diff --git a/examples/kernel/mbox_simple.c b/examples/kernel/mbox_simple.c index 5e176b043e2531119a7f5d11efaadcb84b5b061e..7e620b87d4c9dac9fc436224e553f4a59c5364c6 100644 --- a/examples/kernel/mbox_simple.c +++ b/examples/kernel/mbox_simple.c @@ -11,8 +11,11 @@ static rt_thread_t tid1 = RT_NULL; static rt_thread_t tid2 = RT_NULL; +/* 邮箱控制块 */ static struct rt_mailbox mb; +/* 用于放邮件的内存池 */ static char mb_pool[128]; + static char mb_str1[] = "I'm a mail!"; static char mb_str2[] = "this is another mail!"; @@ -24,11 +27,14 @@ static void thread1_entry(void* parameter) while (1) { rt_kprintf("thread1: try to recv a mail\n"); + + /* 从邮箱中收取邮件 */ if (rt_mb_recv(&mb, (rt_uint32_t*)&str, RT_WAITING_FOREVER) == RT_EOK) { rt_kprintf("thread1: get a mail from mailbox, the content:%s\n", str); - rt_thread_delay(100); + /* 延时10个OS Tick */ + rt_thread_delay(10); } } } @@ -44,14 +50,17 @@ static void thread2_entry(void* parameter) count ++; if (count & 0x1) { + /* 发送mb_str1地址到邮箱中 */ rt_mb_send(&mb, (rt_uint32_t)&mb_str1[0]); } else { + /* 发送mb_str2地址到邮箱中 */ rt_mb_send(&mb, (rt_uint32_t)&mb_str2[0]); } - rt_thread_delay(200); + /* 延时20个OS Tick */ + rt_thread_delay(20); } } @@ -93,6 +102,9 @@ static void _tc_cleanup() if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE) rt_thread_delete(tid2); + /* 执行邮箱对象脱离 */ + rt_mb_detach(&mb); + /* 调度器解锁 */ rt_exit_critical(); diff --git a/examples/kernel/memp_simple.c b/examples/kernel/memp_simple.c index 705fde3c6851883d77054453ed8497b0b67a8942..b232de584752342cffe7181d65bf119c2e44ef5b 100644 --- a/examples/kernel/memp_simple.c +++ b/examples/kernel/memp_simple.c @@ -1,7 +1,7 @@ /* * 程序清单:内存池例程 * - * 这个程序会创建2个动态线程,一个静态的内存池对象,它们会试图分别从内存池中获得 + * 这个程序会创建一个静态的内存池对象,2个动态线程。两个线程会试图分别从内存池中获得 * 内存块 */ #include @@ -24,20 +24,25 @@ static void thread1_entry(void* parameter) while(1) { for (i = 0; i < 48; i++) - { + /* 申请内存块 */ rt_kprintf("allocate No.%d\n", i); - ptr[i] = rt_mp_alloc(&mp, RT_WAITING_FOREVER); + if (ptr[i] == RT_NULL) + { + ptr[i] = rt_mp_alloc(&mp, RT_WAITING_FOREVER); + } } + /* 继续申请一个内存块,因为已经没有内存块,线程应该被挂起 */ block = rt_mp_alloc(&mp, RT_WAITING_FOREVER); rt_kprintf("allocate the block mem\n"); + /* 释放这个内存块 */ rt_mp_free(block); block = RT_NULL; } } -/* 线程2入口 */ +/* 线程2入口,线程2的优先级比线程1低,应该线程1先获得执行。*/ static void thread2_entry(void *parameter) { int i; @@ -48,18 +53,18 @@ static void thread2_entry(void *parameter) for (i = 0 ; i < 48; i ++) { + /* 释放所有分配成功的内存块 */ if (ptr[i] != RT_NULL) { rt_kprintf("release block %d\n", i); rt_mp_free(ptr[i]); - ptr[i] = RT_NULL; - } } - // rt_thread_delay(100); + /* 休眠10个OS Tick */ + rt_thread_delay(10); } } @@ -68,6 +73,7 @@ int mempool_simple_init() int i; for (i = 0; i < 48; i ++) ptr[i] = RT_NULL; + /* 初始化内存池对象 */ rt_mp_init(&mp, "mp1", &mempool[0], sizeof(mempool), 80); /* 创建线程1 */ @@ -82,7 +88,7 @@ int mempool_simple_init() /* 创建线程2 */ tid2 = rt_thread_create("t2", thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */ - THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE); + THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE); if (tid2 != RT_NULL) rt_thread_startup(tid2); else diff --git a/examples/kernel/messageq_simple.c b/examples/kernel/messageq_simple.c index 1e2298936abb6c64e1680906056e9beb41e870f7..f9512fc055c8d3fe24917f70ee48fd0d020c7367 100644 --- a/examples/kernel/messageq_simple.c +++ b/examples/kernel/messageq_simple.c @@ -1,7 +1,8 @@ /* - * 程序清单:动态线程 + * 程序清单:消息队列例程 * - * 这个程序会初始化2个动态线程,它们拥有共同的入口函数,但参数不相同 + * 这个程序会创建3个动态线程,一个线程会从消息队列中收取消息;一个线程会定时给消 + * 息队列发送消息;一个线程会定时给消息队列发送紧急消息。 */ #include #include "tc_comm.h" @@ -11,9 +12,12 @@ static rt_thread_t tid1 = RT_NULL; static rt_thread_t tid2 = RT_NULL; static rt_thread_t tid3 = RT_NULL; +/* 消息队列控制块 */ static struct rt_messagequeue mq; +/* 消息队列中用到的放置消息的内存池 */ static char msg_pool[2048]; +/* 线程1入口函数 */ static void thread1_entry(void* parameter) { char buf[128]; @@ -22,15 +26,18 @@ static void thread1_entry(void* parameter) { rt_memset(&buf[0], 0, sizeof(buf)); + /* 从消息队列中接收消息 */ if (rt_mq_recv(&mq, &buf[0], sizeof(buf), RT_WAITING_FOREVER) == RT_EOK) { rt_kprintf("thread1: recv msg from message queue, the content:%s\n", buf); } - rt_thread_delay(100); + /* 延迟10个OS Tick */ + rt_thread_delay(10); } } +/* 线程2入口函数 */ static void thread2_entry(void* parameter) { int i, result; @@ -43,18 +50,22 @@ static void thread2_entry(void* parameter) buf[sizeof(buf) - 2] = '0' + i; rt_kprintf("thread2: send message - %s\n", buf); + /* 发送消息到消息队列中 */ result = rt_mq_send(&mq, &buf[0], sizeof(buf)); - if ( result == -RT_EFULL); + if ( result == -RT_EFULL) { - rt_kprintf("message queue full, delay 10s\n"); - rt_thread_delay(1000); + /* 消息队列满, 延迟1s时间 */ + rt_kprintf("message queue full, delay 1s\n"); + rt_thread_delay(100); } } - rt_thread_delay(100); + /* 延时10个OS Tick */ + rt_thread_delay(10); } } +/* 线程3入口函数 */ static void thread3_entry(void* parameter) { char buf[] = "this is an urgent message!"; @@ -62,15 +73,23 @@ static void thread3_entry(void* parameter) while (1) { rt_kprintf("thread3: send an urgent message\n"); + + /* 发送紧急消息到消息队列中 */ rt_mq_urgent(&mq, &buf[0], sizeof(buf)); - rt_thread_delay(250); + /* 延时25个OS Tick */ + rt_thread_delay(25); } } int messageq_simple_init() { - rt_mq_init(&mq, "mqt", &msg_pool[0], 128 - sizeof(void*), sizeof(msg_pool), RT_IPC_FLAG_FIFO); + /* 初始化消息队列 */ + rt_mq_init(&mq, "mqt", + &msg_pool[0], /* 内存池指向msg_pool */ + 128 - sizeof(void*), /* 每个消息的大小是 128 - void* */ + sizeof(msg_pool), /* 内存池的大小是msg_pool的大小 */ + RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */ /* 创建线程1 */ tid1 = rt_thread_create("t1", @@ -116,7 +135,7 @@ static void _tc_cleanup() if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE) rt_thread_delete(tid3); - /* 执行消息队列脱离 */ + /* 执行消息队列对象脱离 */ rt_mq_detach(&mq); /* 调度器解锁 */ diff --git a/examples/kernel/mutex_simple.c b/examples/kernel/mutex_simple.c index 574404a970e60604fc3a40b94b5b16353b417b25..c098018da0f367211fbd0d4b234107c567818d4d 100644 --- a/examples/kernel/mutex_simple.c +++ b/examples/kernel/mutex_simple.c @@ -8,33 +8,83 @@ static rt_thread_t tid1 = RT_NULL; static rt_thread_t tid2 = RT_NULL; static rt_thread_t tid3 = RT_NULL; +static rt_mutex_t mutex = RT_NULL; /* 线程1入口 */ static void thread1_entry(void* parameter) { - while (1) + /* 先让低优先级线程运行 */ + rt_thread_delay(10); + + /* 此时thread3持有mutex,并且thread2等待持有mutex */ + + /* 检查thread2与thread3的优先级情况 */ + if (tid2->current_priority != tid3->current_priority) { + /* 优先级不相同,测试失败 */ + tc_stat(TC_STAT_END | TC_STAT_FAILED); + return; } } /* 线程2入口 */ static void thread2_entry(void* parameter) { + rt_err_t result; + + /* 先让低优先级线程运行 */ + rt_thread_delay(5); + while (1) { + /* + * 试图持有互斥锁,此时thread3持有,应把thread3的优先级提升到thread2相同 + * 的优先级 + */ + result = rt_mutex_take(mutex, RT_WAITING_FOREVER); + + if (result == RT_EOK) + { + /* 释放互斥锁 */ + rt_mutex_release(mutex); + } } } /* 线程3入口 */ static void thread3_entry(void* parameter) { + rt_tick_t tick; + rt_err_t result; + while (1) { + result = rt_mutex_take(mutex, RT_WAITING_FOREVER); + result = rt_mutex_take(mutex, RT_WAITING_FOREVER); + if (result != RT_EOK) + { + tc_stat(TC_STAT_END | TC_STAT_FAILED); + } + + /* 做一个长时间的循环,总共50个OS Tick */ + tick = rt_tick_get(); + while (rt_tick_get() - tick < 50) ; + + rt_mutex_release(mutex); + rt_mutex_release(mutex); } } int mutex_simple_init() { + /* 创建互斥锁 */ + mutex = rt_mutex_create("mutex", RT_IPC_FLAG_FIFO); + if (mutex == RT_NULL) + { + tc_stat(TC_STAT_END | TC_STAT_FAILED); + return 0; + } + /* 创建线程1 */ tid1 = rt_thread_create("t1", thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */ @@ -79,6 +129,11 @@ static void _tc_cleanup() if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE) rt_thread_delete(tid3); + if (mutex != RT_NULL) + { + rt_mutex_delete(mutex); + } + /* 调度器解锁 */ rt_exit_critical(); diff --git a/examples/kernel/semaphore_producer_consumer.c b/examples/kernel/semaphore_producer_consumer.c index 5ea98fbeae62e82ab1900132d9159ce9ba781091..f85acc3b70bccb61fbc22c3713e6bb6d7905a8e1 100644 --- a/examples/kernel/semaphore_producer_consumer.c +++ b/examples/kernel/semaphore_producer_consumer.c @@ -85,7 +85,7 @@ void consumer_thread_entry(void* parameter) rt_kprintf("the consumer[%d] exit!\n"); } -int producer_consumer_init() +int semaphore_producer_consumer_init() { /* 初始化3个信号量 */ rt_sem_init(&sem_lock , "lock", 1, RT_IPC_FLAG_FIFO); @@ -132,22 +132,22 @@ static void _tc_cleanup() tc_done(TC_STAT_PASSED); } -int _tc_producer_consumer() +int _tc_semaphore_producer_consumer() { /* 设置TestCase清理回调函数 */ tc_cleanup(_tc_cleanup); - producer_consumer_init(); + semaphore_producer_consumer_init(); /* 返回TestCase运行的最长时间 */ return 100; } /* 输出函数命令到finsh shell中 */ -FINSH_FUNCTION_EXPORT(_tc_producer_consumer, producer and consumer example); +FINSH_FUNCTION_EXPORT(_tc_semaphore_producer_consumer, producer and consumer example); #else /* 用户应用入口 */ int rt_application_init() { - producer_consumer_init(); + semaphore_producer_consumer_init(); return 0; } diff --git a/examples/kernel/tc_comm.c b/examples/kernel/tc_comm.c index 3f26416b7a803a1ee875d16969d1fdb4765b28c5..2bcf02552003faa90cb400de3af1d832e8c1d542 100644 --- a/examples/kernel/tc_comm.c +++ b/examples/kernel/tc_comm.c @@ -13,9 +13,11 @@ static char _tc_prefix[64]; static const char* _tc_current; static void (*_tc_cleanup)(void) = RT_NULL; +static rt_uint32_t _tc_scale = 1; +FINSH_VAR_EXPORT(_tc_scale, finsh_type_int, the testcase timer timeout scale) + void tc_thread_entry(void* parameter) { - rt_err_t result; struct finsh_syscall* index; /* create tc semaphore */ @@ -36,7 +38,7 @@ void tc_thread_entry(void* parameter) tick = index->func(); if (tick > 0) { - result = rt_sem_take(&_tc_sem, tick); + rt_sem_take(&_tc_sem, tick * _tc_scale); if (_tc_cleanup != RT_NULL) { @@ -45,15 +47,10 @@ void tc_thread_entry(void* parameter) _tc_cleanup = RT_NULL; } - if (result != RT_EOK) + if (_tc_stat & TC_STAT_FAILED) rt_kprintf("TestCase[%s] failed\n", _tc_current); else - { - if (_tc_stat & TC_STAT_FAILED) - rt_kprintf("TestCase[%s] failed\n", _tc_current); - else - rt_kprintf("TestCase[%s] passed\n", _tc_current); - } + rt_kprintf("TestCase[%s] passed\n", _tc_current); } else { diff --git a/examples/kernel/timer_simple.c b/examples/kernel/timer_simple.c index 30d9e63f5971baa5f4a81ea6f6c438200274e721..2063a88119580127cab04ed0c3db0c4d01af25fb 100644 --- a/examples/kernel/timer_simple.c +++ b/examples/kernel/timer_simple.c @@ -1,7 +1,7 @@ /* * 程序清单:定时器例程 * - * 这个程序会初始化2个静态定时器,一个是一次定时,一个是周期性的定时 + * 这个程序会初始化2个静态定时器,一个是单次定时,一个是周期性的定时 */ #include #include "tc_comm.h" @@ -22,6 +22,17 @@ void timeout2(void* parameter) rt_kprintf("one shot timer is timeout\n"); } +void timer_simple_init() +{ + /* 初始化定时器 */ + rt_timer_init(&timer1, "timer1", timeout1, RT_NULL, 10, RT_TIMER_FLAG_PERIODIC); + rt_timer_init(&timer2, "timer2", timeout2, RT_NULL, 30, RT_TIMER_FLAG_ONE_SHOT); + + /* 启动定时器 */ + rt_timer_start(&timer1); + rt_timer_start(&timer2); +} + #ifdef RT_USING_TC static void _tc_cleanup() { @@ -39,27 +50,24 @@ static void _tc_cleanup() tc_done(TC_STAT_PASSED); } -int _tc_thread_timer_simple() +int _tc_timer_simple() { /* 设置TestCase清理回调函数 */ tc_cleanup(_tc_cleanup); - rt_timer_init(&timer1, "timer1", timeout1, RT_NULL, 10, RT_TIMER_FLAG_PERIODIC); - rt_timer_init(&timer2, "timer2", timeout2, RT_NULL, 30, RT_TIMER_FLAG_ONE_SHOT); - - rt_timer_start(&timer1); - rt_timer_start(&timer2); + /* 执行定时器例程 */ + timer_simple_init(); /* 返回TestCase运行的最长时间 */ return 100; } /* 输出函数命令到finsh shell中 */ -FINSH_FUNCTION_EXPORT(_tc_thread_timer_simple, a simple timer example); +FINSH_FUNCTION_EXPORT(_tc_timer_simple, a simple timer example); #else /* 用户应用入口 */ int rt_application_init() { - _tc_thread_timer_simple(); + timer_simple_init(); return 0; }