# SQL优化 1. 插入数据 2. 主键优化 3. order by 优化 4. group by 优化 5. limit 优化 6. count 优化 7. update 优化 ## 1、插入数据 逐条插入数据,性能较低,耗时较长 ```sql insert into tb_user (name, age) values ('Tom', 23); insert into tb_user (name, age) values ('Jack', 24); insert into tb_user (name, age) values ('Steve', 25); insert into tb_user (name, age) values ('Alice', 23); ... ``` ### 1.1、批量插入 将多条insert语句合并为一条insert语句,批量提交数据 每次插入数据量建议:500-1000 ```sql insert into tb_user (name, age) values ('Tom', 23), ('Jack', 24), ('Steve', 25) ('Alice', 23); ``` ### 1.2、手动事务提交 减少事务开启关闭的次数 ```sql start transaction; insert into tb_user (name, age) values ('Tom', 23), ('Jack', 24); insert into tb_user (name, age) values ('Steve', 25) ('Alice', 23); commit; ``` ### 1.3、主键顺序插入 主键顺序插入的性能高于乱序插入 ``` 主键乱序插入 8 1 9 21 88 2 4 15 89 5 7 3 主键顺序插入 1 2 3 4 5 6 7 8 9 10 88 99 ``` ### 1.4、大批量插入数据 如果一次性需要插入大批量数据,使用insert语句插入性能较低 可以使用MySQL数据库提供的`load` 指令进行数据插入 ```sql # 客户端连接服务端时,加上参数 `--local-infile` mysql --local-infile -uroot -p # 设置全局参数local_infile,开启从本地加载文件导入数据的关 set global local_infile = 1; # 执行load指令将准备好的数据,加载到表结构中 load data local infile '/root/data.csv' into table `tb_user` fields terminated by ',' lines terminated by '\n'; ``` 示例 利用Python脚本生成测试数据 ```python # Python >= 3.7.0 # 安装依赖 pip install faker pandas from faker import Faker import pandas as pd # 简体中文:zh_CN faker = Faker(locale="zh_CN") # 指定随机种子,确保每次生成的数据都是一致的 faker.seed(1) def get_row(index=0): return { 'id': index + 1, 'username': faker.phone_number(), 'passowrd': faker.password(), 'name': faker.name(), 'birthday': faker.date_time().strftime("%Y-%m-%d"), 'sex': faker.random_int(0, 2), } def main(): # 100万条数据 data = [ get_row(i) for i in range(100 * 10000)] # 将数据导出为csv文件, 不需要表头和序号 df = pd.DataFrame(data) df.to_csv('./data_user.csv', header=False, index=False) if __name__ == '__main__': main() ``` 查看数据 ```bash # 查看要导入的测试数据 $ wc -l data_user.csv 1000000 data_user.csv $ head data_user.csv 1,13891417776,$h!PMHaS1#,魏玉珍,2021-12-20,1 2,18883533740,BP3UqgUd&8,正红梅,2020-08-11,1 3,18225851781,#$mMRcl98H,殳桂芝,1988-04-28,2 4,13190682883,ywDqePXl&0,仰俊,2007-06-25,2 5,13918401107,2!WP4H8it9,农琳,1993-05-13,1 6,13334148396,3%8AqgmG!j,宗涛,2020-03-08,1 7,13830411442,@&%9yI9r%e,荣建平,1977-02-08,2 8,15948705964,y2VGFM0k!W,齐英,1981-07-19,0 9,18983459845,I^5w1D^e)j,安凤英,2008-07-07,0 10,15154981741,@!4A^CIt82,乜峰,2007-06-11,1 ``` 创建测试表 ```sql # 开启外部数据加载 $ mysql --local-infile -uroot -p > select @@local_infile; > set global local_infile = 1; # 创建一个新的数据库和新的表来存放数据 > show databases; > create database data_temp; > user data_temp; > create table tb_user( id int primary key auto_increment, username varchar(50) not null, passowrd varchar(50) not null, name varchar(20) not null, birthday date default null, sex tinyint default 0, unique key uk_user_username (`username`) ) engine=innodb default charset=utf8; ``` 导入数据 ```sql > load data local infile '/data/data_user.csv' into table `tb_user` fields terminated by ',' lines terminated by '\n'; Query OK, 999830 rows affected, 170 warnings (17.68 sec) Records: 1000000 Deleted: 0 Skipped: 170 Warnings: 170 ``` 查看导入的数据 ```sql mysql> select * from tb_user limit 10; +----+-------------+------------+-----------+------------+------+ | id | username | passowrd | name | birthday | sex | +----+-------------+------------+-----------+------------+------+ | 1 | 13891417776 | $h!PMHaS1# | 魏玉珍 | 2021-12-20 | 1 | | 2 | 18883533740 | BP3UqgUd&8 | 正红梅 | 2020-08-11 | 1 | | 3 | 18225851781 | #$mMRcl98H | 殳桂芝 | 1988-04-28 | 2 | | 4 | 13190682883 | ywDqePXl&0 | 仰俊 | 2007-06-25 | 2 | | 5 | 13918401107 | 2!WP4H8it9 | 农琳 | 1993-05-13 | 1 | | 6 | 13334148396 | 3%8AqgmG!j | 宗涛 | 2020-03-08 | 1 | | 7 | 13830411442 | @&%9yI9r%e | 荣建平 | 1977-02-08 | 2 | | 8 | 15948705964 | y2VGFM0k!W | 齐英 | 1981-07-19 | 0 | | 9 | 18983459845 | I^5w1D^e)j | 安凤英 | 2008-07-07 | 0 | | 10 | 15154981741 | @!4A^CIt82 | 乜峰 | 2007-06-11 | 1 | +----+-------------+------------+-----------+------------+------+ 10 rows in set (0.00 sec) mysql> select count(*) from tb_user; +----------+ | count(*) | +----------+ | 999830 | +----------+ 1 row in set (0.14 sec) ```