提交 76fa7157 编写于 作者: M Megvii Engine Team

feat(dnn/cuda): add cutlass nchw4 convolution

GitOrigin-RevId: 93c9b212f4543e50ec56b5623e1b77bf7209a45b
上级 1f3f4abc
......@@ -36,8 +36,9 @@ all: ${PARAM_DEFS} ${ELEMWISE_IMPL} ${CUDA_CONV_IMPL}
../src/cuda/elemwise_multi_type/kimpl: gen_elemwise_multi_type_kern_impls.py
./$^ --type cuda $@
../src/cuda/conv_bias/int8/kimpl: gen_cuda_conv_bias_kern_impls.py
./$^ --type dp4a $@
../src/cuda/conv_bias/int8/kimpl: gen_cuda_conv_bias_kern_impls.py gen_cutlass_conv_bias_kern_impls.py
./gen_cuda_conv_bias_kern_impls.py --type dp4a $@
./gen_cutlass_conv_bias_kern_impls.py --type dp4a $@
../src/cuda/conv_bias/int8_imma/kimpl: gen_cuda_conv_bias_kern_impls.py gen_cutlass_conv_bias_kern_impls.py
./gen_cuda_conv_bias_kern_impls.py --type imma $@
......
......@@ -91,7 +91,10 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() {
}
#endif
#endif
all_algos.push_back(&int8_nchw4_dotprod);
fill_dp4a_algos();
for (auto&& algo : int8_nchw4_dotprod) {
all_algos.push_back(&algo);
}
all_algos.push_back(&int8_chwn4_dotprod);
for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
non_cudnn_algos.push_back(all_algos[i]);
......@@ -253,6 +256,20 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
}
#endif
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32});
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8});
}
ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
......
......@@ -386,18 +386,39 @@ public:
class ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm final
: public AlgoBase {
public:
AlgoInt8NCHW4DotProdImplicitGemm() = default;
struct AlgoParam {
int threadblock_m;
int threadblock_n;
int threadblock_k;
int warp_m;
int warp_n;
int warp_k;
std::string to_string() {
/// default algorithm
if (threadblock_m == 128 && threadblock_n == 128 &&
threadblock_k == 32 && warp_m == 32 && warp_n == 64 &&
warp_k == 32) {
return "";
}
return ssprintf("_%dX%dX%d_%dX%dX%d", threadblock_m, threadblock_n,
threadblock_k, warp_m, warp_n, warp_k);
}
};
AlgoInt8NCHW4DotProdImplicitGemm(AlgoParam algo_param)
: m_algo_param{algo_param},
m_name{ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
m_algo_param.to_string().c_str())} {}
bool is_available(const SizeArgs& args) const override;
size_t get_workspace_in_bytes(const SizeArgs& args) const override;
void exec(const ExecArgs& args) const override;
const char* name() const override {
return "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM";
}
const char* name() const override { return m_name.c_str(); }
bool is_reproducible() const override { return true; }
private:
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr,
const SizeArgs& args) const;
AlgoParam m_algo_param;
std::string m_name;
};
#if CUDA_VERSION >= 10000
......@@ -578,7 +599,7 @@ public:
AlgoMatmul8x8x32 matmul8x8x32;
AlgoBatchedMatmul batched_matmul;
Algo1x1 a1x1;
AlgoInt8NCHW4DotProdImplicitGemm int8_nchw4_dotprod;
std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod;
AlgoInt8CHWN4DotProdImplicitGemm int8_chwn4_dotprod;
#if CUDA_VERSION >= 10000
AlgoQUInt4x4x32WMMA wmma_quint4x4x32;
......@@ -605,6 +626,7 @@ private:
void fill_imma_algos();
#endif
void fill_cudnn_algos();
void fill_dp4a_algos();
};
} // namespace cuda
......
......@@ -19,7 +19,6 @@
#endif
#include "src/common/opr_param_defs_enumv.cuh"
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh"
#pragma GCC diagnostic pop
using namespace megdnn;
......@@ -149,4 +148,130 @@ INST(true);
INST(false);
#undef INST
#if MEGDNN_TEGRA_X1
template <bool NeedLoadFromConstMem>
void megdnn::cuda::cutlass_wrapper::
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4(
const int8_t* /* d_src */, const int8_t* /* d_filter */,
const int32_t* /* d_bias */, const int8_t* /* d_z */,
int8_t* /* d_dst */, int* /* workspace */,
const convolution::ConvParam& /* param */,
uint32_t /* nonlinear_mode */, float /* alpha */,
float /* beta */, float /* gamma */, float /* scale */,
const GemmCoord& /* threadblock_shape */,
const GemmCoord& /* warp_shape */, cudaStream_t /* stream */) {}
#else
template <bool NeedLoadFromConstMem>
void megdnn::cuda::cutlass_wrapper::
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4(
const int8_t* d_src, const int8_t* d_filter,
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst,
int* workspace, const convolution::ConvParam& param,
uint32_t nonlinear_mode, float alpha, float beta, float gamma,
float scale, const GemmCoord& threadblock_shape,
const GemmCoord& warp_shape, cudaStream_t stream) {
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \
threadblock_k_, warp_m_, warp_n_, \
warp_k_, aligned_) \
if (threadblock_shape.m() == threadblock_m_ && \
threadblock_shape.n() == threadblock_n_ && \
threadblock_shape.k() == threadblock_k_ && \
warp_shape.m() == warp_m_ && warp_shape.n() == warp_n_ && \
warp_shape.k() == warp_k_) { \
using ThreadBlockShape = \
cutlass::gemm::GemmShape<threadblock_m_, threadblock_n_, \
threadblock_k_>; \
using WarpShape = cutlass::gemm::GemmShape<warp_m_, warp_n_, warp_k_>; \
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; \
using Convolution = cutlass::convolution::device::Convolution< \
int8_t, cutlass::layout::TensorNCxHWx<4>, int8_t, \
cutlass::layout::TensorCxRSKx<4>, ElementOutput, \
cutlass::layout::TensorNCxHWx<4>, int32_t, \
cutlass::layout::TensorNCxHWx<4>, int32_t, \
cutlass::convolution::ConvType::kConvolution, \
cutlass::arch::OpClassSimt, cutlass::arch::Sm61, \
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, \
cutlass::convolution::threadblock:: \
ConvolutionNCxHWxThreadblockSwizzle< \
cutlass::convolution::ConvType::kConvolution>, \
2, 4, aligned_, NeedLoadFromConstMem>; \
typename Convolution::ConvolutionParameter conv_param{ \
param.n, param.ci, param.co, param.hi, param.wi, \
param.fh, param.fw, param.ho, param.wo, param.sh, \
param.sw, param.ph, param.pw, 1, 1}; \
return cutlass_convolution_wrapper<Convolution>( \
d_src, d_filter, d_bias, d_z, d_dst, workspace, conv_param, \
epilogue, stream); \
}
#define DISPATCH_KERNEL \
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 32, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 128, 32, 32, 64, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 32, 32, 64, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 32, 32, 64, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 32, 32, 32, 32, 32, 16); \
DISPATCH_KERNEL_WITH_TILE_SHAPE(16, 64, 8, 16, 64, 8, 4); \
megdnn_assert(false, \
"unsupported threadblock shape (%dx%dx%d) and warp shape " \
"(%dx%dx%d)", \
threadblock_shape.m(), threadblock_shape.n(), \
threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \
warp_shape.k());
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementBias = int32_t;
using ElementCompute = float;
using NonlineMode = megdnn::param_enumv::ConvBias::NonlineMode;
switch (nonlinear_mode) {
case NonlineMode::IDENTITY: {
using EpilogueOp =
cutlass::epilogue::thread::BiasAddLinearCombinationClamp<
ElementOutput, 4, ElementAccumulator, ElementBias,
ElementCompute>;
typename EpilogueOp::Params epilogue{alpha, beta, gamma};
DISPATCH_KERNEL;
}
case NonlineMode::RELU: {
using EpilogueOp = cutlass::epilogue::thread::
BiasAddLinearCombinationReluClamp<
ElementOutput, 4, ElementAccumulator, ElementBias,
ElementCompute>;
typename EpilogueOp::Params epilogue{alpha, beta, gamma, 0};
DISPATCH_KERNEL;
}
case NonlineMode::H_SWISH: {
using EpilogueOp = cutlass::epilogue::thread::
BiasAddLinearCombinationHSwishClamp<
ElementOutput, 4, ElementAccumulator, ElementBias,
ElementCompute>;
typename EpilogueOp::Params epilogue{alpha, beta, gamma, scale};
DISPATCH_KERNEL;
}
default:
megdnn_assert(false,
"unsupported nonlinear mode for conv bias operator");
}
#undef DISPATCH_KERNEL_WITH_TILE_SHAPE
#undef DISPATCH_KERNEL
}
#endif
#define INST(need_load_from_const_mem) \
template void megdnn::cuda::cutlass_wrapper:: \
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4< \
need_load_from_const_mem>( \
const int8_t* d_src, const int8_t* d_filter, \
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, \
int* workspace, const convolution::ConvParam& param, \
uint32_t nonlinear_mode, float alpha, float beta, \
float gamma, float scale, \
const GemmCoord& threadblock_shape, \
const GemmCoord& warp_shape, cudaStream_t stream);
INST(true);
INST(false);
#undef INST
// vim: syntax=cuda.doxygen
......@@ -37,6 +37,15 @@ void do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32(
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape,
cudaStream_t stream);
template <bool NeedLoadFromConstMem>
void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4(
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias,
const int8_t* d_z, int8_t* d_dst, int* workspace,
const convolution::ConvParam& param, uint32_t nonlinear_mode,
float alpha, float beta, float gamma, float scale,
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape,
cudaStream_t stream);
} // namespace cutlass_wrapper
} // namespace cuda
} // namespace megdnn
......
......@@ -57,30 +57,16 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available(
// only support sm_75 or later, platform should have tensorcore int8
// support
available &= is_compute_capability_required(7, 5);
if (fh == 1 && fw == 1)
return available;
// for non 1x1 convolution, we have to check constant memory size
auto&& device_prop = current_device_prop();
// const mem size >= 64K
available &= device_prop.totalConstMem >= 65536;
size_t const_mem_usage = get_workspace_in_bytes(args) -
args.filter_layout->span().dist_byte();
available &= const_mem_usage <= device_prop.totalConstMem;
// FIXME: too large filter size is not supported now
available &= fh * fw <= 49;
return available;
}
WorkspaceBundle
ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::get_workspace_bundle(
dt_byte* raw_ptr, const SizeArgs& args) const {
size_t ci = args.filter_layout->operator[](1) * 32;
size_t fh = args.filter_layout->operator[](2);
size_t fw = args.filter_layout->operator[](3);
size_t ws_filter = args.filter_layout->span().dist_byte();
if (fh == 1 && fw == 1) {
return WorkspaceBundle{raw_ptr, {ws_filter}};
}
size_t ws_size = (ci / 32) * fh * fw * sizeof(int32_t) * 2;
return WorkspaceBundle{raw_ptr, {ws_filter, ws_size}};
return WorkspaceBundle{raw_ptr, {ws_filter}};
}
size_t
......@@ -148,9 +134,9 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec(
false>(args.src_tensor->compatible_ptr<int8_t>(),
reinterpret_cast<int8_t*>(ws_filter),
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr,
args.dst_tensor->compatible_ptr<int8_t>(),
nullptr, kern_param, nonlinear_mode,
alpha, beta, gamma, dst_scale,
args.dst_tensor->compatible_ptr<int8_t>(), nullptr,
kern_param, nonlinear_mode, alpha, beta, gamma,
dst_scale,
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m,
m_algo_param.threadblock_n,
m_algo_param.threadblock_k},
......@@ -159,14 +145,12 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec(
m_algo_param.warp_k},
stream);
} else {
auto workspace = ws.get(1);
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32<true>(
args.src_tensor->compatible_ptr<int8_t>(),
reinterpret_cast<int8_t*>(ws_filter),
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr,
args.dst_tensor->compatible_ptr<int8_t>(),
reinterpret_cast<int*>(workspace), kern_param, nonlinear_mode,
alpha, beta, gamma, dst_scale,
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, kern_param,
nonlinear_mode, alpha, beta, gamma, dst_scale,
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m,
m_algo_param.threadblock_n,
m_algo_param.threadblock_k},
......
......@@ -11,7 +11,8 @@
#include "./algo.h"
#include "src/cuda/utils.h"
#include "src/cuda/convolution_helper/bias_visitor.cuh"
#include "src/cuda/convolution_helper/parameter.cuh"
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh"
using namespace megdnn;
using namespace cuda;
......@@ -53,21 +54,16 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::is_available(
// only support sm_61 or later, platform should have fast native int8
// support
available &= is_compute_capability_required(6, 1);
// FIXME: too large filter size is not supported now
available &= fh * fw <= 49;
return available;
}
WorkspaceBundle
ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::get_workspace_bundle(
dt_byte* raw_ptr, const SizeArgs& args) const {
size_t ws_size_src = args.src_layout->span().dist_byte();
size_t ws_size_filter = args.filter_layout->span().dist_byte();
size_t ws_size_dst = args.dst_layout->span().dist_byte();
if (args.z_layout->ndim > 0) {
size_t ws_size_z = args.z_layout->span().dist_byte();
return WorkspaceBundle{
raw_ptr, {ws_size_src, ws_size_filter, ws_size_dst, ws_size_z}};
}
return WorkspaceBundle{raw_ptr, {ws_size_src, ws_size_filter, ws_size_dst}};
size_t ws_filter = args.filter_layout->span().dist_byte();
return WorkspaceBundle{raw_ptr, {ws_filter}};
}
size_t
......@@ -84,27 +80,9 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec(
UNPACK_CONV_BIAS_NCHW4_PARAM(*(args.src_layout), fm, *(args.dst_layout),
param);
auto ws = get_workspace_bundle(args.workspace.raw_ptr, args);
auto ws_src = ws.get(0);
auto ws_filter = ws.get(1);
auto ws_dst = ws.get(2);
auto ws_filter = ws.get(0);
auto&& stream = cuda_stream(args.opr->handle());
// reformat src from nchw4 to chwn4
{
TensorLayout src{{n, ci / 4 * hi * wi}, dtype::Int32()};
src.init_contiguous_stride();
TensorLayout dst = src;
dst.stride[0] = 1, dst.stride[1] = dst[0];
TensorND ts_src, ts_dst;
ts_src.raw_ptr = args.src_tensor->raw_ptr;
ts_src.layout = src;
ts_dst.raw_ptr = ws_src;
ts_dst.layout = dst;
auto&& transpose =
args.opr->handle()->create_operator<RelayoutForward>();
transpose->exec(ts_src, ts_dst);
}
// reformat filter from nchw4 to chwn4
{
TensorLayout src{{co, ci / 4 * fh * fw}, dtype::Int32()};
......@@ -136,53 +114,42 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec(
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale;
float alpha = src_scale * filter_scale / dst_scale,
beta = bias_scale / dst_scale;
// process z
int8_t* z_dev_ptr = nullptr;
float gamma = 1.f;
float gamma = 0.0;
if (args.z_layout->ndim > 0) {
auto ws_z = ws.get(3);
TensorLayout src{{n, co / 4 * ho * wo}, dtype::Int32()};
src.init_contiguous_stride();
TensorLayout dst = src;
dst.stride[0] = 1, dst.stride[1] = dst[0];
TensorND ts_src, ts_dst;
ts_src.raw_ptr = args.z_tensor->raw_ptr;
ts_src.layout = src;
ts_dst.raw_ptr = ws_z;
ts_dst.layout = dst;
auto&& transpose =
args.opr->handle()->create_operator<RelayoutForward>();
transpose->exec(ts_src, ts_dst);
z_dev_ptr = reinterpret_cast<int8_t*>(ws_z);
z_dev_ptr = args.z_tensor->compatible_ptr<int8_t>();
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale;
gamma = z_scale / dst_scale;
}
convolution::PerChannelBiasVisitor bias_visitor;
bias_visitor.bias = args.bias_tensor->compatible_ptr<int32_t>();
ConvBiasForwardImpl::AlgoInt8CHWN4DotProdImplicitGemm::
dispatch_nonlinear_mode<convolution::PerChannelBiasVisitor>(
reinterpret_cast<int8_t*>(ws_src),
reinterpret_cast<int8_t*>(ws_filter), bias_visitor,
z_dev_ptr, reinterpret_cast<int8_t*>(ws_dst), kern_param,
alpha, beta, gamma, dst_scale, stream, param.nonlineMode);
// reformat chwn4 to nchw4
{
TensorLayout src{{co / 4 * ho * wo, n}, dtype::Int32()};
src.init_contiguous_stride();
TensorLayout dst = src;
dst.stride[0] = 1, dst.stride[1] = dst[0];
TensorND ts_src, ts_dst;
ts_src.raw_ptr = ws_dst;
ts_src.layout = src;
ts_dst.raw_ptr = args.dst_tensor->raw_ptr;
ts_dst.layout = dst;
auto&& transpose =
args.opr->handle()->create_operator<RelayoutForward>();
transpose->exec(ts_src, ts_dst);
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode);
if (fh == 1 && fw == 1) {
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4<false>(
args.src_tensor->compatible_ptr<int8_t>(),
reinterpret_cast<int8_t*>(ws_filter),
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr,
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, kern_param,
nonlinear_mode, alpha, beta, gamma, dst_scale,
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m,
m_algo_param.threadblock_n,
m_algo_param.threadblock_k},
cutlass_wrapper::GemmCoord{m_algo_param.warp_m,
m_algo_param.warp_n,
m_algo_param.warp_k},
stream);
} else {
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4<true>(
args.src_tensor->compatible_ptr<int8_t>(),
reinterpret_cast<int8_t*>(ws_filter),
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr,
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, kern_param,
nonlinear_mode, alpha, beta, gamma, dst_scale,
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m,
m_algo_param.threadblock_n,
m_algo_param.threadblock_k},
cutlass_wrapper::GemmCoord{m_algo_param.warp_m,
m_algo_param.warp_n,
m_algo_param.warp_k},
stream);
}
}
......
/**
* \file
* dnn/src/cuda/conv_bias/int8_imma/conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl
* dnn/src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
......
......@@ -748,7 +748,7 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype,
bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
checker.set_epsilon(1 + 1e-3)
.set_max_avg_error(1e-1)
.set_max_avg_biased_error(1e-1);
.set_max_avg_biased_error(1e-3);
} else if (src_dtype.enumv() == DTypeEnum::Float16) {
rng = std::make_unique<NormalRNG>(2.f);
megdnn_assert(bias_dtype.enumv() == DTypeEnum::Float16);
......
......@@ -18,8 +18,6 @@
#include "test/cuda/fixture.h"
#include "test/cuda/utils.h"
#define MEGDNN_WITH_BENCHMARK 1
#define V1(x) #x
#define V(x) V1(x)
......@@ -1228,8 +1226,17 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW32) {
param::ConvBias::Format::NCHW32);
}
#endif
#endif
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) {
require_compute_capability(6, 1);
benchmark_target_algo(
handle_cuda(), get_resnet50_bench_args(64),
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
param::ConvBias::Format::NCHW4);
}
#endif
} // namespace test
} // namespace megdnn
......
......@@ -2031,4 +2031,96 @@ TEST(TestOprDNN, HeuristicReproducible) {
#undef get_shp
}
#if MGB_CUDA
TEST(TestOprDNN, ConvolutionMultiCompNode) {
REQUIRE_GPU(2);
auto cn0 = CompNode::load("gpu0:0"), cn1 = CompNode::load("gpu0:1");
cn0.activate();
auto&& prop = CompNodeEnv::from_comp_node(cn0).cuda_env().device_prop;
auto sm_ver = prop.major * 10 + prop.minor;
if (sm_ver < 61) {
printf("This testcast ignored due to insufficient cuda cap(got: %d, "
"expected: %d)\n",
sm_ver, 61);
return;
}
HostTensorGenerator<dtype::Int8> gen;
auto mkvar = [&gen](const char* name, const TensorShape& shp,
const DType& dtype,
std::shared_ptr<ComputingGraph> graph,
const CompNode& cn) {
return opr::TypeCvt::make(
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
dtype);
};
auto mkcvar = [&gen](const char* name, const TensorShape& shp,
const DType& dtype,
std::shared_ptr<ComputingGraph> graph,
const CompNode& cn) {
return opr::TypeCvt::make(
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name),
dtype);
};
auto graph0 = ComputingGraph::make();
graph0->options().graph_opt_level = 0;
auto graph1 = ComputingGraph::make();
graph1->options().graph_opt_level = 0;
auto make_func = [&gen, &mkvar, &mkcvar](
std::shared_ptr<ComputingGraph> graph,
const CompNode& cn) {
using Policy = opr::ConvBias::ExecutionPolicy;
using S = Policy::Strategy;
auto x = mkvar("x", {64, 32, 28, 28, 4}, dtype::QuantizedS8(2.5f),
graph, cn),
w1 = mkcvar("w1", {256, 32, 5, 5, 4}, dtype::QuantizedS8(2.5f),
graph, cn),
b1 = mkcvar("b1", {1, 64, 1, 1, 4}, dtype::QuantizedS32(6.25f),
graph, cn),
w2 = mkcvar("w2", {256, 64, 3, 3, 4}, dtype::QuantizedS8(2.5f),
graph, cn),
b2 = mkcvar("b2", {1, 64, 1, 1, 4}, dtype::QuantizedS32(6.25f),
graph, cn);
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW4;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
param.stride_h = param.stride_w = 2;
param.pad_h = param.pad_w = 2;
Policy policy;
policy.strategy = S::PROFILE;
auto y = opr::ConvBias::make(
x, w1, b1, param, policy,
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
param.stride_h = param.stride_w = 1;
param.pad_h = param.pad_w = 1;
y = opr::ConvBias::make(y, w2, b2, param, policy,
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
return y;
};
auto y0 = make_func(graph0, cn0);
auto y1 = make_func(graph1, cn1);
HostTensorND host_y0, host_y1;
auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
auto worker = [&func0, &func1](int wid) {
static int const iter_num = 1000;
if (wid == 0) {
for (int i = 0; i < iter_num; ++i)
func0->execute();
} else {
for (int i = 0; i < iter_num; ++i)
func1->execute();
}
};
std::thread worker0(worker, 0);
std::thread worker1(worker, 1);
worker0.join();
worker1.join();
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册