提交 c0ff4b85 编写于 作者: R Raghavendra K T 提交者: Linus Torvalds

memcg: rename mem variable to memcg

The memcg code sometimes uses "struct mem_cgroup *mem" and sometimes uses
"struct mem_cgroup *memcg".  Rename all mem variables to memcg in source
file.
Signed-off-by: NRaghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: NMichal Hocko <mhocko@suse.cz>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 ff7ee93f
......@@ -78,8 +78,8 @@ extern void mem_cgroup_uncharge_end(void);
extern void mem_cgroup_uncharge_page(struct page *page);
extern void mem_cgroup_uncharge_cache_page(struct page *page);
extern void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask);
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem);
extern void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask);
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
......@@ -88,19 +88,19 @@ extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
static inline
int mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *cgroup)
{
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
rcu_read_lock();
mem = mem_cgroup_from_task(rcu_dereference((mm)->owner));
memcg = mem_cgroup_from_task(rcu_dereference((mm)->owner));
rcu_read_unlock();
return cgroup == mem;
return cgroup == memcg;
}
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem);
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
extern int
mem_cgroup_prepare_migration(struct page *page,
struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask);
extern void mem_cgroup_end_migration(struct mem_cgroup *mem,
extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok);
/*
......@@ -148,7 +148,7 @@ static inline void mem_cgroup_dec_page_stat(struct page *page,
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask,
unsigned long *total_scanned);
u64 mem_cgroup_get_limit(struct mem_cgroup *mem);
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg);
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
......@@ -244,18 +244,20 @@ static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm
return NULL;
}
static inline int mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *mem)
static inline int mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
return 1;
}
static inline int task_in_mem_cgroup(struct task_struct *task,
const struct mem_cgroup *mem)
const struct mem_cgroup *memcg)
{
return 1;
}
static inline struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
static inline struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup *memcg)
{
return NULL;
}
......@@ -267,22 +269,22 @@ mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
return 0;
}
static inline void mem_cgroup_end_migration(struct mem_cgroup *mem,
static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
}
static inline int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
static inline int mem_cgroup_get_reclaim_priority(struct mem_cgroup *memcg)
{
return 0;
}
static inline void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem,
static inline void mem_cgroup_note_reclaim_priority(struct mem_cgroup *memcg,
int priority)
{
}
static inline void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem,
static inline void mem_cgroup_record_reclaim_priority(struct mem_cgroup *memcg,
int priority)
{
}
......@@ -348,7 +350,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
}
static inline
u64 mem_cgroup_get_limit(struct mem_cgroup *mem)
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
return 0;
}
......
......@@ -201,8 +201,8 @@ struct mem_cgroup_eventfd_list {
struct eventfd_ctx *eventfd;
};
static void mem_cgroup_threshold(struct mem_cgroup *mem);
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
/*
* The memory controller data structure. The memory controller controls both
......@@ -362,29 +362,29 @@ enum charge_type {
#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
static void drain_all_stock_async(struct mem_cgroup *mem);
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
static void drain_all_stock_async(struct mem_cgroup *memcg);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
{
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
}
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
{
return &mem->css;
return &memcg->css;
}
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return mem_cgroup_zoneinfo(mem, nid, zid);
return mem_cgroup_zoneinfo(memcg, nid, zid);
}
static struct mem_cgroup_tree_per_zone *
......@@ -403,7 +403,7 @@ soft_limit_tree_from_page(struct page *page)
}
static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz,
unsigned long long new_usage_in_excess)
......@@ -437,7 +437,7 @@ __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
}
static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
......@@ -448,17 +448,17 @@ __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
}
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
spin_lock(&mctz->lock);
__mem_cgroup_remove_exceeded(mem, mz, mctz);
__mem_cgroup_remove_exceeded(memcg, mz, mctz);
spin_unlock(&mctz->lock);
}
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
unsigned long long excess;
struct mem_cgroup_per_zone *mz;
......@@ -471,9 +471,9 @@ static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; mem; mem = parent_mem_cgroup(mem)) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
excess = res_counter_soft_limit_excess(&mem->res);
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
mz = mem_cgroup_zoneinfo(memcg, nid, zid);
excess = res_counter_soft_limit_excess(&memcg->res);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
......@@ -482,18 +482,18 @@ static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
spin_lock(&mctz->lock);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mem, mz, mctz);
__mem_cgroup_remove_exceeded(memcg, mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
spin_unlock(&mctz->lock);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
int node, zone;
struct mem_cgroup_per_zone *mz;
......@@ -501,9 +501,9 @@ static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
for_each_node_state(node, N_POSSIBLE) {
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = mem_cgroup_zoneinfo(mem, node, zone);
mz = mem_cgroup_zoneinfo(memcg, node, zone);
mctz = soft_limit_tree_node_zone(node, zone);
mem_cgroup_remove_exceeded(mem, mz, mctz);
mem_cgroup_remove_exceeded(memcg, mz, mctz);
}
}
}
......@@ -564,7 +564,7 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
* common workload, threashold and synchonization as vmstat[] should be
* implemented.
*/
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
long val = 0;
......@@ -572,81 +572,83 @@ static long mem_cgroup_read_stat(struct mem_cgroup *mem,
get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(mem->stat->count[idx], cpu);
val += per_cpu(memcg->stat->count[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&mem->pcp_counter_lock);
val += mem->nocpu_base.count[idx];
spin_unlock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
val += memcg->nocpu_base.count[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
put_online_cpus();
return val;
}
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
bool charge)
{
int val = (charge) ? 1 : -1;
this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
}
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
{
this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}
void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
{
this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx)
{
unsigned long val = 0;
int cpu;
for_each_online_cpu(cpu)
val += per_cpu(mem->stat->events[idx], cpu);
val += per_cpu(memcg->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&mem->pcp_counter_lock);
val += mem->nocpu_base.events[idx];
spin_unlock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
val += memcg->nocpu_base.events[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
return val;
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
bool file, int nr_pages)
{
preempt_disable();
if (file)
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
nr_pages);
else
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
nr_pages);
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
else {
__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
nr_pages = -nr_pages; /* for event */
}
__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
preempt_enable();
}
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
unsigned int lru_mask)
{
struct mem_cgroup_per_zone *mz;
enum lru_list l;
unsigned long ret = 0;
mz = mem_cgroup_zoneinfo(mem, nid, zid);
mz = mem_cgroup_zoneinfo(memcg, nid, zid);
for_each_lru(l) {
if (BIT(l) & lru_mask)
......@@ -656,44 +658,45 @@ mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
}
static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
int nid, unsigned int lru_mask)
{
u64 total = 0;
int zid;
for (zid = 0; zid < MAX_NR_ZONES; zid++)
total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
total += mem_cgroup_zone_nr_lru_pages(memcg,
nid, zid, lru_mask);
return total;
}
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
unsigned int lru_mask)
{
int nid;
u64 total = 0;
for_each_node_state(nid, N_HIGH_MEMORY)
total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
return total;
}
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
{
unsigned long val, next;
val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
next = this_cpu_read(mem->stat->targets[target]);
val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
next = this_cpu_read(memcg->stat->targets[target]);
/* from time_after() in jiffies.h */
return ((long)next - (long)val < 0);
}
static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
{
unsigned long val, next;
val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
switch (target) {
case MEM_CGROUP_TARGET_THRESH:
......@@ -709,30 +712,30 @@ static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
return;
}
this_cpu_write(mem->stat->targets[target], next);
this_cpu_write(memcg->stat->targets[target], next);
}
/*
* Check events in order.
*
*/
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
{
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
mem_cgroup_threshold(mem);
__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
if (unlikely(__memcg_event_check(mem,
if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
mem_cgroup_threshold(memcg);
__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
if (unlikely(__memcg_event_check(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT))) {
mem_cgroup_update_tree(mem, page);
__mem_cgroup_target_update(mem,
mem_cgroup_update_tree(memcg, page);
__mem_cgroup_target_update(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT);
}
#if MAX_NUMNODES > 1
if (unlikely(__memcg_event_check(mem,
if (unlikely(__memcg_event_check(memcg,
MEM_CGROUP_TARGET_NUMAINFO))) {
atomic_inc(&mem->numainfo_events);
__mem_cgroup_target_update(mem,
atomic_inc(&memcg->numainfo_events);
__mem_cgroup_target_update(memcg,
MEM_CGROUP_TARGET_NUMAINFO);
}
#endif
......@@ -762,7 +765,7 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
if (!mm)
return NULL;
......@@ -773,25 +776,25 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
*/
rcu_read_lock();
do {
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!mem))
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
break;
} while (!css_tryget(&mem->css));
} while (!css_tryget(&memcg->css));
rcu_read_unlock();
return mem;
return memcg;
}
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
{
struct cgroup_subsys_state *css;
int found;
if (!mem) /* ROOT cgroup has the smallest ID */
if (!memcg) /* ROOT cgroup has the smallest ID */
return root_mem_cgroup; /*css_put/get against root is ignored*/
if (!mem->use_hierarchy) {
if (css_tryget(&mem->css))
return mem;
if (!memcg->use_hierarchy) {
if (css_tryget(&memcg->css))
return memcg;
return NULL;
}
rcu_read_lock();
......@@ -799,13 +802,13 @@ static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
* searching a memory cgroup which has the smallest ID under given
* ROOT cgroup. (ID >= 1)
*/
css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
if (css && css_tryget(css))
mem = container_of(css, struct mem_cgroup, css);
memcg = container_of(css, struct mem_cgroup, css);
else
mem = NULL;
memcg = NULL;
rcu_read_unlock();
return mem;
return memcg;
}
static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
......@@ -859,29 +862,29 @@ static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
for_each_mem_cgroup_tree_cond(iter, NULL, true)
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return (mem == root_mem_cgroup);
return (memcg == root_mem_cgroup);
}
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
if (!mm)
return;
rcu_read_lock();
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!mem))
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
goto out;
switch (idx) {
case PGMAJFAULT:
mem_cgroup_pgmajfault(mem, 1);
mem_cgroup_pgmajfault(memcg, 1);
break;
case PGFAULT:
mem_cgroup_pgfault(mem, 1);
mem_cgroup_pgfault(memcg, 1);
break;
default:
BUG();
......@@ -1063,21 +1066,21 @@ void mem_cgroup_move_lists(struct page *page,
}
/*
* Checks whether given mem is same or in the root_mem's
* Checks whether given mem is same or in the root_mem_cgroup's
* hierarchy subtree
*/
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
struct mem_cgroup *mem)
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
struct mem_cgroup *memcg)
{
if (root_mem != mem) {
return (root_mem->use_hierarchy &&
css_is_ancestor(&mem->css, &root_mem->css));
if (root_memcg != memcg) {
return (root_memcg->use_hierarchy &&
css_is_ancestor(&memcg->css, &root_memcg->css));
}
return true;
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
{
int ret;
struct mem_cgroup *curr = NULL;
......@@ -1091,12 +1094,12 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
if (!curr)
return 0;
/*
* We should check use_hierarchy of "mem" not "curr". Because checking
* We should check use_hierarchy of "memcg" not "curr". Because checking
* use_hierarchy of "curr" here make this function true if hierarchy is
* enabled in "curr" and "curr" is a child of "mem" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "mem").
* enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "memcg").
*/
ret = mem_cgroup_same_or_subtree(mem, curr);
ret = mem_cgroup_same_or_subtree(memcg, curr);
css_put(&curr->css);
return ret;
}
......@@ -1254,13 +1257,13 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
* Returns the maximum amount of memory @mem can be charged with, in
* pages.
*/
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
{
unsigned long long margin;
margin = res_counter_margin(&mem->res);
margin = res_counter_margin(&memcg->res);
if (do_swap_account)
margin = min(margin, res_counter_margin(&mem->memsw));
margin = min(margin, res_counter_margin(&memcg->memsw));
return margin >> PAGE_SHIFT;
}
......@@ -1275,33 +1278,33 @@ int mem_cgroup_swappiness(struct mem_cgroup *memcg)
return memcg->swappiness;
}
static void mem_cgroup_start_move(struct mem_cgroup *mem)
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
{
int cpu;
get_online_cpus();
spin_lock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
for_each_online_cpu(cpu)
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
spin_unlock(&mem->pcp_counter_lock);
per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
spin_unlock(&memcg->pcp_counter_lock);
put_online_cpus();
synchronize_rcu();
}
static void mem_cgroup_end_move(struct mem_cgroup *mem)
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
{
int cpu;
if (!mem)
if (!memcg)
return;
get_online_cpus();
spin_lock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
for_each_online_cpu(cpu)
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
spin_unlock(&mem->pcp_counter_lock);
per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
spin_unlock(&memcg->pcp_counter_lock);
put_online_cpus();
}
/*
......@@ -1316,13 +1319,13 @@ static void mem_cgroup_end_move(struct mem_cgroup *mem)
* waiting at hith-memory prressure caused by "move".
*/
static bool mem_cgroup_stealed(struct mem_cgroup *mem)
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
{
VM_BUG_ON(!rcu_read_lock_held());
return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
static bool mem_cgroup_under_move(struct mem_cgroup *mem)
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
struct mem_cgroup *from;
struct mem_cgroup *to;
......@@ -1337,17 +1340,17 @@ static bool mem_cgroup_under_move(struct mem_cgroup *mem)
if (!from)
goto unlock;
ret = mem_cgroup_same_or_subtree(mem, from)
|| mem_cgroup_same_or_subtree(mem, to);
ret = mem_cgroup_same_or_subtree(memcg, from)
|| mem_cgroup_same_or_subtree(memcg, to);
unlock:
spin_unlock(&mc.lock);
return ret;
}
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
{
if (mc.moving_task && current != mc.moving_task) {
if (mem_cgroup_under_move(mem)) {
if (mem_cgroup_under_move(memcg)) {
DEFINE_WAIT(wait);
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
/* moving charge context might have finished. */
......@@ -1431,12 +1434,12 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
* This function returns the number of memcg under hierarchy tree. Returns
* 1(self count) if no children.
*/
static int mem_cgroup_count_children(struct mem_cgroup *mem)
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
{
int num = 0;
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
num++;
return num;
}
......@@ -1466,21 +1469,21 @@ u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
* that to reclaim free pages from.
*/
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
{
struct mem_cgroup *ret = NULL;
struct cgroup_subsys_state *css;
int nextid, found;
if (!root_mem->use_hierarchy) {
css_get(&root_mem->css);
ret = root_mem;
if (!root_memcg->use_hierarchy) {
css_get(&root_memcg->css);
ret = root_memcg;
}
while (!ret) {
rcu_read_lock();
nextid = root_mem->last_scanned_child + 1;
css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
nextid = root_memcg->last_scanned_child + 1;
css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
&found);
if (css && css_tryget(css))
ret = container_of(css, struct mem_cgroup, css);
......@@ -1489,9 +1492,9 @@ mem_cgroup_select_victim(struct mem_cgroup *root_mem)
/* Updates scanning parameter */
if (!css) {
/* this means start scan from ID:1 */
root_mem->last_scanned_child = 0;
root_memcg->last_scanned_child = 0;
} else
root_mem->last_scanned_child = found;
root_memcg->last_scanned_child = found;
}
return ret;
......@@ -1507,14 +1510,14 @@ mem_cgroup_select_victim(struct mem_cgroup *root_mem)
* reclaimable pages on a node. Returns true if there are any reclaimable
* pages in the node.
*/
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
int nid, bool noswap)
{
if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
return true;
if (noswap || !total_swap_pages)
return false;
if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
return true;
return false;
......@@ -1527,29 +1530,29 @@ static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
* nodes based on the zonelist. So update the list loosely once per 10 secs.
*
*/
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
{
int nid;
/*
* numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
* pagein/pageout changes since the last update.
*/
if (!atomic_read(&mem->numainfo_events))
if (!atomic_read(&memcg->numainfo_events))
return;
if (atomic_inc_return(&mem->numainfo_updating) > 1)
if (atomic_inc_return(&memcg->numainfo_updating) > 1)
return;
/* make a nodemask where this memcg uses memory from */
mem->scan_nodes = node_states[N_HIGH_MEMORY];
memcg->scan_nodes = node_states[N_HIGH_MEMORY];
for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
node_clear(nid, mem->scan_nodes);
if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
node_clear(nid, memcg->scan_nodes);
}
atomic_set(&mem->numainfo_events, 0);
atomic_set(&mem->numainfo_updating, 0);
atomic_set(&memcg->numainfo_events, 0);
atomic_set(&memcg->numainfo_updating, 0);
}
/*
......@@ -1564,16 +1567,16 @@ static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
*
* Now, we use round-robin. Better algorithm is welcomed.
*/
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
int node;
mem_cgroup_may_update_nodemask(mem);
node = mem->last_scanned_node;
mem_cgroup_may_update_nodemask(memcg);
node = memcg->last_scanned_node;
node = next_node(node, mem->scan_nodes);
node = next_node(node, memcg->scan_nodes);
if (node == MAX_NUMNODES)
node = first_node(mem->scan_nodes);
node = first_node(memcg->scan_nodes);
/*
* We call this when we hit limit, not when pages are added to LRU.
* No LRU may hold pages because all pages are UNEVICTABLE or
......@@ -1583,7 +1586,7 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
if (unlikely(node == MAX_NUMNODES))
node = numa_node_id();
mem->last_scanned_node = node;
memcg->last_scanned_node = node;
return node;
}
......@@ -1593,7 +1596,7 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
* unused nodes. But scan_nodes is lazily updated and may not cotain
* enough new information. We need to do double check.
*/
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
int nid;
......@@ -1601,12 +1604,12 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
* quick check...making use of scan_node.
* We can skip unused nodes.
*/
if (!nodes_empty(mem->scan_nodes)) {
for (nid = first_node(mem->scan_nodes);
if (!nodes_empty(memcg->scan_nodes)) {
for (nid = first_node(memcg->scan_nodes);
nid < MAX_NUMNODES;
nid = next_node(nid, mem->scan_nodes)) {
nid = next_node(nid, memcg->scan_nodes)) {
if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
return true;
}
}
......@@ -1614,23 +1617,23 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
* Check rest of nodes.
*/
for_each_node_state(nid, N_HIGH_MEMORY) {
if (node_isset(nid, mem->scan_nodes))
if (node_isset(nid, memcg->scan_nodes))
continue;
if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
return true;
}
return false;
}
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
return 0;
}
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
#endif
......@@ -1639,14 +1642,14 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
* we reclaimed from, so that we don't end up penalizing one child extensively
* based on its position in the children list.
*
* root_mem is the original ancestor that we've been reclaim from.
* root_memcg is the original ancestor that we've been reclaim from.
*
* We give up and return to the caller when we visit root_mem twice.
* We give up and return to the caller when we visit root_memcg twice.
* (other groups can be removed while we're walking....)
*
* If shrink==true, for avoiding to free too much, this returns immedieately.
*/
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
struct zone *zone,
gfp_t gfp_mask,
unsigned long reclaim_options,
......@@ -1661,15 +1664,15 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
unsigned long excess;
unsigned long nr_scanned;
excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
/* If memsw_is_minimum==1, swap-out is of-no-use. */
if (!check_soft && !shrink && root_mem->memsw_is_minimum)
if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
noswap = true;
while (1) {
victim = mem_cgroup_select_victim(root_mem);
if (victim == root_mem) {
victim = mem_cgroup_select_victim(root_memcg);
if (victim == root_memcg) {
loop++;
/*
* We are not draining per cpu cached charges during
......@@ -1678,7 +1681,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
* charges will not give any.
*/
if (!check_soft && loop >= 1)
drain_all_stock_async(root_mem);
drain_all_stock_async(root_memcg);
if (loop >= 2) {
/*
* If we have not been able to reclaim
......@@ -1725,9 +1728,9 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
return ret;
total += ret;
if (check_soft) {
if (!res_counter_soft_limit_excess(&root_mem->res))
if (!res_counter_soft_limit_excess(&root_memcg->res))
return total;
} else if (mem_cgroup_margin(root_mem))
} else if (mem_cgroup_margin(root_memcg))
return total;
}
return total;
......@@ -1738,12 +1741,12 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
* If someone is running, return false.
* Has to be called with memcg_oom_lock
*/
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
bool cond = true;
for_each_mem_cgroup_tree_cond(iter, mem, cond) {
for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
if (iter->oom_lock) {
/*
* this subtree of our hierarchy is already locked
......@@ -1763,7 +1766,7 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
* what we set up to the failing subtree
*/
cond = true;
for_each_mem_cgroup_tree_cond(iter, mem, cond) {
for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
if (iter == failed) {
cond = false;
continue;
......@@ -1776,24 +1779,24 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
/*
* Has to be called with memcg_oom_lock
*/
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
return 0;
}
static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
atomic_inc(&iter->under_oom);
}
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
......@@ -1802,7 +1805,7 @@ static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
* mem_cgroup_oom_lock() may not be called. We have to use
* atomic_add_unless() here.
*/
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
atomic_add_unless(&iter->under_oom, -1, 0);
}
......@@ -1817,80 +1820,80 @@ struct oom_wait_info {
static int memcg_oom_wake_function(wait_queue_t *wait,
unsigned mode, int sync, void *arg)
{
struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
*oom_wait_mem;
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
*oom_wait_memcg;
struct oom_wait_info *oom_wait_info;
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
oom_wait_mem = oom_wait_info->mem;
oom_wait_memcg = oom_wait_info->mem;
/*
* Both of oom_wait_info->mem and wake_mem are stable under us.
* Then we can use css_is_ancestor without taking care of RCU.
*/
if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
return 0;
return autoremove_wake_function(wait, mode, sync, arg);
}
static void memcg_wakeup_oom(struct mem_cgroup *mem)
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
{
/* for filtering, pass "mem" as argument. */
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
/* for filtering, pass "memcg" as argument. */
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
static void memcg_oom_recover(struct mem_cgroup *mem)
static void memcg_oom_recover(struct mem_cgroup *memcg)
{
if (mem && atomic_read(&mem->under_oom))
memcg_wakeup_oom(mem);
if (memcg && atomic_read(&memcg->under_oom))
memcg_wakeup_oom(memcg);
}
/*
* try to call OOM killer. returns false if we should exit memory-reclaim loop.
*/
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
{
struct oom_wait_info owait;
bool locked, need_to_kill;
owait.mem = mem;
owait.mem = memcg;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.task_list);
need_to_kill = true;
mem_cgroup_mark_under_oom(mem);
mem_cgroup_mark_under_oom(memcg);
/* At first, try to OOM lock hierarchy under mem.*/
/* At first, try to OOM lock hierarchy under memcg.*/
spin_lock(&memcg_oom_lock);
locked = mem_cgroup_oom_lock(mem);
locked = mem_cgroup_oom_lock(memcg);
/*
* Even if signal_pending(), we can't quit charge() loop without
* accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
* under OOM is always welcomed, use TASK_KILLABLE here.
*/
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
if (!locked || mem->oom_kill_disable)
if (!locked || memcg->oom_kill_disable)
need_to_kill = false;
if (locked)
mem_cgroup_oom_notify(mem);
mem_cgroup_oom_notify(memcg);
spin_unlock(&memcg_oom_lock);
if (need_to_kill) {
finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_out_of_memory(mem, mask);
mem_cgroup_out_of_memory(memcg, mask);
} else {
schedule();
finish_wait(&memcg_oom_waitq, &owait.wait);
}
spin_lock(&memcg_oom_lock);
if (locked)
mem_cgroup_oom_unlock(mem);
memcg_wakeup_oom(mem);
mem_cgroup_oom_unlock(memcg);
memcg_wakeup_oom(memcg);
spin_unlock(&memcg_oom_lock);
mem_cgroup_unmark_under_oom(mem);
mem_cgroup_unmark_under_oom(memcg);
if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
return false;
......@@ -1926,7 +1929,7 @@ bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
void mem_cgroup_update_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx, int val)
{
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
struct page_cgroup *pc = lookup_page_cgroup(page);
bool need_unlock = false;
unsigned long uninitialized_var(flags);
......@@ -1935,16 +1938,16 @@ void mem_cgroup_update_page_stat(struct page *page,
return;
rcu_read_lock();
mem = pc->mem_cgroup;
if (unlikely(!mem || !PageCgroupUsed(pc)))
memcg = pc->mem_cgroup;
if (unlikely(!memcg || !PageCgroupUsed(pc)))
goto out;
/* pc->mem_cgroup is unstable ? */
if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
/* take a lock against to access pc->mem_cgroup */
move_lock_page_cgroup(pc, &flags);
need_unlock = true;
mem = pc->mem_cgroup;
if (!mem || !PageCgroupUsed(pc))
memcg = pc->mem_cgroup;
if (!memcg || !PageCgroupUsed(pc))
goto out;
}
......@@ -1960,7 +1963,7 @@ void mem_cgroup_update_page_stat(struct page *page,
BUG();
}
this_cpu_add(mem->stat->count[idx], val);
this_cpu_add(memcg->stat->count[idx], val);
out:
if (unlikely(need_unlock))
......@@ -1991,13 +1994,13 @@ static DEFINE_MUTEX(percpu_charge_mutex);
* cgroup which is not current target, returns false. This stock will be
* refilled.
*/
static bool consume_stock(struct mem_cgroup *mem)
static bool consume_stock(struct mem_cgroup *memcg)
{
struct memcg_stock_pcp *stock;
bool ret = true;
stock = &get_cpu_var(memcg_stock);
if (mem == stock->cached && stock->nr_pages)
if (memcg == stock->cached && stock->nr_pages)
stock->nr_pages--;
else /* need to call res_counter_charge */
ret = false;
......@@ -2038,24 +2041,24 @@ static void drain_local_stock(struct work_struct *dummy)
* Cache charges(val) which is from res_counter, to local per_cpu area.
* This will be consumed by consume_stock() function, later.
*/
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
if (stock->cached != mem) { /* reset if necessary */
if (stock->cached != memcg) { /* reset if necessary */
drain_stock(stock);
stock->cached = mem;
stock->cached = memcg;
}
stock->nr_pages += nr_pages;
put_cpu_var(memcg_stock);
}
/*
* Drains all per-CPU charge caches for given root_mem resp. subtree
* Drains all per-CPU charge caches for given root_memcg resp. subtree
* of the hierarchy under it. sync flag says whether we should block
* until the work is done.
*/
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
{
int cpu, curcpu;
......@@ -2064,12 +2067,12 @@ static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
curcpu = get_cpu();
for_each_online_cpu(cpu) {
struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
mem = stock->cached;
if (!mem || !stock->nr_pages)
memcg = stock->cached;
if (!memcg || !stock->nr_pages)
continue;
if (!mem_cgroup_same_or_subtree(root_mem, mem))
if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
continue;
if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
if (cpu == curcpu)
......@@ -2098,23 +2101,23 @@ static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
* expects some charges will be back to res_counter later but cannot wait for
* it.
*/
static void drain_all_stock_async(struct mem_cgroup *root_mem)
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
{
/*
* If someone calls draining, avoid adding more kworker runs.
*/
if (!mutex_trylock(&percpu_charge_mutex))
return;
drain_all_stock(root_mem, false);
drain_all_stock(root_memcg, false);
mutex_unlock(&percpu_charge_mutex);
}
/* This is a synchronous drain interface. */
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
{
/* called when force_empty is called */
mutex_lock(&percpu_charge_mutex);
drain_all_stock(root_mem, true);
drain_all_stock(root_memcg, true);
mutex_unlock(&percpu_charge_mutex);
}
......@@ -2122,35 +2125,35 @@ static void drain_all_stock_sync(struct mem_cgroup *root_mem)
* This function drains percpu counter value from DEAD cpu and
* move it to local cpu. Note that this function can be preempted.
*/
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
{
int i;
spin_lock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
long x = per_cpu(mem->stat->count[i], cpu);
long x = per_cpu(memcg->stat->count[i], cpu);
per_cpu(mem->stat->count[i], cpu) = 0;
mem->nocpu_base.count[i] += x;
per_cpu(memcg->stat->count[i], cpu) = 0;
memcg->nocpu_base.count[i] += x;
}
for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
unsigned long x = per_cpu(mem->stat->events[i], cpu);
unsigned long x = per_cpu(memcg->stat->events[i], cpu);
per_cpu(mem->stat->events[i], cpu) = 0;
mem->nocpu_base.events[i] += x;
per_cpu(memcg->stat->events[i], cpu) = 0;
memcg->nocpu_base.events[i] += x;
}
/* need to clear ON_MOVE value, works as a kind of lock. */
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
spin_unlock(&mem->pcp_counter_lock);
per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
spin_unlock(&memcg->pcp_counter_lock);
}
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
{
int idx = MEM_CGROUP_ON_MOVE;
spin_lock(&mem->pcp_counter_lock);
per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
spin_unlock(&mem->pcp_counter_lock);
spin_lock(&memcg->pcp_counter_lock);
per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
spin_unlock(&memcg->pcp_counter_lock);
}
static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
......@@ -2188,7 +2191,7 @@ enum {
CHARGE_OOM_DIE, /* the current is killed because of OOM */
};
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
unsigned int nr_pages, bool oom_check)
{
unsigned long csize = nr_pages * PAGE_SIZE;
......@@ -2197,16 +2200,16 @@ static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
unsigned long flags = 0;
int ret;
ret = res_counter_charge(&mem->res, csize, &fail_res);
ret = res_counter_charge(&memcg->res, csize, &fail_res);
if (likely(!ret)) {
if (!do_swap_account)
return CHARGE_OK;
ret = res_counter_charge(&mem->memsw, csize, &fail_res);
ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
if (likely(!ret))
return CHARGE_OK;
res_counter_uncharge(&mem->res, csize);
res_counter_uncharge(&memcg->res, csize);
mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
flags |= MEM_CGROUP_RECLAIM_NOSWAP;
} else
......@@ -2264,12 +2267,12 @@ static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
static int __mem_cgroup_try_charge(struct mm_struct *mm,
gfp_t gfp_mask,
unsigned int nr_pages,
struct mem_cgroup **memcg,
struct mem_cgroup **ptr,
bool oom)
{
unsigned int batch = max(CHARGE_BATCH, nr_pages);
int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
int ret;
/*
......@@ -2287,17 +2290,17 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
if (!*memcg && !mm)
if (!*ptr && !mm)
goto bypass;
again:
if (*memcg) { /* css should be a valid one */
mem = *memcg;
VM_BUG_ON(css_is_removed(&mem->css));
if (mem_cgroup_is_root(mem))
if (*ptr) { /* css should be a valid one */
memcg = *ptr;
VM_BUG_ON(css_is_removed(&memcg->css));
if (mem_cgroup_is_root(memcg))
goto done;
if (nr_pages == 1 && consume_stock(mem))
if (nr_pages == 1 && consume_stock(memcg))
goto done;
css_get(&mem->css);
css_get(&memcg->css);
} else {
struct task_struct *p;
......@@ -2305,7 +2308,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
p = rcu_dereference(mm->owner);
/*
* Because we don't have task_lock(), "p" can exit.
* In that case, "mem" can point to root or p can be NULL with
* In that case, "memcg" can point to root or p can be NULL with
* race with swapoff. Then, we have small risk of mis-accouning.
* But such kind of mis-account by race always happens because
* we don't have cgroup_mutex(). It's overkill and we allo that
......@@ -2313,12 +2316,12 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
* (*) swapoff at el will charge against mm-struct not against
* task-struct. So, mm->owner can be NULL.
*/
mem = mem_cgroup_from_task(p);
if (!mem || mem_cgroup_is_root(mem)) {
memcg = mem_cgroup_from_task(p);
if (!memcg || mem_cgroup_is_root(memcg)) {
rcu_read_unlock();
goto done;
}
if (nr_pages == 1 && consume_stock(mem)) {
if (nr_pages == 1 && consume_stock(memcg)) {
/*
* It seems dagerous to access memcg without css_get().
* But considering how consume_stok works, it's not
......@@ -2331,7 +2334,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
goto done;
}
/* after here, we may be blocked. we need to get refcnt */
if (!css_tryget(&mem->css)) {
if (!css_tryget(&memcg->css)) {
rcu_read_unlock();
goto again;
}
......@@ -2343,7 +2346,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
/* If killed, bypass charge */
if (fatal_signal_pending(current)) {
css_put(&mem->css);
css_put(&memcg->css);
goto bypass;
}
......@@ -2353,43 +2356,43 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
}
ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
switch (ret) {
case CHARGE_OK:
break;
case CHARGE_RETRY: /* not in OOM situation but retry */
batch = nr_pages;
css_put(&mem->css);
mem = NULL;
css_put(&memcg->css);
memcg = NULL;
goto again;
case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
css_put(&mem->css);
css_put(&memcg->css);
goto nomem;
case CHARGE_NOMEM: /* OOM routine works */
if (!oom) {
css_put(&mem->css);
css_put(&memcg->css);
goto nomem;
}
/* If oom, we never return -ENOMEM */
nr_oom_retries--;
break;
case CHARGE_OOM_DIE: /* Killed by OOM Killer */
css_put(&mem->css);
css_put(&memcg->css);
goto bypass;
}
} while (ret != CHARGE_OK);
if (batch > nr_pages)
refill_stock(mem, batch - nr_pages);
css_put(&mem->css);
refill_stock(memcg, batch - nr_pages);
css_put(&memcg->css);
done:
*memcg = mem;
*ptr = memcg;
return 0;
nomem:
*memcg = NULL;
*ptr = NULL;
return -ENOMEM;
bypass:
*memcg = NULL;
*ptr = NULL;
return 0;
}
......@@ -2398,15 +2401,15 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
* This function is for that and do uncharge, put css's refcnt.
* gotten by try_charge().
*/
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
if (!mem_cgroup_is_root(mem)) {
if (!mem_cgroup_is_root(memcg)) {
unsigned long bytes = nr_pages * PAGE_SIZE;
res_counter_uncharge(&mem->res, bytes);
res_counter_uncharge(&memcg->res, bytes);
if (do_swap_account)
res_counter_uncharge(&mem->memsw, bytes);
res_counter_uncharge(&memcg->memsw, bytes);
}
}
......@@ -2431,7 +2434,7 @@ static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
unsigned short id;
swp_entry_t ent;
......@@ -2441,23 +2444,23 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
if (mem && !css_tryget(&mem->css))
mem = NULL;
memcg = pc->mem_cgroup;
if (memcg && !css_tryget(&memcg->css))
memcg = NULL;
} else if (PageSwapCache(page)) {
ent.val = page_private(page);
id = lookup_swap_cgroup(ent);
rcu_read_lock();
mem = mem_cgroup_lookup(id);
if (mem && !css_tryget(&mem->css))
mem = NULL;
memcg = mem_cgroup_lookup(id);
if (memcg && !css_tryget(&memcg->css))
memcg = NULL;
rcu_read_unlock();
}
unlock_page_cgroup(pc);
return mem;
return memcg;
}
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
struct page *page,
unsigned int nr_pages,
struct page_cgroup *pc,
......@@ -2466,14 +2469,14 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
lock_page_cgroup(pc);
if (unlikely(PageCgroupUsed(pc))) {
unlock_page_cgroup(pc);
__mem_cgroup_cancel_charge(mem, nr_pages);
__mem_cgroup_cancel_charge(memcg, nr_pages);
return;
}
/*
* we don't need page_cgroup_lock about tail pages, becase they are not
* accessed by any other context at this point.
*/
pc->mem_cgroup = mem;
pc->mem_cgroup = memcg;
/*
* We access a page_cgroup asynchronously without lock_page_cgroup().
* Especially when a page_cgroup is taken from a page, pc->mem_cgroup
......@@ -2496,14 +2499,14 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
break;
}
mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
unlock_page_cgroup(pc);
/*
* "charge_statistics" updated event counter. Then, check it.
* Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
* if they exceeds softlimit.
*/
memcg_check_events(mem, page);
memcg_check_events(memcg, page);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
......@@ -2690,7 +2693,7 @@ static int mem_cgroup_move_parent(struct page *page,
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, enum charge_type ctype)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
bool oom = true;
......@@ -2709,11 +2712,11 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
pc = lookup_page_cgroup(page);
BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
if (ret || !mem)
ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
if (ret || !memcg)
return ret;
__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
return 0;
}
......@@ -2742,7 +2745,7 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
enum charge_type ctype);
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
enum charge_type ctype)
{
struct page_cgroup *pc = lookup_page_cgroup(page);
......@@ -2752,7 +2755,7 @@ __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
* LRU. Take care of it.
*/
mem_cgroup_lru_del_before_commit(page);
__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
mem_cgroup_lru_add_after_commit(page);
return;
}
......@@ -2760,7 +2763,7 @@ __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
int ret;
if (mem_cgroup_disabled())
......@@ -2772,8 +2775,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
mm = &init_mm;
if (page_is_file_cache(page)) {
ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
if (ret || !mem)
ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
if (ret || !memcg)
return ret;
/*
......@@ -2781,15 +2784,15 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
* put that would remove them from the LRU list, make
* sure that they get relinked properly.
*/
__mem_cgroup_commit_charge_lrucare(page, mem,
__mem_cgroup_commit_charge_lrucare(page, memcg,
MEM_CGROUP_CHARGE_TYPE_CACHE);
return ret;
}
/* shmem */
if (PageSwapCache(page)) {
ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
if (!ret)
__mem_cgroup_commit_charge_swapin(page, mem,
__mem_cgroup_commit_charge_swapin(page, memcg,
MEM_CGROUP_CHARGE_TYPE_SHMEM);
} else
ret = mem_cgroup_charge_common(page, mm, gfp_mask,
......@@ -2808,7 +2811,7 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
struct page *page,
gfp_t mask, struct mem_cgroup **ptr)
{
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
int ret;
*ptr = NULL;
......@@ -2826,12 +2829,12 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
*/
if (!PageSwapCache(page))
goto charge_cur_mm;
mem = try_get_mem_cgroup_from_page(page);
if (!mem)
memcg = try_get_mem_cgroup_from_page(page);
if (!memcg)
goto charge_cur_mm;
*ptr = mem;
*ptr = memcg;
ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
css_put(&mem->css);
css_put(&memcg->css);
return ret;
charge_cur_mm:
if (unlikely(!mm))
......@@ -2891,16 +2894,16 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return;
if (!mem)
if (!memcg)
return;
__mem_cgroup_cancel_charge(mem, 1);
__mem_cgroup_cancel_charge(memcg, 1);
}
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
unsigned int nr_pages,
const enum charge_type ctype)
{
......@@ -2918,7 +2921,7 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
* uncharges. Then, it's ok to ignore memcg's refcnt.
*/
if (!batch->memcg)
batch->memcg = mem;
batch->memcg = memcg;
/*
* do_batch > 0 when unmapping pages or inode invalidate/truncate.
* In those cases, all pages freed continuously can be expected to be in
......@@ -2938,7 +2941,7 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
* merge a series of uncharges to an uncharge of res_counter.
* If not, we uncharge res_counter ony by one.
*/
if (batch->memcg != mem)
if (batch->memcg != memcg)
goto direct_uncharge;
/* remember freed charge and uncharge it later */
batch->nr_pages++;
......@@ -2946,11 +2949,11 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
batch->memsw_nr_pages++;
return;
direct_uncharge:
res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
if (uncharge_memsw)
res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
if (unlikely(batch->memcg != mem))
memcg_oom_recover(mem);
res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
if (unlikely(batch->memcg != memcg))
memcg_oom_recover(memcg);
return;
}
......@@ -2960,7 +2963,7 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
......@@ -2983,7 +2986,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
lock_page_cgroup(pc);
mem = pc->mem_cgroup;
memcg = pc->mem_cgroup;
if (!PageCgroupUsed(pc))
goto unlock_out;
......@@ -3006,7 +3009,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
break;
}
mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
ClearPageCgroupUsed(pc);
/*
......@@ -3018,18 +3021,18 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
unlock_page_cgroup(pc);
/*
* even after unlock, we have mem->res.usage here and this memcg
* even after unlock, we have memcg->res.usage here and this memcg
* will never be freed.
*/
memcg_check_events(mem, page);
memcg_check_events(memcg, page);
if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
mem_cgroup_swap_statistics(mem, true);
mem_cgroup_get(mem);
mem_cgroup_swap_statistics(memcg, true);
mem_cgroup_get(memcg);
}
if (!mem_cgroup_is_root(mem))
mem_cgroup_do_uncharge(mem, nr_pages, ctype);
if (!mem_cgroup_is_root(memcg))
mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
return mem;
return memcg;
unlock_out:
unlock_page_cgroup(pc);
......@@ -3219,7 +3222,7 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
int mem_cgroup_prepare_migration(struct page *page,
struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
{
struct mem_cgroup *mem = NULL;
struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
enum charge_type ctype;
int ret = 0;
......@@ -3233,8 +3236,8 @@ int mem_cgroup_prepare_migration(struct page *page,
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
css_get(&mem->css);
memcg = pc->mem_cgroup;
css_get(&memcg->css);
/*
* At migrating an anonymous page, its mapcount goes down
* to 0 and uncharge() will be called. But, even if it's fully
......@@ -3272,12 +3275,12 @@ int mem_cgroup_prepare_migration(struct page *page,
* If the page is not charged at this point,
* we return here.
*/
if (!mem)
if (!memcg)
return 0;
*ptr = mem;
*ptr = memcg;
ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
css_put(&mem->css);/* drop extra refcnt */
css_put(&memcg->css);/* drop extra refcnt */
if (ret || *ptr == NULL) {
if (PageAnon(page)) {
lock_page_cgroup(pc);
......@@ -3303,21 +3306,21 @@ int mem_cgroup_prepare_migration(struct page *page,
ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
else
ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
return ret;
}
/* remove redundant charge if migration failed*/
void mem_cgroup_end_migration(struct mem_cgroup *mem,
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
struct page *used, *unused;
struct page_cgroup *pc;
if (!mem)
if (!memcg)
return;
/* blocks rmdir() */
cgroup_exclude_rmdir(&mem->css);
cgroup_exclude_rmdir(&memcg->css);
if (!migration_ok) {
used = oldpage;
unused = newpage;
......@@ -3353,7 +3356,7 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem,
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
cgroup_release_and_wakeup_rmdir(&mem->css);
cgroup_release_and_wakeup_rmdir(&memcg->css);
}
#ifdef CONFIG_DEBUG_VM
......@@ -3432,7 +3435,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee mem->res.limit < mem->memsw.limit.
* We have to guarantee memcg->res.limit < memcg->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
......@@ -3494,7 +3497,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee mem->res.limit < mem->memsw.limit.
* We have to guarantee memcg->res.limit < memcg->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
......@@ -3632,7 +3635,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
* This routine traverse page_cgroup in given list and drop them all.
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
int node, int zid, enum lru_list lru)
{
struct zone *zone;
......@@ -3643,7 +3646,7 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
int ret = 0;
zone = &NODE_DATA(node)->node_zones[zid];
mz = mem_cgroup_zoneinfo(mem, node, zid);
mz = mem_cgroup_zoneinfo(memcg, node, zid);
list = &mz->lists[lru];
loop = MEM_CGROUP_ZSTAT(mz, lru);
......@@ -3670,7 +3673,7 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
page = lookup_cgroup_page(pc);
ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
if (ret == -ENOMEM)
break;
......@@ -3691,14 +3694,14 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
* make mem_cgroup's charge to be 0 if there is no task.
* This enables deleting this mem_cgroup.
*/
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
{
int ret;
int node, zid, shrink;
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct cgroup *cgrp = mem->css.cgroup;
struct cgroup *cgrp = memcg->css.cgroup;
css_get(&mem->css);
css_get(&memcg->css);
shrink = 0;
/* should free all ? */
......@@ -3714,14 +3717,14 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
goto out;
/* This is for making all *used* pages to be on LRU. */
lru_add_drain_all();
drain_all_stock_sync(mem);
drain_all_stock_sync(memcg);
ret = 0;
mem_cgroup_start_move(mem);
mem_cgroup_start_move(memcg);
for_each_node_state(node, N_HIGH_MEMORY) {
for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
enum lru_list l;
for_each_lru(l) {
ret = mem_cgroup_force_empty_list(mem,
ret = mem_cgroup_force_empty_list(memcg,
node, zid, l);
if (ret)
break;
......@@ -3730,16 +3733,16 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
if (ret)
break;
}
mem_cgroup_end_move(mem);
memcg_oom_recover(mem);
mem_cgroup_end_move(memcg);
memcg_oom_recover(memcg);
/* it seems parent cgroup doesn't have enough mem */
if (ret == -ENOMEM)
goto try_to_free;
cond_resched();
/* "ret" should also be checked to ensure all lists are empty. */
} while (mem->res.usage > 0 || ret);
} while (memcg->res.usage > 0 || ret);
out:
css_put(&mem->css);
css_put(&memcg->css);
return ret;
try_to_free:
......@@ -3752,14 +3755,14 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
lru_add_drain_all();
/* try to free all pages in this cgroup */
shrink = 1;
while (nr_retries && mem->res.usage > 0) {
while (nr_retries && memcg->res.usage > 0) {
int progress;
if (signal_pending(current)) {
ret = -EINTR;
goto out;
}
progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
false);
if (!progress) {
nr_retries--;
......@@ -3788,12 +3791,12 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
u64 val)
{
int retval = 0;
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
struct cgroup *parent = cont->parent;
struct mem_cgroup *parent_mem = NULL;
struct mem_cgroup *parent_memcg = NULL;
if (parent)
parent_mem = mem_cgroup_from_cont(parent);
parent_memcg = mem_cgroup_from_cont(parent);
cgroup_lock();
/*
......@@ -3804,10 +3807,10 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
* For the root cgroup, parent_mem is NULL, we allow value to be
* set if there are no children.
*/
if ((!parent_mem || !parent_mem->use_hierarchy) &&
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
if (list_empty(&cont->children))
mem->use_hierarchy = val;
memcg->use_hierarchy = val;
else
retval = -EBUSY;
} else
......@@ -3818,14 +3821,14 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
}
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
struct mem_cgroup *iter;
long val = 0;
/* Per-cpu values can be negative, use a signed accumulator */
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
val += mem_cgroup_read_stat(iter, idx);
if (val < 0) /* race ? */
......@@ -3833,29 +3836,29 @@ static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
return val;
}
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
u64 val;
if (!mem_cgroup_is_root(mem)) {
if (!mem_cgroup_is_root(memcg)) {
if (!swap)
return res_counter_read_u64(&mem->res, RES_USAGE);
return res_counter_read_u64(&memcg->res, RES_USAGE);
else
return res_counter_read_u64(&mem->memsw, RES_USAGE);
return res_counter_read_u64(&memcg->memsw, RES_USAGE);
}
val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
if (swap)
val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
return val << PAGE_SHIFT;
}
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
u64 val;
int type, name;
......@@ -3864,15 +3867,15 @@ static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
switch (type) {
case _MEM:
if (name == RES_USAGE)
val = mem_cgroup_usage(mem, false);
val = mem_cgroup_usage(memcg, false);
else
val = res_counter_read_u64(&mem->res, name);
val = res_counter_read_u64(&memcg->res, name);
break;
case _MEMSWAP:
if (name == RES_USAGE)
val = mem_cgroup_usage(mem, true);
val = mem_cgroup_usage(memcg, true);
else
val = res_counter_read_u64(&mem->memsw, name);
val = res_counter_read_u64(&memcg->memsw, name);
break;
default:
BUG();
......@@ -3960,24 +3963,24 @@ static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
{
struct mem_cgroup *mem;
struct mem_cgroup *memcg;
int type, name;
mem = mem_cgroup_from_cont(cont);
memcg = mem_cgroup_from_cont(cont);
type = MEMFILE_TYPE(event);
name = MEMFILE_ATTR(event);
switch (name) {
case RES_MAX_USAGE:
if (type == _MEM)
res_counter_reset_max(&mem->res);
res_counter_reset_max(&memcg->res);
else
res_counter_reset_max(&mem->memsw);
res_counter_reset_max(&memcg->memsw);
break;
case RES_FAILCNT:
if (type == _MEM)
res_counter_reset_failcnt(&mem->res);
res_counter_reset_failcnt(&memcg->res);
else
res_counter_reset_failcnt(&mem->memsw);
res_counter_reset_failcnt(&memcg->memsw);
break;
}
......@@ -3994,7 +3997,7 @@ static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
if (val >= (1 << NR_MOVE_TYPE))
return -EINVAL;
......@@ -4004,7 +4007,7 @@ static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
* inconsistent.
*/
cgroup_lock();
mem->move_charge_at_immigrate = val;
memcg->move_charge_at_immigrate = val;
cgroup_unlock();
return 0;
......@@ -4061,49 +4064,49 @@ struct {
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
{
s64 val;
/* per cpu stat */
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
s->stat[MCS_CACHE] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
s->stat[MCS_RSS] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
s->stat[MCS_PGPGIN] += val;
val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
s->stat[MCS_PGPGOUT] += val;
if (do_swap_account) {
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
s->stat[MCS_SWAP] += val * PAGE_SIZE;
}
val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
s->stat[MCS_PGFAULT] += val;
val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
s->stat[MCS_PGMAJFAULT] += val;
/* per zone stat */
val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}
static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_get_local_stat(iter, s);
}
......@@ -4327,20 +4330,20 @@ static int compare_thresholds(const void *a, const void *b)
return _a->threshold - _b->threshold;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
{
struct mem_cgroup_eventfd_list *ev;
list_for_each_entry(ev, &mem->oom_notify, list)
list_for_each_entry(ev, &memcg->oom_notify, list)
eventfd_signal(ev->eventfd, 1);
return 0;
}
static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_oom_notify_cb(iter);
}
......@@ -4530,7 +4533,7 @@ static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_eventfd_list *ev, *tmp;
int type = MEMFILE_TYPE(cft->private);
......@@ -4538,7 +4541,7 @@ static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
spin_lock(&memcg_oom_lock);
list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
if (ev->eventfd == eventfd) {
list_del(&ev->list);
kfree(ev);
......@@ -4551,11 +4554,11 @@ static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
struct cftype *cft, struct cgroup_map_cb *cb)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
if (atomic_read(&mem->under_oom))
if (atomic_read(&memcg->under_oom))
cb->fill(cb, "under_oom", 1);
else
cb->fill(cb, "under_oom", 0);
......@@ -4565,7 +4568,7 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent;
/* cannot set to root cgroup and only 0 and 1 are allowed */
......@@ -4577,13 +4580,13 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
cgroup_lock();
/* oom-kill-disable is a flag for subhierarchy. */
if ((parent->use_hierarchy) ||
(mem->use_hierarchy && !list_empty(&cgrp->children))) {
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
return -EINVAL;
}
mem->oom_kill_disable = val;
memcg->oom_kill_disable = val;
if (!val)
memcg_oom_recover(mem);
memcg_oom_recover(memcg);
cgroup_unlock();
return 0;
}
......@@ -4719,7 +4722,7 @@ static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
}
#endif
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup_per_zone *mz;
......@@ -4739,21 +4742,21 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
if (!pn)
return 1;
mem->info.nodeinfo[node] = pn;
memcg->info.nodeinfo[node] = pn;
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
for_each_lru(l)
INIT_LIST_HEAD(&mz->lists[l]);
mz->usage_in_excess = 0;
mz->on_tree = false;
mz->mem = mem;
mz->mem = memcg;
}
return 0;
}
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
kfree(mem->info.nodeinfo[node]);
kfree(memcg->info.nodeinfo[node]);
}
static struct mem_cgroup *mem_cgroup_alloc(void)
......@@ -4795,51 +4798,51 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
* Removal of cgroup itself succeeds regardless of refs from swap.
*/
static void __mem_cgroup_free(struct mem_cgroup *mem)
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
mem_cgroup_remove_from_trees(mem);
free_css_id(&mem_cgroup_subsys, &mem->css);
mem_cgroup_remove_from_trees(memcg);
free_css_id(&mem_cgroup_subsys, &memcg->css);
for_each_node_state(node, N_POSSIBLE)
free_mem_cgroup_per_zone_info(mem, node);
free_mem_cgroup_per_zone_info(memcg, node);
free_percpu(mem->stat);
free_percpu(memcg->stat);
if (sizeof(struct mem_cgroup) < PAGE_SIZE)
kfree(mem);
kfree(memcg);
else
vfree(mem);
vfree(memcg);
}
static void mem_cgroup_get(struct mem_cgroup *mem)
static void mem_cgroup_get(struct mem_cgroup *memcg)
{
atomic_inc(&mem->refcnt);
atomic_inc(&memcg->refcnt);
}
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
{
if (atomic_sub_and_test(count, &mem->refcnt)) {
struct mem_cgroup *parent = parent_mem_cgroup(mem);
__mem_cgroup_free(mem);
if (atomic_sub_and_test(count, &memcg->refcnt)) {
struct mem_cgroup *parent = parent_mem_cgroup(memcg);
__mem_cgroup_free(memcg);
if (parent)
mem_cgroup_put(parent);
}
}
static void mem_cgroup_put(struct mem_cgroup *mem)
static void mem_cgroup_put(struct mem_cgroup *memcg)
{
__mem_cgroup_put(mem, 1);
__mem_cgroup_put(memcg, 1);
}
/*
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
*/
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
if (!mem->res.parent)
if (!memcg->res.parent)
return NULL;
return mem_cgroup_from_res_counter(mem->res.parent, res);
return mem_cgroup_from_res_counter(memcg->res.parent, res);
}
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
......@@ -4882,16 +4885,16 @@ static int mem_cgroup_soft_limit_tree_init(void)
static struct cgroup_subsys_state * __ref
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct mem_cgroup *mem, *parent;
struct mem_cgroup *memcg, *parent;
long error = -ENOMEM;
int node;
mem = mem_cgroup_alloc();
if (!mem)
memcg = mem_cgroup_alloc();
if (!memcg)
return ERR_PTR(error);
for_each_node_state(node, N_POSSIBLE)
if (alloc_mem_cgroup_per_zone_info(mem, node))
if (alloc_mem_cgroup_per_zone_info(memcg, node))
goto free_out;
/* root ? */
......@@ -4899,7 +4902,7 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
int cpu;
enable_swap_cgroup();
parent = NULL;
root_mem_cgroup = mem;
root_mem_cgroup = memcg;
if (mem_cgroup_soft_limit_tree_init())
goto free_out;
for_each_possible_cpu(cpu) {
......@@ -4910,13 +4913,13 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
} else {
parent = mem_cgroup_from_cont(cont->parent);
mem->use_hierarchy = parent->use_hierarchy;
mem->oom_kill_disable = parent->oom_kill_disable;
memcg->use_hierarchy = parent->use_hierarchy;
memcg->oom_kill_disable = parent->oom_kill_disable;
}
if (parent && parent->use_hierarchy) {
res_counter_init(&mem->res, &parent->res);
res_counter_init(&mem->memsw, &parent->memsw);
res_counter_init(&memcg->res, &parent->res);
res_counter_init(&memcg->memsw, &parent->memsw);
/*
* We increment refcnt of the parent to ensure that we can
* safely access it on res_counter_charge/uncharge.
......@@ -4925,21 +4928,21 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
*/
mem_cgroup_get(parent);
} else {
res_counter_init(&mem->res, NULL);
res_counter_init(&mem->memsw, NULL);
res_counter_init(&memcg->res, NULL);
res_counter_init(&memcg->memsw, NULL);
}
mem->last_scanned_child = 0;
mem->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&mem->oom_notify);
memcg->last_scanned_child = 0;
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
if (parent)
mem->swappiness = mem_cgroup_swappiness(parent);
atomic_set(&mem->refcnt, 1);
mem->move_charge_at_immigrate = 0;
mutex_init(&mem->thresholds_lock);
return &mem->css;
memcg->swappiness = mem_cgroup_swappiness(parent);
atomic_set(&memcg->refcnt, 1);
memcg->move_charge_at_immigrate = 0;
mutex_init(&memcg->thresholds_lock);
return &memcg->css;
free_out:
__mem_cgroup_free(mem);
__mem_cgroup_free(memcg);
root_mem_cgroup = NULL;
return ERR_PTR(error);
}
......@@ -4947,17 +4950,17 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
return mem_cgroup_force_empty(mem, false);
return mem_cgroup_force_empty(memcg, false);
}
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
mem_cgroup_put(mem);
mem_cgroup_put(memcg);
}
static int mem_cgroup_populate(struct cgroup_subsys *ss,
......@@ -4980,9 +4983,9 @@ static int mem_cgroup_do_precharge(unsigned long count)
{
int ret = 0;
int batch_count = PRECHARGE_COUNT_AT_ONCE;
struct mem_cgroup *mem = mc.to;
struct mem_cgroup *memcg = mc.to;
if (mem_cgroup_is_root(mem)) {
if (mem_cgroup_is_root(memcg)) {
mc.precharge += count;
/* we don't need css_get for root */
return ret;
......@@ -4991,16 +4994,16 @@ static int mem_cgroup_do_precharge(unsigned long count)
if (count > 1) {
struct res_counter *dummy;
/*
* "mem" cannot be under rmdir() because we've already checked
* "memcg" cannot be under rmdir() because we've already checked
* by cgroup_lock_live_cgroup() that it is not removed and we
* are still under the same cgroup_mutex. So we can postpone
* css_get().
*/
if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
goto one_by_one;
if (do_swap_account && res_counter_charge(&mem->memsw,
if (do_swap_account && res_counter_charge(&memcg->memsw,
PAGE_SIZE * count, &dummy)) {
res_counter_uncharge(&mem->res, PAGE_SIZE * count);
res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
goto one_by_one;
}
mc.precharge += count;
......@@ -5017,8 +5020,9 @@ static int mem_cgroup_do_precharge(unsigned long count)
batch_count = PRECHARGE_COUNT_AT_ONCE;
cond_resched();
}
ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
if (ret || !mem)
ret = __mem_cgroup_try_charge(NULL,
GFP_KERNEL, 1, &memcg, false);
if (ret || !memcg)
/* mem_cgroup_clear_mc() will do uncharge later */
return -ENOMEM;
mc.precharge++;
......@@ -5292,13 +5296,13 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
struct task_struct *p)
{
int ret = 0;
struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
if (mem->move_charge_at_immigrate) {
if (memcg->move_charge_at_immigrate) {
struct mm_struct *mm;
struct mem_cgroup *from = mem_cgroup_from_task(p);
VM_BUG_ON(from == mem);
VM_BUG_ON(from == memcg);
mm = get_task_mm(p);
if (!mm)
......@@ -5313,7 +5317,7 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
mem_cgroup_start_move(from);
spin_lock(&mc.lock);
mc.from = from;
mc.to = mem;
mc.to = memcg;
spin_unlock(&mc.lock);
/* We set mc.moving_task later */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册