# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest from paddle.v2.fluid import core from paddle.v2.fluid.op import Operator class TestAdamOp1(OpTest): def setUp(self): '''Test Adam Op with supplied attributes ''' self.op_type = "adam" param = np.random.uniform(-1, 1, (102, 105)).astype("float32") grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32") # The second moment is positive moment2 = np.random.random((102, 105)).astype("float32") learning_rate = 0.004 beta1 = 0.78 beta2 = 0.836 epsilon = 1e-4 beta1_pow = beta1**10 beta2_pow = beta2**10 self.inputs = { 'Param': param, 'Grad': grad, 'Moment1': moment1, 'Moment2': moment2, 'LearningRate': np.array([learning_rate]).astype("float32"), 'Beta1Pow': np.array([beta1_pow]).astype("float32"), 'Beta2Pow': np.array([beta2_pow]).astype("float32") } self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} param_out, moment1_out, \ moment2_out = adam_step(self.inputs, self.attrs) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, 'ParamOut': param_out } def test_check_output(self): self.check_output() class TestAdamOp2(OpTest): def setUp(self): '''Test Adam Op with supplied attributes ''' self.op_type = "adam" param = np.random.uniform(-1, 1, (102, 105)).astype("float32") grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32") # The second moment is positive moment2 = np.random.random((102, 105)).astype("float32") learning_rate = 0.001 beta1 = 0.9 beta2 = 0.999 epsilon = 1e-8 beta1_pow = beta1**10 beta2_pow = beta2**10 self.inputs = { 'Param': param, 'Grad': grad, 'Moment1': moment1, 'Moment2': moment2, 'LearningRate': np.array([learning_rate]).astype("float32"), 'Beta1Pow': np.array([beta1_pow]).astype("float32"), 'Beta2Pow': np.array([beta2_pow]).astype("float32") } attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} param_out, moment1_out, \ moment2_out = adam_step(self.inputs, attributes) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, 'ParamOut': param_out } def test_check_output(self): self.check_output() class TestAdamOpMultipleSteps(OpTest): def setUp(self): '''Test Adam Operator with supplied attributes ''' self.op_type = "adam" self.num_steps = 10 param = np.random.uniform(-1, 1, (102, 105)).astype("float32") grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32") # The second moment is positive moment2 = np.random.random((102, 105)).astype("float32") learning_rate = 0.001 beta1 = 0.9 beta2 = 0.999 epsilon = 1e-8 beta1_pow = beta1**10 beta2_pow = beta2**10 self.inputs = { 'Param': param, 'Grad': grad, 'Moment1': moment1, 'Moment2': moment2, 'LearningRate': np.array([learning_rate]).astype("float32"), 'Beta1Pow': np.array([beta1_pow]).astype("float32"), 'Beta2Pow': np.array([beta2_pow]).astype("float32") } self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} def test_check_output(self): for _ in range(self.num_steps): param_out, moment1_out, \ moment2_out = adam_step(self.inputs, self.attrs) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, 'ParamOut': param_out } # Verify output for this step self.check_output() # Output of this step becomes input for next step self.inputs['Param'] = param_out self.inputs['Moment1'] = moment1_out self.inputs['Moment2'] = moment2_out # Update powers of Beta1 and Beta2 for next time step self.inputs['Beta1Pow'] *= self.attrs['beta1'] self.inputs['Beta2Pow'] *= self.attrs['beta1'] # Randomize gradient for next step self.inputs['Grad'] = np.random.uniform( -1, 1, (102, 105)).astype("float32") def adam_step(inputs, attributes): ''' Simulate one step of the adam optimizer :param inputs: dict of inputs :param attributes: dict of attributes :return tuple: tuple of output param, moment1, moment2, beta1 power accumulator and beta2 power accumulator ''' param = inputs['Param'] grad = inputs['Grad'] moment1 = inputs['Moment1'] moment2 = inputs['Moment2'] lr = inputs['LearningRate'] beta1_pow = inputs['Beta1Pow'] beta2_pow = inputs['Beta2Pow'] beta1 = attributes['beta1'] beta2 = attributes['beta2'] epsilon = attributes['epsilon'] moment1_out = beta1 * moment1 + (1 - beta1) * grad moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad) lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon)) return param_out, moment1_out, moment2_out def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad): ''' Simulate one step of the adam optimizer :param inputs: dict of inputs :param attributes: dict of attributes :return tuple: tuple of output param, moment1, moment2, beta1 power accumulator and beta2 power accumulator ''' param = inputs['Param'] # grad = inputs['Grad'] moment1 = inputs['Moment1'] moment2 = inputs['Moment2'] lr = inputs['LearningRate'] beta1_pow = inputs['Beta1Pow'] beta2_pow = inputs['Beta2Pow'] beta1 = attributes['beta1'] beta2 = attributes['beta2'] epsilon = attributes['epsilon'] moment1_out = np.zeros(shape=[height, row_numel]) moment2_out = np.zeros(shape=[height, row_numel]) param_out = np.zeros(shape=[height, row_numel]) for idx, row_id in enumerate(rows): moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1 ) * np_grad[idx] moment2_out[row_id] = beta2 * moment2[row_id] + ( 1 - beta2) * np.square(np_grad[idx]) lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / ( np.sqrt(moment2_out[row_id]) + epsilon)) return param_out, moment1_out, moment2_out class TestSparseAdamOp(unittest.TestCase): def setup(self, scope, place): beta1 = 0.78 beta2 = 0.836 epsilon = 1e-4 height = 10 rows = [0, 4, 7] self.rows = rows row_numel = 12 self.row_numel = row_numel self.dense_inputs = { "Param": np.full((height, row_numel), 5.0).astype("float32"), "Moment1": np.full((height, row_numel), 5.0).astype("float32"), "Moment2": np.full((height, row_numel), 5.0).astype("float32"), 'Beta1Pow': np.array([beta1**10]).astype("float32"), 'Beta2Pow': np.array([beta2**10]).astype("float32"), "LearningRate": np.full((1), 2.0).astype("float32") } self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) self.sparse_inputs = ["Grad"] param_out, mom1, mom2 = adam_step_sparse( self.dense_inputs, self.attrs, height, rows, row_numel, np_array) self.outputs = { "ParamOut": param_out, "Moment1Out": mom1, "Moment2Out": mom2 } def check_with_place(self, place): scope = core.Scope() self.setup(scope, place) op_args = dict() for key, np_array in self.dense_inputs.iteritems(): var = scope.var(key).get_tensor() var.set(np_array, place) op_args[key] = key for s in self.sparse_inputs: op_args[s] = s for s in self.outputs: var = scope.var(s).get_tensor() var.set(self.outputs[s], place) op_args[s] = s for k in self.attrs: op_args[k] = self.attrs[k] # create and run sgd operator adam_op = Operator("adam", **op_args) adam_op.run(scope, place) for key, np_array in self.outputs.iteritems(): out_var = scope.var(key).get_tensor() actual = np.array(out_var) actual = actual.reshape([actual.size]) np_array = np_array.reshape([np_array.size]) for idx, row_id in enumerate(self.rows): j = 0 while j < self.row_numel: pos = row_id * self.row_numel + j self.assertLess((actual[pos] - np_array[pos]) / actual[pos], 0.00001) j += 1 def test_sparse_sgd(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) if __name__ == "__main__": unittest.main()