
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1305
        """
Q
Qiao Longfei 已提交
1306 1307 1308 1309 1310
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1311
        # sync variables removed from c++ end
1312
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1313
            if not self.desc.find_var(cpt.to_bytes(var)):
1314 1315
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1316
        # sync operators from cpp
1317 1318 1319 1320
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1337 1338 1339 1340 1341

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1342
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1343 1344 1345 1346 1347 1348 1349

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1363 1364 1365 1366
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1367
    def _copy_param_info_from(self, other):
1368
        """
1369 1370
        Copy the information of parameters from the other block.

1371
        Args:
1372 1373 1374 1375 1376
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1377 1378 1379 1380 1381

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1382 1383
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1384
        for p in other.iter_parameters():
1385 1386 1387
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1388
                raise ValueError("_copy_param_info_from should be invoked with "
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1401
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1402
                error_clip=p.error_clip,
1403 1404 1405
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1406
    def _clone_variable(self, var):
1407 1408
        """
        Clone a variable into current block.
1409

1410 1411 1412 1413
        Args:
            var: the variable to be cloned.

        Returns:
1414
            Variable: the new  variable cloned from 'var' in current block.
1415 1416
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1417 1418 1419 1420 1421
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1422 1423
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1424
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1425 1426 1427 1428 1429 1430
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1431 1432
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1433 1434 1435 1436 1437 1438 1439
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1440 1441
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1442
        return ret_var
1443

Y
Yu Yang 已提交
1444 1445

class Program(object):
D
dzhwinter 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1457
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1458 1459

    Returns:
Y
yuyang18 已提交
1460
        A empty program.
D
dzhwinter 已提交
1461 1462

    Examples:
Y
yuyang18 已提交
1463 1464 1465 1466 1467 1468
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1469 1470 1471

    """

1472 1473
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1474 1475
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1476
        self._seed = 0
Y
yuyang18 已提交
1477
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1478
        self._op_role_var = []
T
tangwei12 已提交
1479 1480 1481 1482

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1483
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1484 1485
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1486 1487 1488

    @property
    def op_role(self):
Y
yuyang18 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1502 1503 1504 1505 1506 1507 1508 1509
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1510 1511 1512 1513 1514 1515 1516
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1517 1518 1519 1520
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1521
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1522 1523

    @contextlib.contextmanager
W
Wu Yi 已提交
1524
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1525 1526 1527 1528 1529 1530 1531
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1532
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1533 1534 1535 1536

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1537
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1538 1539
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1540 1541 1542
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1543 1544
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1545 1546 1547 1548
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1549
        yield
X
Xin Pan 已提交
1550 1551
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1552

1553
    @contextlib.contextmanager
X
Xin Pan 已提交
1554
    def _lr_schedule_guard(self, is_with_opt=False):
1555 1556 1557 1558 1559 1560 1561
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1562 1563 1564 1565
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1566 1567 1568 1569 1570 1571 1572

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1573 1574 1575 1576

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1577 1578
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1579 1580
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1581 1582 1583
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1584 1585
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1586

1587
    def __str__(self):
Y
yuyang18 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1597 1598
        return self.to_string(True)

F
fengjiayi 已提交
1599 1600 1601
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1602

F
fengjiayi 已提交
1603
        Args:
Y
yuyang18 已提交
1604 1605
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1606

Y
yuyang18 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1627 1628
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1629 1630
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1631

W
Wu Yi 已提交
1632
    def _get_desc(self):
Y
yuyang18 已提交
1633 1634 1635 1636 1637 1638 1639
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1640 1641
        return self.desc

X
version  
Xin Pan 已提交
1642 1643 1644
    def _version(self):
        return self.desc._version()

1645
    def clone(self, for_test=False):
Y
yuyang18 已提交
1646 1647 1648
        """
        Create a new, duplicated program.

1649

Y
yuyang18 已提交
1650 1651 1652 1653
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1654

Y
yuyang18 已提交
1655 1656 1657 1658
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1659 1660 1661 1662 1663
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1664 1665

        Args:
Y
yuyang18 已提交
1666 1667
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1668

D
dzhwinter 已提交
1669
        Returns:
Y
yuyang18 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1723 1724
        """
        if for_test:
X
Xin Pan 已提交
1725
            p = self._inference_optimize(prune_read_op=False)
1726
        else:
1727
            p = Program()
G
gongweibao 已提交
1728 1729
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1730
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1731 1732 1733
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1734 1735 1736 1737

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1738
            p._sync_with_cpp()
1739

W
Wu Yi 已提交
1740
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1741
        p._copy_data_info_from(self)
1742
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1743
        return p
1744

W
Wu Yi 已提交
1745
    def _prune(self, targets):
Y
yuyang18 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1761 1762 1763 1764 1765 1766
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1767 1768
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1769
                    # and we need to find the current op that generate this
1770 1771 1772 1773 1774 1775 1776 1777
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1778
                    t = t.op
1779 1780 1781 1782
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1783
                else:
1784 1785
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1786 1787 1788 1789

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1790 1791 1792
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1793
        res._sync_with_cpp()
1794 1795
        return res

X
Xin Pan 已提交
1796
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1797
        """
F
fengjiayi 已提交
1798 1799 1800 1801 1802
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1803
        3. change the :code:`is_test`
Y
yuyang18 已提交
1804 1805 1806
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1807
        Args:
X
Xin Pan 已提交
1808 1809
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1810

Y
yuyang18 已提交
1811 1812 1813 1814 1815 1816
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1817
        res = Program()
1818
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1819 1820 1821 1822

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1823
        if prune_read_op:
1824 1825 1826 1827 1828 1829 1830 1831 1832
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1833
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1834 1835

        # change all `is_test` attributes to True
M
minqiyang 已提交
1836
        for i in six.moves.range(res.desc.num_blocks()):
1837
            block = res.desc.block(i)
M
minqiyang 已提交
1838
            for j in six.moves.range(block.op_size()):
1839 1840
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1841
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1842 1843 1844
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1845
        res._sync_with_cpp()
1846 1847
        return res

1848 1849
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1850 1851 1852 1853 1854 1855 1856
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1857
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1858 1859 1860 1861

        Returns:
            Program: A deserialized program desc.
        """
1862 1863
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1864
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1865
        p._sync_with_cpp()
1866
        return p
Y
Yu Yang 已提交
1867

D
dzhwinter 已提交
1868 1869
    @property
    def random_seed(self):
Y
yuyang18 已提交
1870 1871 1872 1873 1874 1875
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1876 1877
        return self._seed

Q
qiaolongfei 已提交
1878 1879
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1880 1881 1882
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1883 1884
        return self.desc.num_blocks()

D
dzhwinter 已提交
1885 1886 1887 1888 1889 1890
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1891
    def __repr__(self):
1892
        return self.__str__()
1893

Y
Yu Yang 已提交
1894
    def global_block(self):
Y
yuyang18 已提交
1895 1896 1897
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1898 1899
        return self.blocks[0]

Q
Qiao Longfei 已提交
1900
    def block(self, index):
Y
yuyang18 已提交
1901 1902 1903 1904 1905 1906 1907 1908
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1909 1910
        return self.blocks[index]

Y
Yu Yang 已提交
1911
    def current_block(self):
Y
yuyang18 已提交
1912 1913 1914 1915
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1916 1917
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1918
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1929
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1930 1931 1932
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1933 1934 1935 1936
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1937
    def _rollback(self):
Y
yuyang18 已提交
1938 1939 1940 1941 1942
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1943 1944
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1945
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1956 1957 1958
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1959
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1960

W
Wu Yi 已提交
1961
    def _copy_param_info_from(self, other):
1962
        """
1963
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1964

Y
yuyang18 已提交
1965 1966 1967
        Notes: This is a very low level API. Users should not invoke it
        directly.

1968 1969 1970 1971 1972 1973 1974
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1975
            raise TypeError("_copy_param_info_from should be invoked with "
1976 1977 1978
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1979
            raise ValueError("_copy_param_info_from should be invoked with two "
1980
                             "program, with represent the same topology")
W
Wu Yi 已提交
1981
        self.global_block()._copy_param_info_from(other.global_block())
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2002
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2003 2004
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2005

Y
yuyang18 已提交
2006 2007 2008
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2009 2010 2011 2012 2013 2014 2015
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2016
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2017 2018 2019
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2020
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2021
                             "program, with represent the same topology")
2022
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2023 2024 2025
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2026
    def list_vars(self):
Y
yuyang18 已提交
2027 2028 2029 2030 2031 2032
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2033
        for each_block in self.blocks:
2034
            for each_var in list(each_block.vars.values()):
2035 2036
                yield each_var

Y
Yu Yang 已提交
2037

Y
Yu Yang 已提交
2038
class Parameter(Variable):
2039
    """
2040
    Parameter is derived from Variable. A parameter is a persistable
2041
    Variable, and will be updated by optimizers after each iteration.
2042
    The training of a neural network is essentially the updating of
2043 2044
    its parameters.

2045
    Relative to a general Variable, a Parameter has several its own
2046 2047
    member variables:

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2060 2061
    """

Y
Yu Yang 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2072 2073 2074

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2075 2076 2077 2078
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2079 2080
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2081
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2082

W
wanghaoshuang 已提交
2083
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2084

F
fengjiayi 已提交
2085 2086 2087
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2088 2089 2090
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2091

F
update  
fengjiayi 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2106
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2107
            for attr_name in additional_attr:
2108 2109
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2110 2111
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2112 2113 2114 2115
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2116

Y
Yu Yang 已提交
2117
# program is a global instance.
Y
Yu Yang 已提交
2118 2119
_main_program_ = Program()
_startup_program_ = Program()
2120

2121

2122
def default_startup_program():
Y
Yu Yang 已提交
2123
    """
Y
yuyang18 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2133

Y
Yu Yang 已提交
2134 2135 2136
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2137
    return _startup_program_
2138

2139

2140
def default_main_program():
Y
Yu Yang 已提交
2141
    """
Y
yuyang18 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2151

Y
Yu Yang 已提交
2152 2153 2154
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2155
    return _main_program_
Y
Yu Yang 已提交
2156 2157 2158 2159 2160


def switch_main_program(program):
    """
    Switch the main program to a new program.
2161

Y
Yu Yang 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2176
    Switch the startup program to a new program
Y
Yu Yang 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2192 2193 2194
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2195

Y
Yu Yang 已提交
2196
    Examples:
Y
yuyang18 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2207

Y
Yu Yang 已提交
2208
    Examples:
Y
yuyang18 已提交
2209 2210 2211 2212 2213 2214

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2215

Y
Yu Yang 已提交
2216
    Args:
Y
yuyang18 已提交
2217
        main_program(Program): New main program inside `with` statement.
2218
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2232 2233


W
Wu Yi 已提交
2234
def _get_var(name, program=None):
X
xuwei06 已提交
2235
    """
Y
yuyang18 已提交
2236
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2237

X
xuwei06 已提交
2238 2239 2240
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2241
        If None, default_global_program() will be used.
X
xuwei06 已提交
2242 2243 2244 2245 2246 2247 2248

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2249
    assert isinstance(program, Program)
X
xuwei06 已提交
2250 2251

    return program.global_block().var(name)
X
Xin Pan 已提交
2252 2253 2254


@contextlib.contextmanager
X
polish  
Xin Pan 已提交
2255
def _imperative_guard(tracer):
X
Xin Pan 已提交
2256 2257
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
X
polish  
Xin Pan 已提交
2258
    _imperative_tracer_ = tracer
X
Xin Pan 已提交
2259 2260
    yield
    _imperative_tracer_ = tmp_trace