# SQL优化 1. 插入数据 2. 主键优化 3. order by 优化 4. group by 优化 5. limit 优化 6. count 优化 7. update 优化 ## 1、插入数据 逐条插入数据,性能较低,耗时较长 ```sql insert into tb_user (name, age) values ('Tom', 23); insert into tb_user (name, age) values ('Jack', 24); insert into tb_user (name, age) values ('Steve', 25); insert into tb_user (name, age) values ('Alice', 23); ... ``` ### 1.1、批量插入 将多条insert语句合并为一条insert语句,批量提交数据 每次插入数据量建议:500-1000 ```sql insert into tb_user (name, age) values ('Tom', 23), ('Jack', 24), ('Steve', 25) ('Alice', 23); ``` ### 1.2、手动事务提交 减少事务开启关闭的次数 ```sql start transaction; insert into tb_user (name, age) values ('Tom', 23), ('Jack', 24); insert into tb_user (name, age) values ('Steve', 25) ('Alice', 23); commit; ``` ### 1.3、主键顺序插入 主键顺序插入的性能高于乱序插入 ``` 主键乱序插入 8 1 9 21 88 2 4 15 89 5 7 3 主键顺序插入 1 2 3 4 5 6 7 8 9 10 88 99 ``` ### 1.4、大批量插入数据 如果一次性需要插入大批量数据,使用insert语句插入性能较低 可以使用MySQL数据库提供的`load` 指令进行数据插入 ```sql # 客户端连接服务端时,加上参数 `--local-infile` mysql --local-infile -uroot -p # 设置全局参数local_infile,开启从本地加载文件导入数据的关 set global local_infile = 1; # 执行load指令将准备好的数据,加载到表结构中 load data local infile '/root/data.csv' into table `tb_user` fields terminated by ',' lines terminated by '\n'; ``` 示例 利用Python脚本生成测试数据 ```python # Python >= 3.7.0 # 安装依赖 pip install faker pandas from faker import Faker import pandas as pd # 简体中文:zh_CN faker = Faker(locale="zh_CN") # 指定随机种子,确保每次生成的数据都是一致的 faker.seed(1) def get_row(index=0): return { 'id': index + 1, 'username': faker.phone_number(), 'passowrd': faker.password(), 'name': faker.name(), 'birthday': faker.date_time().strftime("%Y-%m-%d"), 'sex': faker.random_int(0, 2), } def main(): # 100万条数据 data = [ get_row(i) for i in range(100 * 10000)] # 将数据导出为csv文件, 不需要表头和序号 df = pd.DataFrame(data) df.to_csv('./data_user.csv', header=False, index=False) if __name__ == '__main__': main() ``` 查看数据 ```bash # 查看要导入的测试数据 $ wc -l data_user.csv 1000000 data_user.csv $ head data_user.csv 1,13891417776,$h!PMHaS1#,魏玉珍,2021-12-20,1 2,18883533740,BP3UqgUd&8,正红梅,2020-08-11,1 3,18225851781,#$mMRcl98H,殳桂芝,1988-04-28,2 4,13190682883,ywDqePXl&0,仰俊,2007-06-25,2 5,13918401107,2!WP4H8it9,农琳,1993-05-13,1 6,13334148396,3%8AqgmG!j,宗涛,2020-03-08,1 7,13830411442,@&%9yI9r%e,荣建平,1977-02-08,2 8,15948705964,y2VGFM0k!W,齐英,1981-07-19,0 9,18983459845,I^5w1D^e)j,安凤英,2008-07-07,0 10,15154981741,@!4A^CIt82,乜峰,2007-06-11,1 ``` 创建测试表 ```sql # 开启外部数据加载 $ mysql --local-infile -uroot -p > select @@local_infile; > set global local_infile = 1; # 创建一个新的数据库和新的表来存放数据 > show databases; > create database data_temp; > user data_temp; > create table tb_user( id int primary key auto_increment, username varchar(50) not null, passowrd varchar(50) not null, name varchar(20) not null, birthday date default null, sex tinyint default 0, unique key uk_user_username (`username`) ) engine=innodb default charset=utf8; ``` 导入数据 ```sql > load data local infile '/data/data_user.csv' into table `tb_user` fields terminated by ',' lines terminated by '\n'; Query OK, 999830 rows affected, 170 warnings (17.68 sec) Records: 1000000 Deleted: 0 Skipped: 170 Warnings: 170 ``` 查看导入的数据 ```sql mysql> select * from tb_user limit 10; +----+-------------+------------+-----------+------------+------+ | id | username | passowrd | name | birthday | sex | +----+-------------+------------+-----------+------------+------+ | 1 | 13891417776 | $h!PMHaS1# | 魏玉珍 | 2021-12-20 | 1 | | 2 | 18883533740 | BP3UqgUd&8 | 正红梅 | 2020-08-11 | 1 | | 3 | 18225851781 | #$mMRcl98H | 殳桂芝 | 1988-04-28 | 2 | | 4 | 13190682883 | ywDqePXl&0 | 仰俊 | 2007-06-25 | 2 | | 5 | 13918401107 | 2!WP4H8it9 | 农琳 | 1993-05-13 | 1 | | 6 | 13334148396 | 3%8AqgmG!j | 宗涛 | 2020-03-08 | 1 | | 7 | 13830411442 | @&%9yI9r%e | 荣建平 | 1977-02-08 | 2 | | 8 | 15948705964 | y2VGFM0k!W | 齐英 | 1981-07-19 | 0 | | 9 | 18983459845 | I^5w1D^e)j | 安凤英 | 2008-07-07 | 0 | | 10 | 15154981741 | @!4A^CIt82 | 乜峰 | 2007-06-11 | 1 | +----+-------------+------------+-----------+------------+------+ 10 rows in set (0.00 sec) mysql> select count(*) from tb_user; +----------+ | count(*) | +----------+ | 999830 | +----------+ 1 row in set (0.14 sec) ``` ## 2、主键优化 ### 2.1、数据组织方式 在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的, 这种存储方式的表称为`索引组织表`(index organized table IOT) ![](img/mysql-b+tree.png) ![](img/innodb-store.png) ### 2.2、页分裂 页可以为空,也可以填充一半,也可以填充100%。 每个页包含了2-N行数据(如果一行数据太大,会行溢出),根据主键排列 如果插入的数据主键不是顺序的,有可能发生页分裂 ![](img/page-split-1.png) ![](img/page-split-2.png) ### 2.3、页合并 当删除一行记录的时候,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除。 并且它的空间变得允许被其他记录声明使用。 当页中删除的记录达到 MERGE_THRESHOLD (默认为页的50%), InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并优化空间使用。 MERGE_THRESHOLD : 合并也的阈值,可以自己设置,在创建表或者创建索引时指定 ![](img/page-merge-1.png) ![](img/page-merge-2.png) ### 2.4、主键设计原则 1. 满足业务需求的情况下,尽量降低主键的长度(二级索引叶子节点存放主键,主键过长会占用大量磁盘空间) 2. 插入数据时,尽量选择顺序插入,选择使用 `auto_increment` 自增主键(不是顺序插入,会造成页分裂) 3. 尽量不要使用UUID做主键或者是其他自然主键,如身份证号(长度较长,耗费磁盘io) 4. 业务操作时,避免对主键的修改 ## 3、order by 优化 - using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在`排序缓冲区sort buffer`中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序 - using index: 通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高 测试数据 ```sql -- 查看表数据 mysql> select * from tb_user limit 3; +----+-----------+-------------+---------------------+------+--------+----------------+ | id | name | phone | profession | age | status | email | +----+-----------+-------------+---------------------+------+--------+----------------+ | 1 | 费阳 | 13777763170 | 法务经理 | 27 | 1 | wyao@gmail.com | | 2 | 祁海燕 | 13400806360 | 日式厨师 | 23 | 0 | jwan@jin.cn | | 3 | 姬秀英 | 18281241586 | 食品/饮料研发 | 29 | 0 | li97@wang.cn | +----+-----------+-------------+---------------------+------+--------+----------------+ 3 rows in set (0.01 sec) -- 查看索引 mysql> show index from tb_user; +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | tb_user | 0 | PRIMARY | 1 | id | A | 9804 | NULL | NULL | | BTREE | | | YES | NULL | | tb_user | 0 | idx_user_phone | 1 | phone | A | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 0 | idx_user_phone_name | 1 | phone | A | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 0 | idx_user_phone_name | 2 | name | A | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_name | 1 | name | A | 9130 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 1 | profession | A | 948 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 2 | age | A | 6232 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 3 | status | A | 7596 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_email_5 | 1 | email | A | 3955 | 5 | NULL | YES | BTREE | | | YES | NULL | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ 9 rows in set (0.03 sec) -- 删除索引 drop index idx_user_phone on tb_user; drop index idx_user_phone_name on tb_user; drop index idx_user_name on tb_user; show index from tb_user; +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | tb_user | 0 | PRIMARY | 1 | id | A | 9804 | NULL | NULL | | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 1 | profession | A | 948 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 2 | age | A | 6232 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 3 | status | A | 7596 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_email_5 | 1 | email | A | 3955 | 5 | NULL | YES | BTREE | | | YES | NULL | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ 5 rows in set (0.00 sec) ``` 索引测试 ```sql -- 没有创建索引时,根据age, phone进行排序 Using filesort mysql> explain select id, age, phone from tb_user order by age, phone; +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ | 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 9804 | 100.00 | Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ 1 row in set, 1 warning (0.00 sec) -- 创建索引 create index idx_user_age_phone on tb_user(age, phone); -- 创建索引后,根据age进行升序排序 mysql> explain select id, age, phone from tb_user order by age; +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone | 52 | NULL | 9804 | 100.00 | Using index | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) -- 创建索引后,根据age, phone进行升序排序 mysql> explain select id, age, phone from tb_user order by age, phone; +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone | 52 | NULL | 9804 | 100.00 | Using index | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.01 sec) -- 创建索引后,根据age, phone进行降序排序 mysql> explain select id, age, phone from tb_user order by age desc, phone desc; +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+----------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+----------------------------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone | 52 | NULL | 9804 | 100.00 | Backward index scan; Using index | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+----------------------------------+ 1 row in set, 1 warning (0.00 sec) -- 交换age,phone的先后位置 出现Using filesort mysql> explain select id, age, phone from tb_user order by phone, age; +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone | 52 | NULL | 9804 | 100.00 | Using index; Using filesort | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ 1 row in set, 1 warning (0.01 sec) -- age升序排列,phone降序排列,出现Using filesort mysql> explain select id, age, phone from tb_user order by age asc, phone desc; +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone | 52 | NULL | 9804 | 100.00 | Using index; Using filesort | +----+-------------+---------+------------+-------+---------------+--------------------+---------+------+------+----------+-----------------------------+ 1 row in set, 1 warning (0.00 sec) -- 创建age升序,phone降序的索引 create index idx_user_age_phone_ad on tb_user(age asc, phone desc); -- 查看索引 (Collation: A=asc, D=desc) mysql> show index from tb_user; +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | tb_user | 0 | PRIMARY | 1 | id | A | 9804 | NULL | NULL | | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 1 | profession | A | 948 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 2 | age | A | 6232 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 3 | status | A | 7596 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_email_5 | 1 | email | A | 3955 | 5 | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone | 1 | age | A | 11 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone | 2 | phone | A | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone_ad | 1 | age | A | 11 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone_ad | 2 | phone | D | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ 9 rows in set (0.02 sec) -- 创建索引后,age升序排列,phone降序排列 mysql> explain select id, age, phone from tb_user order by age asc, phone desc; +----+-------------+---------+------------+-------+---------------+-----------------------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+-----------------------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | index | NULL | idx_user_age_phone_ad | 52 | NULL | 9804 | 100.00 | Using index | +----+-------------+---------+------------+-------+---------------+-----------------------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) -- 如果没有用到覆盖索引,会出现:Using filesort mysql> explain select * from tb_user order by age asc, phone desc; +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ | 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 9804 | 100.00 | Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+----------------+ 1 row in set, 1 warning (0.00 sec) ``` ### 3.1、优化原则 1. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则 2. 尽量使用覆盖索引 3. 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(asc/desc) 4. 如果不可避免的出现filesort, 大数据量排序时,可以适当增大排序缓冲区的大小 sort_buffer_size(默认值256k) ```sql mysql> show variables like 'sort_buffer_size'; +------------------+--------+ | Variable_name | Value | +------------------+--------+ | sort_buffer_size | 262144 | +------------------+--------+ 1 row in set (0.03 sec) ``` ## 4、group by优化 1. 分组操作时,可以通过索引来提高效率 2. 分组操作时,索引的使用也是满足`最左前缀法则`的 示例 ```sql -- 查看索引 show index from tb_user; +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | tb_user | 0 | PRIMARY | 1 | id | A | 9804 | NULL | NULL | | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 1 | profession | A | 948 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 2 | age | A | 6232 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_profession_age_status | 3 | status | A | 7596 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_email_5 | 1 | email | A | 3955 | 5 | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone | 1 | age | A | 11 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone | 2 | phone | A | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone_ad | 1 | age | A | 11 | NULL | NULL | YES | BTREE | | | YES | NULL | | tb_user | 1 | idx_user_age_phone_ad | 2 | phone | D | 9804 | NULL | NULL | YES | BTREE | | | YES | NULL | +---------+------------+--------------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ 9 rows in set (0.06 sec) -- 删除索引 drop index idx_user_profession_age_status on tb_user; drop index idx_email_5 on tb_user; drop index idx_user_age_phone on tb_user; drop index idx_user_age_phone_ad on tb_user; -- 查看索引 show index from tb_user; +---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | +---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ | tb_user | 0 | PRIMARY | 1 | id | A | 9804 | NULL | NULL | | BTREE | | | YES | NULL | +---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+ 1 row in set (0.01 sec) -- 执行分组操作,根据profession字段分组 select profession, count(*) from tb_user group by profession; +---------------------------------------------------+----------+ | profession | count(*) | +---------------------------------------------------+----------+ | 法务经理 | 12 | | 日式厨师 | 7 | | 食品/饮料研发 | 7 | | 前台接待/总机/接待生 | 10 | | 酒店前台 | 8 | | 药品市场推广主管/专员 | 5 | | 机场代表 | 10 | +---------------------------------------------------+----------+ 948 rows in set (0.02 sec) -- 查看执行计划 Using temporary explain select profession, count(*) from tb_user group by profession; +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+ | 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 9804 | 100.00 | Using temporary | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+ 1 row in set, 1 warning (0.01 sec) -- 创建索引 create index idx_user_profession_age_status on tb_user(profession, age, status); -- 执行分组操作,根据profession字段分组 Using index explain select profession, count(*) from tb_user group by profession; +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | index | idx_user_profession_age_status | idx_user_profession_age_status | 213 | NULL | 9804 | 100.00 | Using index | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.01 sec) -- 执行分组操作,根据age字段分组 Using index; Using temporary(临时表,性能较低) explain select age, count(*) from tb_user group by age; +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+------------------------------+ | 1 | SIMPLE | tb_user | NULL | index | idx_user_profession_age_status | idx_user_profession_age_status | 213 | NULL | 9804 | 100.00 | Using index; Using temporary | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+------------------------------+ 1 row in set, 1 warning (0.00 sec) -- 执行分组操作,根据profession, age字段分组,满足最左前缀法则 explain select profession, age, count(*) from tb_user group by profession, age; +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | index | idx_user_profession_age_status | idx_user_profession_age_status | 213 | NULL | 9804 | 100.00 | Using index | +----+-------------+---------+------------+-------+--------------------------------+--------------------------------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.01 sec) -- 增加过滤条件,再根据age字段分组 Using index,满足最左前缀法则 explain select age, count(*) from tb_user where profession = '项目经理' group by age; +----+-------------+---------+------------+------+--------------------------------+--------------------------------+---------+-------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+--------------------------------+--------------------------------+---------+-------+------+----------+-------------+ | 1 | SIMPLE | tb_user | NULL | ref | idx_user_profession_age_status | idx_user_profession_age_status | 203 | const | 12 | 100.00 | Using index | +----+-------------+---------+------------+------+--------------------------------+--------------------------------+---------+-------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) ``` ## 5、limit 优化 当MySQL需要取前2000000条记录时,仅仅返回`2000000- 2000010`的记录,其他记录丢弃,查询排序的代价非常大 优化思路: 一般分页查询时,通过创建`覆盖索引`能够比较好的提高性能,可以通过覆盖索引加子查询形式进行优化 示例 ```sql -- 查看数据总数 1000W条数据 mysql> select count(*) from tb_sku; +----------+ | count(*) | +----------+ | 10000000 | +----------+ 1 row in set (3.94 sec) -- 取第一页数据 mysql> select * from tb_sku limit 0, 10; +---------+--------------------------------------+ | id | uuid | +---------+--------------------------------------+ | 6162096 | 0000012f-4a44-4b8b-93e4-4dcd99ecff22 | | 112574 | 00000274-d865-40f9-b799-4c0fbdd8a21d | | 9618175 | 000004a3-3f93-4a7b-8a98-f17468445e3a | | 3774310 | 000004ea-9025-4ba4-89eb-d30e7e14185e | | 9781779 | 000007e3-7e71-4e90-b681-fca25137fe08 | | 4457266 | 0000081b-aa05-4194-af4e-6ad0a750b0ab | | 3950776 | 00000a39-428c-4cca-aaf7-f9e63889272f | | 7617466 | 00000c69-b2c5-4f4a-b829-54b208bdce90 | | 969786 | 00000df2-c3ff-478b-bd6c-a5ebcf94ad11 | | 9704958 | 00000ec4-2716-4ee4-9165-ba84ecd05050 | +---------+--------------------------------------+ 10 rows in set (0.00 sec) -- 取第二页数据 mysql> select * from tb_sku limit 10, 10; +---------+--------------------------------------+ | id | uuid | +---------+--------------------------------------+ | 9563294 | 000010f8-f717-44d9-9f7e-acefd48d26b8 | | 5652396 | 0000112c-0f25-47d3-839b-3b929d0d7adb | | 1290981 | 0000121a-01ba-47aa-bfa3-e97693a92ad7 | | 8107372 | 000012c1-6a61-42e6-8769-0bb3dcd61097 | | 7842196 | 00001375-b43d-407a-9163-ce633ed64592 | | 2206208 | 00001448-58e8-478b-92a2-c74de197b659 | | 9808308 | 00001542-00b6-4207-8c67-34ed296996d6 | | 3282004 | 00001853-abb3-4fb6-ae18-122dc5658fd2 | | 957944 | 00001a00-c8cd-4492-b919-127345271172 | | 7964789 | 00001cfe-679d-43f0-bbaa-d21676f45b70 | +---------+--------------------------------------+ 10 rows in set (0.00 sec) -- 增加分页 mysql> select * from tb_sku limit 9000000, 10; +---------+--------------------------------------+ | id | uuid | +---------+--------------------------------------+ | 7919352 | e65fe47c-c7a7-4440-929d-87d64234b785 | | 5709825 | e65fe68a-b28e-4a8d-bab8-64c03ed00f37 | | 4319305 | e65fe6df-1299-4960-9450-515369725171 | | 1116567 | e65fe75a-3579-49e1-838d-3ce3c5c754f9 | | 3200374 | e65fe89f-2d5b-4928-8c96-89aeee890418 | | 8207624 | e65fe9ae-17f4-4383-84a8-6c4913ad81f9 | | 152637 | e65fee7f-25ce-4169-8d39-6dd4e6a3db57 | | 8533603 | e65ff27a-fcbf-4d51-b85a-db6322e7b425 | | 3249838 | e65ff2e4-b442-4f7c-b11c-422832afdef5 | | 2665508 | e65ff482-664b-49e9-ab8c-017499fd70df | +---------+--------------------------------------+ 10 rows in set (1.87 sec) mysql> select id from tb_sku order by id limit 9000000, 10; +---------+ | id | +---------+ | 9000001 | | 9000002 | | 9000003 | | 9000004 | | 9000005 | | 9000006 | | 9000007 | | 9000008 | | 9000009 | | 9000010 | +---------+ 10 rows in set (1.65 sec) -- 不支持分页子查询 mysql> select * from tb_sku where id in (select id from tb_sku order by id limit 9000000, 10); ERROR 1235 (42000): This version of MySQL doesn't yet support 'LIMIT & IN/ALL/ANY/SOME subquery' -- 正确的查询方式 mysql> select s.* from tb_sku s, (select id from tb_sku order by id limit 9000000, 10) a where s.id = a.id; +---------+--------------------------------------+ | id | uuid | +---------+--------------------------------------+ | 9000001 | f7b44618-8bd2-4a5f-9cf9-ba6734966905 | | 9000002 | 86863769-ead4-4e8a-ab81-4c32429dddcf | | 9000003 | 4471b035-cb9b-4958-ab61-4159ff24df48 | | 9000004 | a11746eb-482f-4d8d-90fb-32a7e156c34a | | 9000005 | c5ded2ef-8995-43fb-9332-62c1dd1922bc | | 9000006 | 4d02f0f5-5e71-4f5c-8006-369ef1dcd6d6 | | 9000007 | efe87680-b59b-4999-89b7-de4d07704527 | | 9000008 | 27b2f930-fbb5-476f-a470-1a42bb4e4d2e | | 9000009 | 7c54b9b0-e41e-439e-b907-8c25ba364e7f | | 9000010 | 3d576629-d70f-470c-bef3-d3a3c815f0cc | +---------+--------------------------------------+ 10 rows in set (1.59 sec) ``` ## 6、count 优化 ```sql select count(*) from tb_user; ``` - MyISAM引擎,把一个表的总行数存在了磁盘上,因此执行`count(*)`的时候会直接返回这个数,效率很高 - InnoDB引擎,执行`count(*)` 的时候,需要把数据一行一行地从引擎里读取出来,让后累计计数 ### 6.1、优化思路 自己计数 例如:借助redis,添加数据`+1`, 删除数据`-1` ### 6.2、count的几种用法 `count()` 是一个聚合函数,对于返回的结果集,一行行的判断,如果count函数的参数不是null, 累计值就+1,否则不加,最后返回累计值 用法: 1. `count(*)` - InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加 2. `count(主键)` - InnoDB引擎会遍历整张表,把每一行的主键id值取出来,返回给服务层。服务层拿到主键后,直接按行进行累加 - 主键不可能为null 3. `count(字段)` - 没有`not null`约束: InnoDB引擎会遍历整张表,把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加 - 有`not null`约束: InnoDB引擎会遍历整张表,把每一行的字段值都取出来,返回给服务层,直接按行进行累加 4. `count(1)` - InnoDB引擎会遍历整张表,但是不取值。服务层对于返回的每一行,放一个数字`1`进去,直接按行进行累加 效率排序: ```sql count(字段) < count(主键id) < count(1) ≈ count(*) ``` 所以尽量使用: `count(*)` 示例 ```sql mysql> select * from tb_user limit 3; +----+-----------+-------------+---------------------+------+--------+----------------+ | id | name | phone | profession | age | status | email | +----+-----------+-------------+---------------------+------+--------+----------------+ | 1 | 费阳 | 13777763170 | 法务经理 | 27 | 1 | wyao@gmail.com | | 2 | 祁海燕 | 13400806360 | 日式厨师 | 23 | 0 | jwan@jin.cn | | 3 | 姬秀英 | 18281241586 | 食品/饮料研发 | 29 | 0 | li97@wang.cn | +----+-----------+-------------+---------------------+------+--------+----------------+ 3 rows in set (0.01 sec) -- 修改其中一个值为null update tb_user set profession = null where id = 1; mysql> select * from tb_user limit 3; +----+-----------+-------------+---------------------+------+--------+----------------+ | id | name | phone | profession | age | status | email | +----+-----------+-------------+---------------------+------+--------+----------------+ | 1 | 费阳 | 13777763170 | NULL | 27 | 1 | wyao@gmail.com | | 2 | 祁海燕 | 13400806360 | 日式厨师 | 23 | 0 | jwan@jin.cn | | 3 | 姬秀英 | 18281241586 | 食品/饮料研发 | 29 | 0 | li97@wang.cn | +----+-----------+-------------+---------------------+------+--------+----------------+ 3 rows in set (0.01 sec) mysql> select count(*) from tb_user; +----------+ | count(*) | +----------+ | 10000 | +----------+ 1 row in set (0.01 sec) mysql> select count(id) from tb_user; +-----------+ | count(id) | +-----------+ | 10000 | +-----------+ 1 row in set (0.00 sec) mysql> select count(profession) from tb_user; +-------------------+ | count(profession) | +-------------------+ | 9999 | +-------------------+ 1 row in set (0.00 sec) mysql> select count(null) from tb_user; +-------------+ | count(null) | +-------------+ | 0 | +-------------+ 1 row in set (0.00 sec) -- 传递一个数,可以是任何数 mysql> select count(1) from tb_user; +----------+ | count(1) | +----------+ | 10000 | +----------+ 1 row in set (0.01 sec) ``` ## 7、update 优化 InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。 1、主键作为查询条件更新数据 ```sql select * from tb_course; +----+--------+ | id | name | +----+--------+ | 1 | 语文 | | 2 | 数学 | | 3 | 英语 | | 4 | 历史 | | 5 | 化学 | +----+--------+ 5 rows in set (0.02 sec) -- 开启事务1 begin; update tb_course set name = '语文A' where id = 1; -- 此时id=1这一行被锁住,添加行锁 -- 新窗口开启事务2 begin; update tb_course set name = '历史A' where id = 4; -- 事务1提交 commit; -- 事务2提交 commit; select * from tb_course; +----+---------+ | id | name | +----+---------+ | 1 | 语文A | | 2 | 数学 | | 3 | 英语 | | 4 | 历史A | | 5 | 化学 | +----+---------+ 5 rows in set (0.00 sec) ``` 2、普通字段作为查询条件更新数据 ```sql -- 开启事务1 begin; update tb_course set name = '语文B' where name = '语文A'; -- 由于name字段没有索引,添加表锁 -- 新窗口开启事务2 begin; update tb_course set name = '历史B' where name = '历史A'; -- 此时SQL语句会卡主,不再执行 -- 事务1提交 commit; -- 此时事务2SQL语句会继续执行 -- 事务2提交 commit; select * from tb_course; +----+---------+ | id | name | +----+---------+ | 1 | 语文B | | 2 | 数学 | | 3 | 英语 | | 4 | 历史B | | 5 | 化学 | +----+---------+ 5 rows in set (0.00 sec) ``` 3、索引字段作为查询条件更新数据 ```sql -- 创建索引 create index idx_course_name on tb_course(name); -- 开启事务1 begin; update tb_course set name = '语文C' where name = '语文B'; -- 由于name字段有索引,添加行锁 -- 新窗口开启事务2 begin; update tb_course set name = '历史C' where name = '历史B'; -- 此时SQL语句没有卡主,执行完成 -- 事务1提交 commit; -- 事务2提交 commit; select * from tb_course; +----+---------+ | id | name | +----+---------+ | 5 | 化学 | | 4 | 历史C | | 2 | 数学 | | 3 | 英语 | | 1 | 语文C | +----+---------+ 5 rows in set (0.01 sec) ``` ## 8、总结 1、插入数据 - insert 批量插入、手动控制事务、主键顺序插入 - 大批量数据插入:`load data local infile` 2、主键优化 - InnoDB引擎数据组织方式:基于索引 - 页分裂:插入数据(主键乱序插入) - 页合并:删除数据 - 主键长度尽可能短,顺序插入 - 推荐auto_increment, 避免uuid 3、order by 优化 - using index:直接通过索引返回数据,性能高 - using filesort:需要将返回的结果在排序缓冲区排序,甚至可能用到磁盘文件 - 尽量使用覆盖索引 - 尽量对排序字段建立索引 - 同为升序或同为降序可以用到索引 - 创建索引时注意其排序方式asc/desc 4、group by 优化 - 索引、多字段分组满足最左前缀法则 5、limit 优化 - 覆盖索引 + 子查询 6、count 优化 - 推荐使用`count(*)` - 自己计数 7、update 优化 - 根据索引(id)字段更新,避免行锁升级为表锁,降低数据库并发访问性