/* * linux/fs/f2fs/crypto_key.c * * Copied from linux/fs/f2fs/crypto_key.c * * Copyright (C) 2015, Google, Inc. * * This contains encryption key functions for f2fs * * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. */ #include #include #include #include #include #include #include #include "f2fs.h" #include "xattr.h" static void derive_crypt_complete(struct crypto_async_request *req, int rc) { struct f2fs_completion_result *ecr = req->data; if (rc == -EINPROGRESS) return; ecr->res = rc; complete(&ecr->completion); } /** * f2fs_derive_key_aes() - Derive a key using AES-128-ECB * @deriving_key: Encryption key used for derivatio. * @source_key: Source key to which to apply derivation. * @derived_key: Derived key. * * Return: Zero on success; non-zero otherwise. */ static int f2fs_derive_key_aes(char deriving_key[F2FS_AES_128_ECB_KEY_SIZE], char source_key[F2FS_AES_256_XTS_KEY_SIZE], char derived_key[F2FS_AES_256_XTS_KEY_SIZE]) { int res = 0; struct ablkcipher_request *req = NULL; DECLARE_F2FS_COMPLETION_RESULT(ecr); struct scatterlist src_sg, dst_sg; struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0, 0); if (IS_ERR(tfm)) { res = PTR_ERR(tfm); tfm = NULL; goto out; } crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { res = -ENOMEM; goto out; } ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, derive_crypt_complete, &ecr); res = crypto_ablkcipher_setkey(tfm, deriving_key, F2FS_AES_128_ECB_KEY_SIZE); if (res < 0) goto out; sg_init_one(&src_sg, source_key, F2FS_AES_256_XTS_KEY_SIZE); sg_init_one(&dst_sg, derived_key, F2FS_AES_256_XTS_KEY_SIZE); ablkcipher_request_set_crypt(req, &src_sg, &dst_sg, F2FS_AES_256_XTS_KEY_SIZE, NULL); res = crypto_ablkcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { BUG_ON(req->base.data != &ecr); wait_for_completion(&ecr.completion); res = ecr.res; } out: if (req) ablkcipher_request_free(req); if (tfm) crypto_free_ablkcipher(tfm); return res; } void f2fs_free_encryption_info(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_crypt_info *ci = fi->i_crypt_info; if (!ci) return; if (ci->ci_keyring_key) key_put(ci->ci_keyring_key); crypto_free_ablkcipher(ci->ci_ctfm); memzero_explicit(&ci->ci_raw, sizeof(ci->ci_raw)); kfree(ci); fi->i_crypt_info = NULL; } int _f2fs_get_encryption_info(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_crypt_info *crypt_info; char full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE + (F2FS_KEY_DESCRIPTOR_SIZE * 2) + 1]; struct key *keyring_key = NULL; struct f2fs_encryption_key *master_key; struct f2fs_encryption_context ctx; struct user_key_payload *ukp; int res; if (!f2fs_read_workqueue) { res = f2fs_init_crypto(); if (res) return res; } if (fi->i_crypt_info) { if (!fi->i_crypt_info->ci_keyring_key || key_validate(fi->i_crypt_info->ci_keyring_key) == 0) return 0; f2fs_free_encryption_info(inode); } res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx, sizeof(ctx), NULL); if (res < 0) return res; else if (res != sizeof(ctx)) return -EINVAL; res = 0; crypt_info = kmalloc(sizeof(struct f2fs_crypt_info), GFP_NOFS); if (!crypt_info) return -ENOMEM; crypt_info->ci_flags = ctx.flags; crypt_info->ci_data_mode = ctx.contents_encryption_mode; crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; crypt_info->ci_ctfm = NULL; memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, sizeof(crypt_info->ci_master_key)); if (S_ISREG(inode->i_mode)) crypt_info->ci_mode = ctx.contents_encryption_mode; else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) crypt_info->ci_mode = ctx.filenames_encryption_mode; else { printk(KERN_ERR "f2fs crypto: Unsupported inode type.\n"); BUG(); } crypt_info->ci_size = f2fs_encryption_key_size(crypt_info->ci_mode); BUG_ON(!crypt_info->ci_size); memcpy(full_key_descriptor, F2FS_KEY_DESC_PREFIX, F2FS_KEY_DESC_PREFIX_SIZE); sprintf(full_key_descriptor + F2FS_KEY_DESC_PREFIX_SIZE, "%*phN", F2FS_KEY_DESCRIPTOR_SIZE, ctx.master_key_descriptor); full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE + (2 * F2FS_KEY_DESCRIPTOR_SIZE)] = '\0'; keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL); if (IS_ERR(keyring_key)) { res = PTR_ERR(keyring_key); keyring_key = NULL; goto out; } BUG_ON(keyring_key->type != &key_type_logon); ukp = ((struct user_key_payload *)keyring_key->payload.data); if (ukp->datalen != sizeof(struct f2fs_encryption_key)) { res = -EINVAL; goto out; } master_key = (struct f2fs_encryption_key *)ukp->data; BUILD_BUG_ON(F2FS_AES_128_ECB_KEY_SIZE != F2FS_KEY_DERIVATION_NONCE_SIZE); BUG_ON(master_key->size != F2FS_AES_256_XTS_KEY_SIZE); res = f2fs_derive_key_aes(ctx.nonce, master_key->raw, crypt_info->ci_raw); out: if (res < 0) { if (res == -ENOKEY) res = 0; kfree(crypt_info); } else { fi->i_crypt_info = crypt_info; crypt_info->ci_keyring_key = keyring_key; keyring_key = NULL; } if (keyring_key) key_put(keyring_key); return res; } int f2fs_has_encryption_key(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); return (fi->i_crypt_info != NULL); }