sched.c 266.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 381 382 383
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
384

385
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
386

I
Ingo Molnar 已提交
387 388 389 390 391 392
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
393
	u64 min_vruntime;
I
Ingo Molnar 已提交
394 395 396

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
397 398 399 400 401 402

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
403 404
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
405
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
406

P
Peter Zijlstra 已提交
407
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
408

409
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
410 411
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
412 413
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
414 415 416 417 418 419
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
420 421
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
422 423 424

#ifdef CONFIG_SMP
	/*
425
	 * the part of load.weight contributed by tasks
426
	 */
427
	unsigned long task_weight;
428

429 430 431 432 433 434 435
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
436

437 438 439 440
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
441 442 443 444 445

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
446
#endif
I
Ingo Molnar 已提交
447 448
#endif
};
L
Linus Torvalds 已提交
449

I
Ingo Molnar 已提交
450 451 452
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
453
	unsigned long rt_nr_running;
454
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 456
	struct {
		int curr; /* highest queued rt task prio */
457
#ifdef CONFIG_SMP
458
		int next; /* next highest */
459
#endif
460
	} highest_prio;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
464
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
465
	int overloaded;
466
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
467
#endif
P
Peter Zijlstra 已提交
468
	int rt_throttled;
P
Peter Zijlstra 已提交
469
	u64 rt_time;
P
Peter Zijlstra 已提交
470
	u64 rt_runtime;
I
Ingo Molnar 已提交
471
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
472
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
473

474
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475 476
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
477 478 479 480 481
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
482 483
};

G
Gregory Haskins 已提交
484 485 486 487
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
488 489
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
496 497
	cpumask_var_t span;
	cpumask_var_t online;
498

I
Ingo Molnar 已提交
499
	/*
500 501 502
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
503
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
504
	atomic_t rto_count;
505 506 507
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
508 509
};

510 511 512 513
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
514 515 516 517
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
518 519 520 521 522 523 524
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
525
struct rq {
526 527
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
534 535
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 537 538
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
539 540
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
541 542 543 544
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
545 546
	struct rt_rq rt;

I
Ingo Molnar 已提交
547
#ifdef CONFIG_FAIR_GROUP_SCHED
548 549
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
550 551
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
552
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

563
	struct task_struct *curr, *idle;
564
	unsigned long next_balance;
L
Linus Torvalds 已提交
565
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
566

567
	u64 clock;
I
Ingo Molnar 已提交
568

L
Linus Torvalds 已提交
569 570 571
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
572
	struct root_domain *rd;
L
Linus Torvalds 已提交
573 574
	struct sched_domain *sd;

575
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
576
	/* For active balancing */
577
	int post_schedule;
L
Linus Torvalds 已提交
578 579
	int active_balance;
	int push_cpu;
580 581
	/* cpu of this runqueue: */
	int cpu;
582
	int online;
L
Linus Torvalds 已提交
583

584
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
585

586
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
587
	struct list_head migration_queue;
588 589 590

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
591 592
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
593 594
#endif

595 596 597 598
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
599
#ifdef CONFIG_SCHED_HRTICK
600 601 602 603
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
604 605 606
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
607 608 609
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
610 611
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
612 613

	/* sys_sched_yield() stats */
614
	unsigned int yld_count;
L
Linus Torvalds 已提交
615 616

	/* schedule() stats */
617 618 619
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
620 621

	/* try_to_wake_up() stats */
622 623
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
624 625

	/* BKL stats */
626
	unsigned int bkl_count;
L
Linus Torvalds 已提交
627 628 629
#endif
};

630
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
631

P
Peter Zijlstra 已提交
632 633
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
634
{
P
Peter Zijlstra 已提交
635
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
636 637
}

638 639 640 641 642 643 644 645 646
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
661
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
662

I
Ingo Molnar 已提交
663
inline void update_rq_clock(struct rq *rq)
664 665 666 667
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
668 669 670 671 672 673 674 675 676
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
677 678
/**
 * runqueue_is_locked
679
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
680 681 682 683 684
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
685
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
686
{
687
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
688 689
}

I
Ingo Molnar 已提交
690 691 692
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
693 694 695 696

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
697
enum {
P
Peter Zijlstra 已提交
698
#include "sched_features.h"
I
Ingo Molnar 已提交
699 700
};

P
Peter Zijlstra 已提交
701 702 703 704 705
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
706
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

716
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
717 718 719 720 721 722
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
723
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
724 725 726 727
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
728 729 730
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
731
	}
L
Li Zefan 已提交
732
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
733

L
Li Zefan 已提交
734
	return 0;
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
754
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

774
	*ppos += cnt;
P
Peter Zijlstra 已提交
775 776 777 778

	return cnt;
}

L
Li Zefan 已提交
779 780 781 782 783
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

784
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
785 786 787 788 789
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
804

805 806 807 808 809 810
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
811 812
/*
 * ratelimit for updating the group shares.
813
 * default: 0.25ms
P
Peter Zijlstra 已提交
814
 */
815
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
816

817 818 819 820 821 822 823
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

824 825 826 827 828 829 830 831
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
832
/*
P
Peter Zijlstra 已提交
833
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
834 835
 * default: 1s
 */
P
Peter Zijlstra 已提交
836
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
837

838 839
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
840 841 842 843 844
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
845

846 847 848 849 850 851 852
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
853
	if (sysctl_sched_rt_runtime < 0)
854 855 856 857
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
858

L
Linus Torvalds 已提交
859
#ifndef prepare_arch_switch
860 861 862 863 864 865
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

866 867 868 869 870
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

871
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
872
static inline int task_running(struct rq *rq, struct task_struct *p)
873
{
874
	return task_current(rq, p);
875 876
}

877
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 879 880
{
}

881
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882
{
883 884 885 886
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
887 888 889 890 891 892 893
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

894 895 896 897
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
898
static inline int task_running(struct rq *rq, struct task_struct *p)
899 900 901 902
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
903
	return task_current(rq, p);
904 905 906
#endif
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

924
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 926 927 928 929 930 931 932 933 934 935 936
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
937
#endif
938 939
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
940

941 942 943 944
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
945
static inline struct rq *__task_rq_lock(struct task_struct *p)
946 947
	__acquires(rq->lock)
{
948 949 950 951 952
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
953 954 955 956
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
957 958
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
959
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
960 961
 * explicitly disabling preemption.
 */
962
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
963 964
	__acquires(rq->lock)
{
965
	struct rq *rq;
L
Linus Torvalds 已提交
966

967 968 969 970 971 972
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
973 974 975 976
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

977 978 979 980 981 982 983 984
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
985
static void __task_rq_unlock(struct rq *rq)
986 987 988 989 990
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

991
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
992 993 994 995 996 997
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
998
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
999
 */
A
Alexey Dobriyan 已提交
1000
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1001 1002
	__acquires(rq->lock)
{
1003
	struct rq *rq;
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1033
	if (!cpu_active(cpu_of(rq)))
1034
		return 0;
P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1055
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1062
#ifdef CONFIG_SMP
1063 1064 1065 1066
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1067
{
1068
	struct rq *rq = arg;
1069

1070 1071 1072 1073
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1074 1075
}

1076 1077 1078 1079 1080 1081
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1082
{
1083 1084
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085

1086
	hrtimer_set_expires(timer, time);
1087 1088 1089 1090

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1091
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 1093
		rq->hrtick_csd_pending = 1;
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1108
		hrtick_clear(cpu_rq(cpu));
1109 1110 1111 1112 1113 1114
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1115
static __init void init_hrtick(void)
1116 1117 1118
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1119 1120 1121 1122 1123 1124 1125 1126
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1127
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128
			HRTIMER_MODE_REL_PINNED, 0);
1129
}
1130

A
Andrew Morton 已提交
1131
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1132 1133
{
}
1134
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1135

1136
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1137
{
1138 1139
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1140

1141 1142 1143 1144
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1145

1146 1147
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1148
}
A
Andrew Morton 已提交
1149
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154 1155 1156 1157
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1158 1159 1160
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1161
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1162

I
Ingo Molnar 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1176
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1177 1178 1179 1180 1181
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1182
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1183 1184
		return;

1185
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1241
	set_tsk_need_resched(rq->idle);
1242 1243 1244 1245 1246 1247

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277 1278 1279 1280

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1281
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1291 1292 1293
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1294
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1295

1296 1297 1298
/*
 * delta *= weight / lw
 */
1299
static unsigned long
1300 1301 1302 1303 1304
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1305 1306 1307 1308 1309 1310 1311
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1312 1313 1314 1315 1316

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1317
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1318
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1319 1320
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1321
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322

1323
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 1325
}

1326
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 1328
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 1334
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338 1339 1340 1341
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1342
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 1344 1345 1346
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1347 1348
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 1359 1360
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1361 1362
 */
static const int prio_to_weight[40] = {
1363 1364 1365 1366 1367 1368 1369 1370
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1371 1372
};

1373 1374 1375 1376 1377 1378 1379
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1380
static const u32 prio_to_wmult[40] = {
1381 1382 1383 1384 1385 1386 1387 1388
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1389
};
1390

I
Ingo Molnar 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1425 1426
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 1428
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1429 1430
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 1432
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1433 1434
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1445
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1446
typedef int (*tg_visitor)(struct task_group *, void *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1452
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 1454
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1455
	int ret;
1456 1457 1458 1459

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467 1468 1469
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1470 1471 1472
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1473 1474 1475 1476 1477

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1478
out_unlock:
1479
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1480 1481

	return ret;
1482 1483
}

P
Peter Zijlstra 已提交
1484 1485 1486
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1487
}
P
Peter Zijlstra 已提交
1488 1489 1490
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1550 1551 1552 1553 1554
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1555
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1556

1557 1558
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1559 1560
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1561 1562 1563 1564 1565

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1566

1567 1568 1569 1570 1571 1572
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1573 1574 1575 1576 1577
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1578 1579 1580 1581
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1582
{
1583
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1584
	int boost = 0;
1585

1586
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1587 1588 1589 1590
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1591

1592
	/*
P
Peter Zijlstra 已提交
1593 1594 1595
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1596
	 */
1597
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1598
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599

1600 1601 1602 1603
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1604

1605
		spin_lock_irqsave(&rq->lock, flags);
1606
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1607
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 1609 1610
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1611
}
1612 1613

/*
1614 1615 1616
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_shares_up(struct task_group *tg, void *data)
1619
{
1620 1621
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1622
	struct sched_domain *sd = data;
1623
	unsigned long flags;
1624
	int i;
1625

1626 1627 1628 1629 1630 1631
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1632
	for_each_cpu(i, sched_domain_span(sd)) {
1633 1634 1635
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1636 1637 1638 1639 1640 1641 1642 1643 1644
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1645
		shares += tg->cfs_rq[i]->shares;
1646 1647
	}

1648 1649 1650 1651 1652
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1653

1654
	for_each_cpu(i, sched_domain_span(sd))
1655 1656 1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1658 1659

	return 0;
1660 1661 1662
}

/*
1663 1664 1665
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1666
 */
P
Peter Zijlstra 已提交
1667
static int tg_load_down(struct task_group *tg, void *data)
1668
{
1669
	unsigned long load;
P
Peter Zijlstra 已提交
1670
	long cpu = (long)data;
1671

1672 1673 1674 1675 1676 1677 1678
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1679

1680
	tg->cfs_rq[cpu]->h_load = load;
1681

P
Peter Zijlstra 已提交
1682
	return 0;
1683 1684
}

1685
static void update_shares(struct sched_domain *sd)
1686
{
1687 1688 1689 1690 1691 1692 1693 1694
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1695 1696 1697

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1698
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1699
	}
1700 1701
}

1702 1703
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1704 1705 1706
	if (root_task_group_empty())
		return;

1707 1708 1709 1710 1711
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1712
static void update_h_load(long cpu)
1713
{
1714 1715 1716
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1717
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1718 1719 1720 1721
}

#else

1722
static inline void update_shares(struct sched_domain *sd)
1723 1724 1725
{
}

1726 1727 1728 1729
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1730 1731
#endif

1732 1733
#ifdef CONFIG_PREEMPT

1734 1735
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1736
/*
1737 1738 1739 1740 1741 1742
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1743
 */
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1798 1799 1800 1801 1802 1803
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1804 1805
#endif

V
Vegard Nossum 已提交
1806
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1807 1808
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1809
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1810 1811 1812
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1813
#endif
1814

1815 1816
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1817 1818
#include "sched_stats.h"
#include "sched_idletask.c"
1819 1820
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1821 1822 1823 1824 1825
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1826 1827
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1828

1829
static void inc_nr_running(struct rq *rq)
1830 1831 1832 1833
{
	rq->nr_running++;
}

1834
static void dec_nr_running(struct rq *rq)
1835 1836 1837 1838
{
	rq->nr_running--;
}

1839 1840 1841
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1842 1843 1844 1845
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1846

I
Ingo Molnar 已提交
1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1855

I
Ingo Molnar 已提交
1856 1857
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1858 1859
}

1860 1861 1862 1863 1864 1865
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1866
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867
{
P
Peter Zijlstra 已提交
1868 1869 1870
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1871
	sched_info_queued(p);
1872
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1873
	p->se.on_rq = 1;
1874 1875
}

1876
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877
{
P
Peter Zijlstra 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1887 1888
	}

1889
	sched_info_dequeued(p);
1890
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1891
	p->se.on_rq = 0;
1892 1893
}

1894
/*
I
Ingo Molnar 已提交
1895
 * __normal_prio - return the priority that is based on the static prio
1896 1897 1898
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1899
	return p->static_prio;
1900 1901
}

1902 1903 1904 1905 1906 1907 1908
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1909
static inline int normal_prio(struct task_struct *p)
1910 1911 1912
{
	int prio;

1913
	if (task_has_rt_policy(p))
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1927
static int effective_prio(struct task_struct *p)
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1940
/*
I
Ingo Molnar 已提交
1941
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1942
 */
I
Ingo Molnar 已提交
1943
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1944
{
1945
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1946
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1947

1948
	enqueue_task(rq, p, wakeup);
1949
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1955
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1956
{
1957
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1958 1959
		rq->nr_uninterruptible++;

1960
	dequeue_task(rq, p, sleep);
1961
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1968
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1969 1970 1971 1972
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1973 1974
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1975
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1976
#ifdef CONFIG_SMP
1977 1978 1979 1980 1981 1982
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1983 1984
	task_thread_info(p)->cpu = cpu;
#endif
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1999
#ifdef CONFIG_SMP
2000 2001 2002
/*
 * Is this task likely cache-hot:
 */
2003
static int
2004 2005 2006 2007
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2008 2009 2010
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2011 2012 2013
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2014 2015
		return 1;

2016 2017 2018
	if (p->sched_class != &fair_sched_class)
		return 0;

2019 2020 2021 2022 2023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2024 2025 2026 2027 2028 2029
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2030
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2031
{
I
Ingo Molnar 已提交
2032 2033
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2034 2035
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2036
	u64 clock_offset;
I
Ingo Molnar 已提交
2037 2038

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2039

2040
	trace_sched_migrate_task(p, new_cpu);
2041

I
Ingo Molnar 已提交
2042 2043 2044
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2045 2046 2047 2048
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2049
#endif
2050
	if (old_cpu != new_cpu) {
2051 2052
		p->se.nr_migrations++;
#ifdef CONFIG_SCHEDSTATS
2053 2054
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2055
#endif
2056
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057
				     1, 1, NULL, 0);
2058
	}
2059 2060
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2061 2062

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2063 2064
}

2065
struct migration_req {
L
Linus Torvalds 已提交
2066 2067
	struct list_head list;

2068
	struct task_struct *task;
L
Linus Torvalds 已提交
2069 2070 2071
	int dest_cpu;

	struct completion done;
2072
};
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2078
static int
2079
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2080
{
2081
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2087
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2096

L
Linus Torvalds 已提交
2097 2098 2099
	return 1;
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2143 2144 2145
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2146 2147 2148 2149 2150 2151 2152
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2159
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2160 2161
{
	unsigned long flags;
I
Ingo Molnar 已提交
2162
	int running, on_rq;
R
Roland McGrath 已提交
2163
	unsigned long ncsw;
2164
	struct rq *rq;
L
Linus Torvalds 已提交
2165

2166 2167 2168 2169 2170 2171 2172 2173
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2186 2187 2188
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2189
			cpu_relax();
R
Roland McGrath 已提交
2190
		}
2191

2192 2193 2194 2195 2196 2197
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2198
		trace_sched_wait_task(rq, p);
2199 2200
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2201
		ncsw = 0;
2202
		if (!match_state || p->state == match_state)
2203
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204
		task_rq_unlock(rq, &flags);
2205

R
Roland McGrath 已提交
2206 2207 2208 2209 2210 2211
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2222

2223 2224 2225 2226 2227
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2228
		 * So if it was still runnable (but just not actively
2229 2230 2231 2232 2233 2234 2235
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2236

2237 2238 2239 2240 2241 2242 2243
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2244 2245

	return ncsw;
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2261
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2271
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2272
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2273

T
Thomas Gleixner 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2309 2310
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2311
{
2312
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2313
	unsigned long flags;
2314
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2315

2316
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2317
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2318

P
Peter Zijlstra 已提交
2319
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2320

2321
	smp_wmb();
2322
	rq = orig_rq = task_rq_lock(p, &flags);
2323
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2324
	if (!(p->state & state))
L
Linus Torvalds 已提交
2325 2326
		goto out;

I
Ingo Molnar 已提交
2327
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2328 2329 2330
		goto out_running;

	cpu = task_cpu(p);
2331
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2337 2338 2339
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2340 2341
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2342
	 */
2343 2344
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2345 2346 2347
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2348
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2349
	if (cpu != orig_cpu)
2350
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2351

P
Peter Zijlstra 已提交
2352
	rq = task_rq_lock(p, &flags);
2353 2354 2355 2356

	if (rq != orig_rq)
		update_rq_clock(rq);

P
Peter Zijlstra 已提交
2357 2358
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2359

2360 2361 2362 2363 2364 2365 2366
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2367
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2368 2369 2370 2371 2372
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2373
#endif /* CONFIG_SCHEDSTATS */
2374

L
Linus Torvalds 已提交
2375 2376
out_activate:
#endif /* CONFIG_SMP */
2377
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2378
	if (wake_flags & WF_SYNC)
2379 2380 2381 2382 2383 2384 2385
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2386
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2387 2388
	success = 1;

P
Peter Zijlstra 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2405
out_running:
2406
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2407
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2408

L
Linus Torvalds 已提交
2409
	p->state = TASK_RUNNING;
2410 2411 2412
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2424
#endif
L
Linus Torvalds 已提交
2425 2426
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2427
	put_cpu();
L
Linus Torvalds 已提交
2428 2429 2430 2431

	return success;
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2443
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2444
{
2445
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2446 2447 2448
}
EXPORT_SYMBOL(wake_up_process);

2449
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2450 2451 2452 2453 2454 2455 2456
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2457 2458 2459 2460 2461 2462 2463
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2464
	p->se.prev_sum_exec_runtime	= 0;
2465
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2466 2467
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2468 2469
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2470
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2471 2472

#ifdef CONFIG_SCHEDSTATS
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2504
#endif
N
Nick Piggin 已提交
2505

P
Peter Zijlstra 已提交
2506
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2507
	p->se.on_rq = 0;
2508
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2509

2510 2511 2512 2513
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2532 2533 2534 2535
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2536
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2537
			p->policy = SCHED_NORMAL;
2538 2539
			p->normal_prio = p->static_prio;
		}
2540

2541 2542
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2543
			p->normal_prio = p->static_prio;
2544 2545 2546
			set_load_weight(p);
		}

2547 2548 2549 2550 2551 2552
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2553

2554 2555 2556 2557 2558
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2559 2560
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2561

2562 2563 2564 2565 2566
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2567
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2568
	if (likely(sched_info_on()))
2569
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2570
#endif
2571
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2572 2573
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2574
#ifdef CONFIG_PREEMPT
2575
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2576
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2577
#endif
2578 2579
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2580
	put_cpu();
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2590
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2591 2592
{
	unsigned long flags;
I
Ingo Molnar 已提交
2593
	struct rq *rq;
L
Linus Torvalds 已提交
2594 2595

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2596
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2597
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2598

2599
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2600
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2601 2602
	} else {
		/*
I
Ingo Molnar 已提交
2603 2604
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2605
		 */
2606
		p->sched_class->task_new(rq, p);
2607
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2608
	}
2609
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2610
	check_preempt_curr(rq, p, WF_FORK);
2611 2612 2613 2614
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2615
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2616 2617
}

2618 2619 2620
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2621
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2622
 * @notifier: notifier struct to register
2623 2624 2625 2626 2627 2628 2629 2630 2631
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2632
 * @notifier: notifier struct to unregister
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2662
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2674
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2675

2676 2677 2678
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2679
 * @prev: the current task that is being switched out
2680 2681 2682 2683 2684 2685 2686 2687 2688
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2689 2690 2691
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2692
{
2693
	fire_sched_out_preempt_notifiers(prev, next);
2694 2695 2696 2697
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2698 2699
/**
 * finish_task_switch - clean up after a task-switch
2700
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2701 2702
 * @prev: the thread we just switched away from.
 *
2703 2704 2705 2706
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2707 2708
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2709
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2710 2711 2712
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2713
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2714 2715 2716
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2717
	long prev_state;
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2723
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2724 2725
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2726
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2727 2728 2729 2730 2731
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2732
	prev_state = prev->state;
2733
	finish_arch_switch(prev);
2734
	perf_event_task_sched_in(current, cpu_of(rq));
2735
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2736

2737
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2738 2739
	if (mm)
		mmdrop(mm);
2740
	if (unlikely(prev_state == TASK_DEAD)) {
2741 2742 2743
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2744
		 */
2745
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2746
		put_task_struct(prev);
2747
	}
L
Linus Torvalds 已提交
2748 2749
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2775

2776 2777 2778 2779 2780 2781
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2782 2783
}

2784 2785
#endif

L
Linus Torvalds 已提交
2786 2787 2788 2789
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2790
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2791 2792
	__releases(rq->lock)
{
2793 2794
	struct rq *rq = this_rq();

2795
	finish_task_switch(rq, prev);
2796

2797 2798 2799 2800 2801
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2802

2803 2804 2805 2806
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2807
	if (current->set_child_tid)
2808
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2815
static inline void
2816
context_switch(struct rq *rq, struct task_struct *prev,
2817
	       struct task_struct *next)
L
Linus Torvalds 已提交
2818
{
I
Ingo Molnar 已提交
2819
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2820

2821
	prepare_task_switch(rq, prev, next);
2822
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2823 2824
	mm = next->mm;
	oldmm = prev->active_mm;
2825 2826 2827 2828 2829
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2830
	arch_start_context_switch(prev);
2831

I
Ingo Molnar 已提交
2832
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2839
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2840 2841 2842
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2843 2844 2845 2846 2847 2848 2849
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2850
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2851
#endif
L
Linus Torvalds 已提交
2852 2853 2854 2855

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2856 2857 2858 2859 2860 2861 2862
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2886
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2901 2902
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2903

2904
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2914
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2933 2934 2935 2936 2937 2938
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2954 2955
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2956
{
2957 2958 2959 2960
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2973

2974 2975
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2999 3000
}

3001
/*
I
Ingo Molnar 已提交
3002 3003
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3004
 */
I
Ingo Molnar 已提交
3005
static void update_cpu_load(struct rq *this_rq)
3006
{
3007
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3020 3021 3022 3023 3024 3025 3026
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3027 3028
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3029 3030 3031 3032 3033

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3034 3035
}

I
Ingo Molnar 已提交
3036 3037
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3044
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3045 3046 3047
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3048
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3049 3050 3051 3052
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3053
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3054
			spin_lock(&rq1->lock);
3055
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3056 3057
		} else {
			spin_lock(&rq2->lock);
3058
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3059 3060
		}
	}
3061 3062
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067 3068 3069 3070
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3071
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3085
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3086 3087
 * the cpu_allowed mask is restored.
 */
3088
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3089
{
3090
	struct migration_req req;
L
Linus Torvalds 已提交
3091
	unsigned long flags;
3092
	struct rq *rq;
L
Linus Torvalds 已提交
3093 3094

	rq = task_rq_lock(p, &flags);
3095
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3096
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3103

L
Linus Torvalds 已提交
3104 3105 3106 3107 3108
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3109

L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3117 3118
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3119 3120 3121 3122
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3123
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3124
	put_cpu();
N
Nick Piggin 已提交
3125 3126
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3127 3128 3129 3130 3131 3132
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3133 3134
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3135
{
3136
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3137
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3138
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3139 3140 3141 3142
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3143
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3144 3145 3146 3147 3148
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3149
static
3150
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3151
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3152
		     int *all_pinned)
L
Linus Torvalds 已提交
3153
{
3154
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3161
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3162
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3163
		return 0;
3164
	}
3165 3166
	*all_pinned = 0;

3167 3168
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3169
		return 0;
3170
	}
L
Linus Torvalds 已提交
3171

3172 3173 3174 3175 3176 3177
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3178 3179 3180
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3181
#ifdef CONFIG_SCHEDSTATS
3182
		if (tsk_cache_hot) {
3183
			schedstat_inc(sd, lb_hot_gained[idle]);
3184 3185
			schedstat_inc(p, se.nr_forced_migrations);
		}
3186 3187 3188 3189
#endif
		return 1;
	}

3190
	if (tsk_cache_hot) {
3191
		schedstat_inc(p, se.nr_failed_migrations_hot);
3192
		return 0;
3193
	}
L
Linus Torvalds 已提交
3194 3195 3196
	return 1;
}

3197 3198 3199 3200 3201
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3202
{
3203
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3204 3205
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3206

3207
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3208 3209
		goto out;

3210 3211
	pinned = 1;

L
Linus Torvalds 已提交
3212
	/*
I
Ingo Molnar 已提交
3213
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3214
	 */
I
Ingo Molnar 已提交
3215 3216
	p = iterator->start(iterator->arg);
next:
3217
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3218
		goto out;
3219 3220

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3221 3222 3223
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3224 3225
	}

I
Ingo Molnar 已提交
3226
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3227
	pulled++;
I
Ingo Molnar 已提交
3228
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3240
	/*
3241
	 * We only want to steal up to the prescribed amount of weighted load.
3242
	 */
3243
	if (rem_load_move > 0) {
3244 3245
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3246 3247
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3248 3249 3250
	}
out:
	/*
3251
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3252 3253 3254 3255
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3256 3257 3258

	if (all_pinned)
		*all_pinned = pinned;
3259 3260

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3261 3262
}

I
Ingo Molnar 已提交
3263
/*
P
Peter Williams 已提交
3264 3265 3266
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3267 3268 3269 3270
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3271
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3272 3273 3274
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3275
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3276
	unsigned long total_load_moved = 0;
3277
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3278 3279

	do {
P
Peter Williams 已提交
3280 3281
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3282
				max_load_move - total_load_moved,
3283
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3284
		class = class->next;
3285

3286 3287 3288 3289 3290 3291
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3292 3293
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3294
#endif
P
Peter Williams 已提交
3295
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3296

P
Peter Williams 已提交
3297 3298 3299
	return total_load_moved > 0;
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3336
	const struct sched_class *class;
P
Peter Williams 已提交
3337

3338
	for_each_class(class) {
3339
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3340
			return 1;
3341
	}
P
Peter Williams 已提交
3342 3343

	return 0;
I
Ingo Molnar 已提交
3344
}
3345
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3346
/*
3347 3348
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3349
 */
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3368
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3369 3370 3371 3372 3373 3374
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3375
#endif
3376
};
L
Linus Torvalds 已提交
3377

3378
/*
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3389

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3411
		load_idx = sd->busy_idx;
3412 3413 3414
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3415
		load_idx = sd->newidle_idx;
3416 3417
		break;
	default:
N
Nick Piggin 已提交
3418
		load_idx = sd->idle_idx;
3419 3420
		break;
	}
L
Linus Torvalds 已提交
3421

3422 3423
	return load_idx;
}
L
Linus Torvalds 已提交
3424 3425


3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3464

3465 3466
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3467

3468 3469 3470 3471 3472 3473 3474
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3475

3476 3477 3478 3479 3480 3481 3482 3483
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3484

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3498

3499 3500 3501 3502 3503
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3504
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3505
		return;
L
Linus Torvalds 已提交
3506

3507 3508 3509 3510 3511 3512 3513
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3514

3515
/**
3516
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3517 3518 3519 3520 3521
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3522 3523 3524 3525 3526
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3527 3528 3529 3530 3531 3532 3533 3534
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3535

3536 3537 3538
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3539

3540 3541
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3542

3543
	return 1;
L
Linus Torvalds 已提交
3544

3545 3546 3547 3548 3549 3550 3551
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3552

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3578 3579 3580 3581 3582 3583 3584 3585 3586
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3587 3588 3589 3590 3591
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3610 3611 3612 3613 3614 3615
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3616 3617 3618 3619 3620
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3621
	power >>= SCHED_LOAD_SHIFT;
3622 3623

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3624 3625 3626 3627 3628
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3629 3630 3631
		power >>= SCHED_LOAD_SHIFT;
	}

3632 3633 3634 3635 3636
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3637

3638
	sdg->cpu_power = power;
3639 3640 3641
}

static void update_group_power(struct sched_domain *sd, int cpu)
3642 3643 3644
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3645
	unsigned long power;
3646 3647

	if (!child) {
3648
		update_cpu_power(sd, cpu);
3649 3650 3651
		return;
	}

3652
	power = 0;
3653 3654 3655

	group = child->groups;
	do {
3656
		power += group->cpu_power;
3657 3658
		group = group->next;
	} while (group != child->groups);
3659 3660

	sdg->cpu_power = power;
3661
}
3662

3663 3664
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3665
 * @sd: The sched_domain whose statistics are to be updated.
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3676 3677
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3688
	if (local_group) {
3689
		balance_cpu = group_first_cpu(group);
3690
		if (balance_cpu == this_cpu)
3691
			update_group_power(sd, this_cpu);
3692
	}
3693 3694 3695 3696 3697

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3698

3699 3700
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3701

3702 3703
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3704

3705
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3706
		if (local_group) {
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3719
		}
3720

3721 3722 3723
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3724

3725 3726
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3739

3740
	/* Adjust by relative CPU power of the group */
3741
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3753 3754
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3755 3756 3757 3758

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3759
	sgs->group_capacity =
3760
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3761
}
I
Ingo Molnar 已提交
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3772
 */
3773 3774 3775 3776
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3777
{
P
Peter Zijlstra 已提交
3778
	struct sched_domain *child = sd->child;
3779
	struct sched_group *group = sd->groups;
3780
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3781 3782 3783 3784
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3785

3786
	init_sd_power_savings_stats(sd, sds, idle);
3787
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3788 3789 3790 3791

	do {
		int local_group;

3792 3793
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3794
		memset(&sgs, 0, sizeof(sgs));
3795
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3796
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3797

3798 3799
		if (local_group && balance && !(*balance))
			return;
3800

3801
		sds->total_load += sgs.group_load;
3802
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3803

P
Peter Zijlstra 已提交
3804 3805 3806 3807 3808 3809
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3810
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3811 3812

		if (local_group) {
3813 3814 3815 3816 3817
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3818 3819
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3820 3821 3822 3823 3824
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3825
		}
3826

3827
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3828 3829
		group = group->next;
	} while (group != sd->groups);
3830
}
L
Linus Torvalds 已提交
3831

3832 3833
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3834 3835
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3854

3855 3856 3857 3858 3859
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3860

L
Linus Torvalds 已提交
3861
	/*
3862 3863 3864
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3865
	 */
3866

3867
	pwr_now += sds->busiest->cpu_power *
3868
			min(sds->busiest_load_per_task, sds->max_load);
3869
	pwr_now += sds->this->cpu_power *
3870 3871 3872 3873
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3874 3875
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3876
	if (sds->max_load > tmp)
3877
		pwr_move += sds->busiest->cpu_power *
3878 3879 3880
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3881
	if (sds->max_load * sds->busiest->cpu_power <
3882
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3883 3884
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3885
	else
3886 3887 3888
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3889 3890 3891 3892 3893 3894 3895
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3908 3909 3910 3911 3912
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3913
	if (sds->max_load < sds->avg_load) {
3914
		*imbalance = 0;
3915
		return fix_small_imbalance(sds, this_cpu, imbalance);
3916
	}
3917 3918

	/* Don't want to pull so many tasks that a group would go idle */
3919 3920
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3921

L
Linus Torvalds 已提交
3922
	/* How much load to actually move to equalise the imbalance */
3923 3924
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3925 3926
			/ SCHED_LOAD_SCALE;

3927 3928 3929 3930 3931 3932
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3933 3934
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3935

3936
}
3937
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3938

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3963 3964 3965 3966 3967 3968 3969
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3970

3971
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3972

3973 3974 3975 3976 3977 3978 3979
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3990 3991
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3992

3993 3994
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3995

3996
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3997 3998
		goto out_balanced;

3999
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4000

4001 4002 4003 4004
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4005 4006
		goto out_balanced;

4007 4008 4009 4010
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4011

L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4020
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4021 4022
	 * appear as very large values with unsigned longs.
	 */
4023
	if (sds.max_load <= sds.busiest_load_per_task)
4024 4025
		goto out_balanced;

4026 4027
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4028
	return sds.busiest;
L
Linus Torvalds 已提交
4029 4030

out_balanced:
4031 4032 4033 4034 4035 4036
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4037
ret:
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4045
static struct rq *
I
Ingo Molnar 已提交
4046
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4047
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4048
{
4049
	struct rq *busiest = NULL, *rq;
4050
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4051 4052
	int i;

4053
	for_each_cpu(i, sched_group_cpus(group)) {
4054 4055
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4056
		unsigned long wl;
4057

4058
		if (!cpumask_test_cpu(i, cpus))
4059 4060
			continue;

4061
		rq = cpu_rq(i);
4062 4063
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4064

4065
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4066
			continue;
L
Linus Torvalds 已提交
4067

I
Ingo Molnar 已提交
4068 4069
		if (wl > max_load) {
			max_load = wl;
4070
			busiest = rq;
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076
		}
	}

	return busiest;
}

4077 4078 4079 4080 4081 4082
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4083 4084 4085
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4086 4087 4088 4089
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4090
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4091
			struct sched_domain *sd, enum cpu_idle_type idle,
4092
			int *balance)
L
Linus Torvalds 已提交
4093
{
P
Peter Williams 已提交
4094
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4095 4096
	struct sched_group *group;
	unsigned long imbalance;
4097
	struct rq *busiest;
4098
	unsigned long flags;
4099
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4100

4101
	cpumask_copy(cpus, cpu_online_mask);
4102

4103 4104 4105
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4106
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4107
	 * portraying it as CPU_NOT_IDLE.
4108
	 */
I
Ingo Molnar 已提交
4109
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4110
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4111
		sd_idle = 1;
L
Linus Torvalds 已提交
4112

4113
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4114

4115
redo:
4116
	update_shares(sd);
4117
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4118
				   cpus, balance);
4119

4120
	if (*balance == 0)
4121 4122
		goto out_balanced;

L
Linus Torvalds 已提交
4123 4124 4125 4126 4127
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4128
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4129 4130 4131 4132 4133
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4134
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4135 4136 4137

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4138
	ld_moved = 0;
L
Linus Torvalds 已提交
4139 4140 4141 4142
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4143
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4144 4145
		 * correctly treated as an imbalance.
		 */
4146
		local_irq_save(flags);
N
Nick Piggin 已提交
4147
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4148
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4149
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4150
		double_rq_unlock(this_rq, busiest);
4151
		local_irq_restore(flags);
4152

4153 4154 4155
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4156
		if (ld_moved && this_cpu != smp_processor_id())
4157 4158
			resched_cpu(this_cpu);

4159
		/* All tasks on this runqueue were pinned by CPU affinity */
4160
		if (unlikely(all_pinned)) {
4161 4162
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4163
				goto redo;
4164
			goto out_balanced;
4165
		}
L
Linus Torvalds 已提交
4166
	}
4167

P
Peter Williams 已提交
4168
	if (!ld_moved) {
L
Linus Torvalds 已提交
4169 4170 4171 4172 4173
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4174
			spin_lock_irqsave(&busiest->lock, flags);
4175 4176 4177 4178

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4179 4180
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4181
				spin_unlock_irqrestore(&busiest->lock, flags);
4182 4183 4184 4185
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4186 4187 4188
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4189
				active_balance = 1;
L
Linus Torvalds 已提交
4190
			}
4191
			spin_unlock_irqrestore(&busiest->lock, flags);
4192
			if (active_balance)
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4199
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4200
		}
4201
	} else
L
Linus Torvalds 已提交
4202 4203
		sd->nr_balance_failed = 0;

4204
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4205 4206
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4207 4208 4209 4210 4211 4212 4213 4214 4215
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4216 4217
	}

P
Peter Williams 已提交
4218
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4219
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4220 4221 4222
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4223 4224 4225 4226

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4227
	sd->nr_balance_failed = 0;
4228 4229

out_one_pinned:
L
Linus Torvalds 已提交
4230
	/* tune up the balancing interval */
4231 4232
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4233 4234
		sd->balance_interval *= 2;

4235
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4236
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 4238 4239 4240
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4241 4242
	if (ld_moved)
		update_shares(sd);
4243
	return ld_moved;
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4250
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4251 4252
 * this_rq is locked.
 */
4253
static int
4254
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4255 4256
{
	struct sched_group *group;
4257
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4258
	unsigned long imbalance;
P
Peter Williams 已提交
4259
	int ld_moved = 0;
N
Nick Piggin 已提交
4260
	int sd_idle = 0;
4261
	int all_pinned = 0;
4262
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4263

4264
	cpumask_copy(cpus, cpu_online_mask);
N
Nick Piggin 已提交
4265

4266 4267 4268 4269
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4270
	 * portraying it as CPU_NOT_IDLE.
4271 4272 4273
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4274
		sd_idle = 1;
L
Linus Torvalds 已提交
4275

4276
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4277
redo:
4278
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4279
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4280
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4281
	if (!group) {
I
Ingo Molnar 已提交
4282
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4283
		goto out_balanced;
L
Linus Torvalds 已提交
4284 4285
	}

4286
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4287
	if (!busiest) {
I
Ingo Molnar 已提交
4288
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4289
		goto out_balanced;
L
Linus Torvalds 已提交
4290 4291
	}

N
Nick Piggin 已提交
4292 4293
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4294
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4295

P
Peter Williams 已提交
4296
	ld_moved = 0;
4297 4298 4299
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4300 4301
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4302
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4303 4304
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4305
		double_unlock_balance(this_rq, busiest);
4306

4307
		if (unlikely(all_pinned)) {
4308 4309
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4310 4311
				goto redo;
		}
4312 4313
	}

P
Peter Williams 已提交
4314
	if (!ld_moved) {
4315
		int active_balance = 0;
4316

I
Ingo Molnar 已提交
4317
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4318 4319
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4320
			return -1;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4357
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4370 4371 4372 4373
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4374 4375
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4376
		spin_lock(&this_rq->lock);
4377

N
Nick Piggin 已提交
4378
	} else
4379
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4380

4381
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4382
	return ld_moved;
4383 4384

out_balanced:
I
Ingo Molnar 已提交
4385
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4386
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4387
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4388
		return -1;
4389
	sd->nr_balance_failed = 0;
4390

4391
	return 0;
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4398
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4399 4400
{
	struct sched_domain *sd;
4401
	int pulled_task = 0;
I
Ingo Molnar 已提交
4402
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4403

M
Mike Galbraith 已提交
4404 4405 4406 4407 4408
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4409
	for_each_domain(this_cpu, sd) {
4410 4411 4412 4413 4414 4415
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4416
			/* If we've pulled tasks over stop searching: */
4417
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4418
							   sd);
4419 4420 4421 4422

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4423 4424
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4425
			break;
M
Mike Galbraith 已提交
4426
		}
L
Linus Torvalds 已提交
4427
	}
I
Ingo Molnar 已提交
4428
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4429 4430 4431 4432 4433
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4434
	}
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4445
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4446
{
4447
	int target_cpu = busiest_rq->push_cpu;
4448 4449
	struct sched_domain *sd;
	struct rq *target_rq;
4450

4451
	/* Is there any task to move? */
4452 4453 4454 4455
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4456 4457

	/*
4458
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4459
	 * we need to fix it. Originally reported by
4460
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4461
	 */
4462
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4463

4464 4465
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4466 4467
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4468 4469

	/* Search for an sd spanning us and the target CPU. */
4470
	for_each_domain(target_cpu, sd) {
4471
		if ((sd->flags & SD_LOAD_BALANCE) &&
4472
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4473
				break;
4474
	}
4475

4476
	if (likely(sd)) {
4477
		schedstat_inc(sd, alb_count);
4478

P
Peter Williams 已提交
4479 4480
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4481 4482 4483 4484
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4485
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4486 4487
}

4488 4489 4490
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4491
	cpumask_var_t cpu_mask;
4492
	cpumask_var_t ilb_grp_nohz_mask;
4493 4494 4495 4496
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4497 4498 4499 4500 4501
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4613
	return cpumask_first(nohz.cpu_mask);
4614 4615 4616
}
#endif

4617
/*
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4628
 *
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4644 4645 4646 4647 4648 4649 4650 4651
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4652 4653
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4654

4655 4656 4657
			return 0;
		}

4658 4659
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4660
		/* time for ilb owner also to sleep */
4661
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4662 4663 4664 4665 4666 4667 4668 4669 4670
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4687
			return 1;
4688
		}
4689
	} else {
4690
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4691 4692
			return 0;

4693
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4706 4707 4708 4709 4710
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4711
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4712
{
4713 4714
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4715 4716
	unsigned long interval;
	struct sched_domain *sd;
4717
	/* Earliest time when we have to do rebalance again */
4718
	unsigned long next_balance = jiffies + 60*HZ;
4719
	int update_next_balance = 0;
4720
	int need_serialize;
L
Linus Torvalds 已提交
4721

4722
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4723 4724 4725 4726
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4727
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4734 4735 4736
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4737
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4738

4739
		if (need_serialize) {
4740 4741 4742 4743
			if (!spin_trylock(&balancing))
				goto out;
		}

4744
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4745
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4746 4747
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4748 4749 4750
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4751
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4752
			}
4753
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4754
		}
4755
		if (need_serialize)
4756 4757
			spin_unlock(&balancing);
out:
4758
		if (time_after(next_balance, sd->last_balance + interval)) {
4759
			next_balance = sd->last_balance + interval;
4760 4761
			update_next_balance = 1;
		}
4762 4763 4764 4765 4766 4767 4768 4769

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4770
	}
4771 4772 4773 4774 4775 4776 4777 4778

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4779 4780 4781 4782 4783 4784 4785 4786 4787
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4788 4789 4790 4791
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4792

I
Ingo Molnar 已提交
4793
	rebalance_domains(this_cpu, idle);
4794 4795 4796 4797 4798 4799 4800

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4801 4802
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4803 4804 4805
		struct rq *rq;
		int balance_cpu;

4806 4807 4808 4809
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4810 4811 4812 4813 4814 4815 4816 4817
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4818
			rebalance_domains(balance_cpu, CPU_IDLE);
4819 4820

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4821 4822
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4823 4824 4825 4826 4827
		}
	}
#endif
}

4828 4829 4830 4831 4832
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4833 4834 4835 4836 4837 4838 4839
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4840
static inline void trigger_load_balance(struct rq *rq, int cpu)
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4852
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4853 4854 4855 4856
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4857
			int ilb = find_new_ilb(cpu);
4858

4859
			if (ilb < nr_cpu_ids)
4860 4861 4862 4863 4864 4865 4866 4867 4868
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4869
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4870 4871 4872 4873 4874 4875 4876 4877 4878
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4879
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4880 4881
		return;
#endif
4882 4883 4884
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4885
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4886
}
I
Ingo Molnar 已提交
4887 4888 4889

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4890 4891 4892
/*
 * on UP we do not need to balance between CPUs:
 */
4893
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4894 4895
{
}
I
Ingo Molnar 已提交
4896

L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4904
 * Return any ns on the sched_clock that have not yet been accounted in
4905
 * @p in case that task is currently running.
4906 4907
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4908
 */
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4923
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4924 4925
{
	unsigned long flags;
4926
	struct rq *rq;
4927
	u64 ns = 0;
4928

4929
	rq = task_rq_lock(p, &flags);
4930 4931
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4932

4933 4934
	return ns;
}
4935

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4973
	task_rq_unlock(rq, &flags);
4974

L
Linus Torvalds 已提交
4975 4976 4977 4978 4979 4980 4981
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4982
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4983
 */
4984 4985
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4986 4987 4988 4989
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4990
	/* Add user time to process. */
L
Linus Torvalds 已提交
4991
	p->utime = cputime_add(p->utime, cputime);
4992
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4993
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5001 5002

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5003 5004
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5005 5006
}

5007 5008 5009 5010
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5011
 * @cputime_scaled: cputime scaled by cpu frequency
5012
 */
5013 5014
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5015 5016 5017 5018 5019 5020
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5021
	/* Add guest time to process. */
5022
	p->utime = cputime_add(p->utime, cputime);
5023
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5024
	account_group_user_time(p, cputime);
5025 5026
	p->gtime = cputime_add(p->gtime, cputime);

5027
	/* Add guest time to cpustat. */
5028 5029 5030 5031 5032 5033 5034
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5035 5036
}

L
Linus Torvalds 已提交
5037 5038 5039 5040 5041
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5042
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5043 5044
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5045
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5046 5047 5048 5049
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5050
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5051
		account_guest_time(p, cputime, cputime_scaled);
5052 5053
		return;
	}
5054

5055
	/* Add system time to process. */
L
Linus Torvalds 已提交
5056
	p->stime = cputime_add(p->stime, cputime);
5057
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5058
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065 5066

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5067 5068
		cpustat->system = cputime64_add(cpustat->system, tmp);

5069 5070
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5071 5072 5073 5074
	/* Account for system time used */
	acct_update_integrals(p);
}

5075
/*
L
Linus Torvalds 已提交
5076 5077
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5078
 */
5079
void account_steal_time(cputime_t cputime)
5080
{
5081 5082 5083 5084
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5085 5086
}

L
Linus Torvalds 已提交
5087
/*
5088 5089
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5090
 */
5091
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5092 5093
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5094
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5095
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5096

5097 5098 5099 5100
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5101 5102
}

5103 5104 5105 5106 5107 5108 5109 5110 5111
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5112
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5113 5114 5115
	struct rq *rq = this_rq();

	if (user_tick)
5116
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5117
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5118
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5119 5120
				    one_jiffy_scaled);
	else
5121
		account_idle_time(cputime_one_jiffy);
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5141 5142
}

5143 5144
#endif

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
5159 5160 5161 5162 5163 5164

#ifndef nsecs_to_cputime
# define nsecs_to_cputime(__nsecs) \
	msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
#endif

5165 5166
cputime_t task_utime(struct task_struct *p)
{
5167
	cputime_t utime = p->utime, total = utime + p->stime;
5168 5169 5170 5171 5172
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
5173
	temp = (u64)nsecs_to_cputime(p->se.sum_exec_runtime);
5174 5175 5176 5177 5178

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
5179
	utime = (cputime_t)temp;
5180

5181
	p->prev_utime = max(p->prev_utime, utime);
5182 5183 5184 5185 5186
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
5187
	cputime_t stime;
5188 5189 5190 5191 5192 5193

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
5194
	stime = nsecs_to_cputime(p->se.sum_exec_runtime) - task_utime(p);
5195 5196

	if (stime >= 0)
5197
		p->prev_stime = max(p->prev_stime, stime);
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5219
	struct task_struct *curr = rq->curr;
5220 5221

	sched_clock_tick();
I
Ingo Molnar 已提交
5222 5223

	spin_lock(&rq->lock);
5224
	update_rq_clock(rq);
5225
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5226
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5227
	spin_unlock(&rq->lock);
5228

5229
	perf_event_task_tick(curr, cpu);
5230

5231
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5232 5233
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5234
#endif
L
Linus Torvalds 已提交
5235 5236
}

5237
notrace unsigned long get_parent_ip(unsigned long addr)
5238 5239 5240 5241 5242 5243 5244 5245
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5246

5247 5248 5249
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5250
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5251
{
5252
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5253 5254 5255
	/*
	 * Underflow?
	 */
5256 5257
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5258
#endif
L
Linus Torvalds 已提交
5259
	preempt_count() += val;
5260
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5261 5262 5263
	/*
	 * Spinlock count overflowing soon?
	 */
5264 5265
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5266 5267 5268
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5269 5270 5271
}
EXPORT_SYMBOL(add_preempt_count);

5272
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5273
{
5274
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5275 5276 5277
	/*
	 * Underflow?
	 */
5278
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5279
		return;
L
Linus Torvalds 已提交
5280 5281 5282
	/*
	 * Is the spinlock portion underflowing?
	 */
5283 5284 5285
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5286
#endif
5287

5288 5289
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5290 5291 5292 5293 5294 5295 5296
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5297
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5298
 */
I
Ingo Molnar 已提交
5299
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5300
{
5301 5302 5303 5304 5305
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5306
	debug_show_held_locks(prev);
5307
	print_modules();
I
Ingo Molnar 已提交
5308 5309
	if (irqs_disabled())
		print_irqtrace_events(prev);
5310 5311 5312 5313 5314

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5315
}
L
Linus Torvalds 已提交
5316

I
Ingo Molnar 已提交
5317 5318 5319 5320 5321
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5322
	/*
I
Ingo Molnar 已提交
5323
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5324 5325 5326
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5327
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5328 5329
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5330 5331
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5332
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5333 5334
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5335 5336
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5337 5338
	}
#endif
I
Ingo Molnar 已提交
5339 5340
}

5341
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5342
{
5343
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5344

5345
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5346

5347
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5357 5358 5359 5360
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5361
	}
5362
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5363 5364
}

I
Ingo Molnar 已提交
5365 5366 5367 5368
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5369
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5370
{
5371
	const struct sched_class *class;
I
Ingo Molnar 已提交
5372
	struct task_struct *p;
L
Linus Torvalds 已提交
5373 5374

	/*
I
Ingo Molnar 已提交
5375 5376
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5377
	 */
I
Ingo Molnar 已提交
5378
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5379
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5380 5381
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5382 5383
	}

I
Ingo Molnar 已提交
5384 5385
	class = sched_class_highest;
	for ( ; ; ) {
5386
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5396

I
Ingo Molnar 已提交
5397 5398 5399
/*
 * schedule() is the main scheduler function.
 */
5400
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5401 5402
{
	struct task_struct *prev, *next;
5403
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5404
	struct rq *rq;
5405
	int cpu;
I
Ingo Molnar 已提交
5406

5407 5408
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5409 5410
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5411
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5412 5413 5414 5415 5416 5417 5418
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5419

5420
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5421
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5422

5423
	spin_lock_irq(&rq->lock);
5424
	update_rq_clock(rq);
5425
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5426 5427

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5428
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5429
			prev->state = TASK_RUNNING;
5430
		else
5431
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5432
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5433 5434
	}

5435
	pre_schedule(rq, prev);
5436

I
Ingo Molnar 已提交
5437
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5438 5439
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5440
	put_prev_task(rq, prev);
5441
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5442 5443

	if (likely(prev != next)) {
5444
		sched_info_switch(prev, next);
5445
		perf_event_task_sched_out(prev, next, cpu);
5446

L
Linus Torvalds 已提交
5447 5448 5449 5450
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5451
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5452 5453 5454 5455 5456 5457
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5458 5459 5460
	} else
		spin_unlock_irq(&rq->lock);

5461
	post_schedule(rq);
L
Linus Torvalds 已提交
5462

P
Peter Zijlstra 已提交
5463
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5464
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5465

L
Linus Torvalds 已提交
5466
	preempt_enable_no_resched();
5467
	if (need_resched())
L
Linus Torvalds 已提交
5468 5469 5470 5471
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5533 5534
#ifdef CONFIG_PREEMPT
/*
5535
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5536
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5537 5538 5539 5540 5541
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5542

L
Linus Torvalds 已提交
5543 5544
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5545
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5546
	 */
N
Nick Piggin 已提交
5547
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5548 5549
		return;

5550 5551 5552 5553
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5554

5555 5556 5557 5558 5559
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5560
	} while (need_resched());
L
Linus Torvalds 已提交
5561 5562 5563 5564
}
EXPORT_SYMBOL(preempt_schedule);

/*
5565
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5566 5567 5568 5569 5570 5571 5572
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5573

5574
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5575 5576
	BUG_ON(ti->preempt_count || !irqs_disabled());

5577 5578 5579 5580 5581 5582
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5583

5584 5585 5586 5587 5588
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5589
	} while (need_resched());
L
Linus Torvalds 已提交
5590 5591 5592 5593
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5594
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5595
			  void *key)
L
Linus Torvalds 已提交
5596
{
P
Peter Zijlstra 已提交
5597
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5598 5599 5600 5601
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5602 5603
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5604 5605 5606
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5607
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5608 5609
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5610
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5611
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5612
{
5613
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5614

5615
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5616 5617
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5618
		if (curr->func(curr, mode, wake_flags, key) &&
5619
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629
 * @key: is directly passed to the wakeup function
5630 5631 5632
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5633
 */
5634
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5635
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5648
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5649 5650 5651 5652
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5653 5654 5655 5656 5657
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5658
/**
5659
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5660 5661 5662
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5663
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668 5669 5670
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5671 5672 5673
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5674
 */
5675 5676
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5677 5678
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5679
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5680 5681 5682 5683 5684

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5685
		wake_flags = 0;
L
Linus Torvalds 已提交
5686 5687

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5688
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5689 5690
	spin_unlock_irqrestore(&q->lock, flags);
}
5691 5692 5693 5694 5695 5696 5697 5698 5699
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5700 5701
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5702 5703 5704 5705 5706 5707 5708 5709
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5710 5711 5712
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5713
 */
5714
void complete(struct completion *x)
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5720
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5721 5722 5723 5724
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5725 5726 5727 5728 5729
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5730 5731 5732
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5733
 */
5734
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5735 5736 5737 5738 5739
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5740
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5741 5742 5743 5744
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5745 5746
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5747 5748 5749 5750 5751 5752 5753
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5754
			if (signal_pending_state(state, current)) {
5755 5756
				timeout = -ERESTARTSYS;
				break;
5757 5758
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5759 5760 5761
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5762
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5763
		__remove_wait_queue(&x->wait, &wait);
5764 5765
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5766 5767
	}
	x->done--;
5768
	return timeout ?: 1;
L
Linus Torvalds 已提交
5769 5770
}

5771 5772
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5773 5774 5775 5776
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5777
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5778
	spin_unlock_irq(&x->wait.lock);
5779 5780
	return timeout;
}
L
Linus Torvalds 已提交
5781

5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5792
void __sched wait_for_completion(struct completion *x)
5793 5794
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5795
}
5796
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5797

5798 5799 5800 5801 5802 5803 5804 5805 5806
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5807
unsigned long __sched
5808
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5809
{
5810
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5811
}
5812
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5813

5814 5815 5816 5817 5818 5819 5820
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5821
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5822
{
5823 5824 5825 5826
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5827
}
5828
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5829

5830 5831 5832 5833 5834 5835 5836 5837
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5838
unsigned long __sched
5839 5840
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5841
{
5842
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5843
}
5844
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5845

5846 5847 5848 5849 5850 5851 5852
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5908 5909
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5910
{
I
Ingo Molnar 已提交
5911 5912 5913 5914
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5915

5916
	__set_current_state(state);
L
Linus Torvalds 已提交
5917

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5932 5933 5934
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5935
long __sched
I
Ingo Molnar 已提交
5936
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5937
{
5938
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5939 5940 5941
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5942
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5943
{
5944
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5945 5946 5947
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5948
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5949
{
5950
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5951 5952 5953
}
EXPORT_SYMBOL(sleep_on_timeout);

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5966
void rt_mutex_setprio(struct task_struct *p, int prio)
5967 5968
{
	unsigned long flags;
5969
	int oldprio, on_rq, running;
5970
	struct rq *rq;
5971
	const struct sched_class *prev_class = p->sched_class;
5972 5973 5974 5975

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5976
	update_rq_clock(rq);
5977

5978
	oldprio = p->prio;
I
Ingo Molnar 已提交
5979
	on_rq = p->se.on_rq;
5980
	running = task_current(rq, p);
5981
	if (on_rq)
5982
		dequeue_task(rq, p, 0);
5983 5984
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5985 5986 5987 5988 5989 5990

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5991 5992
	p->prio = prio;

5993 5994
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5995
	if (on_rq) {
5996
		enqueue_task(rq, p, 0);
5997 5998

		check_class_changed(rq, p, prev_class, oldprio, running);
5999 6000 6001 6002 6003 6004
	}
	task_rq_unlock(rq, &flags);
}

#endif

6005
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6006
{
I
Ingo Molnar 已提交
6007
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6008
	unsigned long flags;
6009
	struct rq *rq;
L
Linus Torvalds 已提交
6010 6011 6012 6013 6014 6015 6016 6017

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6018
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6019 6020 6021 6022
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6023
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6024
	 */
6025
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6026 6027 6028
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6029
	on_rq = p->se.on_rq;
6030
	if (on_rq)
6031
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6032 6033

	p->static_prio = NICE_TO_PRIO(nice);
6034
	set_load_weight(p);
6035 6036 6037
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6038

I
Ingo Molnar 已提交
6039
	if (on_rq) {
6040
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6041
		/*
6042 6043
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6044
		 */
6045
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6046 6047 6048 6049 6050 6051 6052
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6053 6054 6055 6056 6057
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6058
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6059
{
6060 6061
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6062

M
Matt Mackall 已提交
6063 6064 6065 6066
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6076
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6077
{
6078
	long nice, retval;
L
Linus Torvalds 已提交
6079 6080 6081 6082 6083 6084

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6085 6086
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6087 6088 6089
	if (increment > 40)
		increment = 40;

6090
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6091 6092 6093 6094 6095
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6096 6097 6098
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6117
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6118 6119 6120 6121 6122 6123 6124 6125
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6126
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6127 6128 6129
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6130
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6145
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6146 6147 6148 6149 6150 6151 6152 6153
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6154
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6155
{
6156
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6157 6158 6159
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6160 6161
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6162
{
I
Ingo Molnar 已提交
6163
	BUG_ON(p->se.on_rq);
6164

L
Linus Torvalds 已提交
6165 6166
	p->policy = policy;
	p->rt_priority = prio;
6167 6168 6169
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6170 6171 6172 6173
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6174
	set_load_weight(p);
L
Linus Torvalds 已提交
6175 6176
}

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6193 6194
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6195
{
6196
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6197
	unsigned long flags;
6198
	const struct sched_class *prev_class = p->sched_class;
6199
	struct rq *rq;
6200
	int reset_on_fork;
L
Linus Torvalds 已提交
6201

6202 6203
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6204 6205
recheck:
	/* double check policy once rq lock held */
6206 6207
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6208
		policy = oldpolicy = p->policy;
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6219 6220
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6221 6222
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6223 6224
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6225
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6226
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6227
		return -EINVAL;
6228
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6229 6230
		return -EINVAL;

6231 6232 6233
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6234
	if (user && !capable(CAP_SYS_NICE)) {
6235
		if (rt_policy(policy)) {
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6252 6253 6254 6255 6256 6257
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6258

6259
		/* can't change other user's priorities */
6260
		if (!check_same_owner(p))
6261
			return -EPERM;
6262 6263 6264 6265

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6266
	}
L
Linus Torvalds 已提交
6267

6268
	if (user) {
6269
#ifdef CONFIG_RT_GROUP_SCHED
6270 6271 6272 6273
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6274 6275
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6276
			return -EPERM;
6277 6278
#endif

6279 6280 6281 6282 6283
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6284 6285 6286 6287 6288
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6289 6290 6291 6292
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6293
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6294 6295 6296
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6297 6298
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6299 6300
		goto recheck;
	}
I
Ingo Molnar 已提交
6301
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6302
	on_rq = p->se.on_rq;
6303
	running = task_current(rq, p);
6304
	if (on_rq)
6305
		deactivate_task(rq, p, 0);
6306 6307
	if (running)
		p->sched_class->put_prev_task(rq, p);
6308

6309 6310
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6311
	oldprio = p->prio;
I
Ingo Molnar 已提交
6312
	__setscheduler(rq, p, policy, param->sched_priority);
6313

6314 6315
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6316 6317
	if (on_rq) {
		activate_task(rq, p, 0);
6318 6319

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6320
	}
6321 6322 6323
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6324 6325
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6326 6327
	return 0;
}
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6342 6343
EXPORT_SYMBOL_GPL(sched_setscheduler);

6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6361 6362
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6363 6364 6365
{
	struct sched_param lparam;
	struct task_struct *p;
6366
	int retval;
L
Linus Torvalds 已提交
6367 6368 6369 6370 6371

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6372 6373 6374

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6375
	p = find_process_by_pid(pid);
6376 6377 6378
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6379

L
Linus Torvalds 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6389 6390
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6391
{
6392 6393 6394 6395
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6396 6397 6398 6399 6400 6401 6402 6403
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6404
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409 6410 6411 6412
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6413
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6414
{
6415
	struct task_struct *p;
6416
	int retval;
L
Linus Torvalds 已提交
6417 6418

	if (pid < 0)
6419
		return -EINVAL;
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425 6426

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6427 6428
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6429 6430 6431 6432 6433 6434
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6435
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6436 6437 6438
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6439
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6440 6441
{
	struct sched_param lp;
6442
	struct task_struct *p;
6443
	int retval;
L
Linus Torvalds 已提交
6444 6445

	if (!param || pid < 0)
6446
		return -EINVAL;
L
Linus Torvalds 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6473
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6474
{
6475
	cpumask_var_t cpus_allowed, new_mask;
6476 6477
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6478

6479
	get_online_cpus();
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6485
		put_online_cpus();
L
Linus Torvalds 已提交
6486 6487 6488 6489 6490
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6491
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6492 6493 6494 6495 6496
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6497 6498 6499 6500 6501 6502 6503 6504
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6505
	retval = -EPERM;
6506
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6507 6508
		goto out_unlock;

6509 6510 6511 6512
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6513 6514
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6515
 again:
6516
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6517

P
Paul Menage 已提交
6518
	if (!retval) {
6519 6520
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6521 6522 6523 6524 6525
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6526
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6527 6528 6529
			goto again;
		}
	}
L
Linus Torvalds 已提交
6530
out_unlock:
6531 6532 6533 6534
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6535
	put_task_struct(p);
6536
	put_online_cpus();
L
Linus Torvalds 已提交
6537 6538 6539 6540
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6541
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6542
{
6543 6544 6545 6546 6547
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6548 6549 6550 6551 6552 6553 6554 6555 6556
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6557 6558
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6559
{
6560
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6561 6562
	int retval;

6563 6564
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6565

6566 6567 6568 6569 6570
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6571 6572
}

6573
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6574
{
6575
	struct task_struct *p;
L
Linus Torvalds 已提交
6576 6577
	int retval;

6578
	get_online_cpus();
L
Linus Torvalds 已提交
6579 6580 6581 6582 6583 6584 6585
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6586 6587 6588 6589
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6590
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6591 6592 6593

out_unlock:
	read_unlock(&tasklist_lock);
6594
	put_online_cpus();
L
Linus Torvalds 已提交
6595

6596
	return retval;
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601 6602 6603 6604
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6605 6606
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6607 6608
{
	int ret;
6609
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6610

6611
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6612 6613
		return -EINVAL;

6614 6615
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6616

6617 6618 6619 6620 6621 6622 6623 6624
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6625

6626
	return ret;
L
Linus Torvalds 已提交
6627 6628 6629 6630 6631
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6632 6633
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6634
 */
6635
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6636
{
6637
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6638

6639
	schedstat_inc(rq, yld_count);
6640
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645 6646

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6647
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6648 6649 6650 6651 6652 6653 6654 6655
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6656 6657 6658 6659 6660
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6661
static void __cond_resched(void)
L
Linus Torvalds 已提交
6662
{
6663 6664 6665
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6666 6667
}

6668
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6669
{
P
Peter Zijlstra 已提交
6670
	if (should_resched()) {
L
Linus Torvalds 已提交
6671 6672 6673 6674 6675
		__cond_resched();
		return 1;
	}
	return 0;
}
6676
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6677 6678

/*
6679
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6680 6681
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6682
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6683 6684 6685
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6686
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6687
{
P
Peter Zijlstra 已提交
6688
	int resched = should_resched();
J
Jan Kara 已提交
6689 6690
	int ret = 0;

6691 6692
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6693
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6694
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6695
		if (resched)
N
Nick Piggin 已提交
6696 6697 6698
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6699
		ret = 1;
L
Linus Torvalds 已提交
6700 6701
		spin_lock(lock);
	}
J
Jan Kara 已提交
6702
	return ret;
L
Linus Torvalds 已提交
6703
}
6704
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6705

6706
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6707 6708 6709
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6710
	if (should_resched()) {
6711
		local_bh_enable();
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6718
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6719 6720 6721 6722

/**
 * yield - yield the current processor to other threads.
 *
6723
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6734
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6735 6736 6737 6738
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6739
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6740

6741
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6742
	atomic_inc(&rq->nr_iowait);
6743
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6744
	schedule();
6745
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6746
	atomic_dec(&rq->nr_iowait);
6747
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6748 6749 6750 6751 6752
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6753
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6754 6755
	long ret;

6756
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6757
	atomic_inc(&rq->nr_iowait);
6758
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6759
	ret = schedule_timeout(timeout);
6760
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6761
	atomic_dec(&rq->nr_iowait);
6762
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6773
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6783
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6784
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6798
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6808
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6809
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6823
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6824
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6825
{
6826
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6827
	unsigned int time_slice;
6828
	int retval;
L
Linus Torvalds 已提交
6829 6830 6831
	struct timespec t;

	if (pid < 0)
6832
		return -EINVAL;
L
Linus Torvalds 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6844
	time_slice = p->sched_class->get_rr_interval(p);
D
Dmitry Adamushko 已提交
6845

L
Linus Torvalds 已提交
6846
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6847
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6848 6849
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6850

L
Linus Torvalds 已提交
6851 6852 6853 6854 6855
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6856
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6857

6858
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6859 6860
{
	unsigned long free = 0;
6861
	unsigned state;
L
Linus Torvalds 已提交
6862 6863

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6864
	printk(KERN_INFO "%-13.13s %c", p->comm,
6865
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6866
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6867
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6868
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6869
	else
I
Ingo Molnar 已提交
6870
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6871 6872
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6873
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6874
	else
I
Ingo Molnar 已提交
6875
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6876 6877
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6878
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6879
#endif
6880 6881 6882
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6883

6884
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6885 6886
}

I
Ingo Molnar 已提交
6887
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6888
{
6889
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6890

6891 6892 6893
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6894
#else
6895 6896
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6897 6898 6899 6900 6901 6902 6903 6904
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6905
		if (!state_filter || (p->state & state_filter))
6906
			sched_show_task(p);
L
Linus Torvalds 已提交
6907 6908
	} while_each_thread(g, p);

6909 6910
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6911 6912 6913
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6914
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6915 6916 6917 6918 6919
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6920 6921
}

I
Ingo Molnar 已提交
6922 6923
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6924
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6925 6926
}

6927 6928 6929 6930 6931 6932 6933 6934
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6935
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6936
{
6937
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6938 6939
	unsigned long flags;

6940 6941
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6942 6943 6944
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6945
	idle->prio = idle->normal_prio = MAX_PRIO;
6946
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6947
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6948 6949

	rq->curr = rq->idle = idle;
6950 6951 6952
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6953 6954 6955
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6956 6957 6958
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6959
	task_thread_info(idle)->preempt_count = 0;
6960
#endif
I
Ingo Molnar 已提交
6961 6962 6963 6964
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6965
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6966 6967 6968 6969 6970 6971 6972
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6973
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6974
 */
6975
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6976

I
Ingo Molnar 已提交
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7000 7001

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7002 7003
}

L
Linus Torvalds 已提交
7004 7005 7006 7007
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7008
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7027
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7028 7029
 * call is not atomic; no spinlocks may be held.
 */
7030
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7031
{
7032
	struct migration_req req;
L
Linus Torvalds 已提交
7033
	unsigned long flags;
7034
	struct rq *rq;
7035
	int ret = 0;
L
Linus Torvalds 已提交
7036 7037

	rq = task_rq_lock(p, &flags);
7038
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7039 7040 7041 7042
		ret = -EINVAL;
		goto out;
	}

7043
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7044
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7045 7046 7047 7048
		ret = -EINVAL;
		goto out;
	}

7049
	if (p->sched_class->set_cpus_allowed)
7050
		p->sched_class->set_cpus_allowed(p, new_mask);
7051
	else {
7052 7053
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7054 7055
	}

L
Linus Torvalds 已提交
7056
	/* Can the task run on the task's current CPU? If so, we're done */
7057
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7058 7059
		goto out;

R
Rusty Russell 已提交
7060
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7061
		/* Need help from migration thread: drop lock and wait. */
7062 7063 7064
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7065 7066
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7067
		put_task_struct(mt);
L
Linus Torvalds 已提交
7068 7069 7070 7071 7072 7073
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7074

L
Linus Torvalds 已提交
7075 7076
	return ret;
}
7077
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7078 7079

/*
I
Ingo Molnar 已提交
7080
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7081 7082 7083 7084 7085 7086
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7087 7088
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7089
 */
7090
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7091
{
7092
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7093
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7094

7095
	if (unlikely(!cpu_active(dest_cpu)))
7096
		return ret;
L
Linus Torvalds 已提交
7097 7098 7099 7100 7101 7102 7103

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7104
		goto done;
L
Linus Torvalds 已提交
7105
	/* Affinity changed (again). */
7106
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7107
		goto fail;
L
Linus Torvalds 已提交
7108

I
Ingo Molnar 已提交
7109
	on_rq = p->se.on_rq;
7110
	if (on_rq)
7111
		deactivate_task(rq_src, p, 0);
7112

L
Linus Torvalds 已提交
7113
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7114 7115
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7116
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7117
	}
L
Linus Torvalds 已提交
7118
done:
7119
	ret = 1;
L
Linus Torvalds 已提交
7120
fail:
L
Linus Torvalds 已提交
7121
	double_rq_unlock(rq_src, rq_dest);
7122
	return ret;
L
Linus Torvalds 已提交
7123 7124
}

7125 7126 7127 7128 7129
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7130 7131 7132 7133 7134
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7135
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7136
{
7137
	int badcpu;
L
Linus Torvalds 已提交
7138
	int cpu = (long)data;
7139
	struct rq *rq;
L
Linus Torvalds 已提交
7140 7141 7142 7143 7144 7145

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7146
		struct migration_req *req;
L
Linus Torvalds 已提交
7147 7148 7149 7150 7151 7152
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7153
			break;
L
Linus Torvalds 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7169
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7170 7171
		list_del_init(head->next);

7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7183
		local_irq_enable();
L
Linus Torvalds 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7204
/*
7205
 * Figure out where task on dead CPU should go, use force if necessary.
7206
 */
7207
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7208
{
7209
	int dest_cpu;
7210
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7227

7228 7229 7230 7231 7232 7233 7234 7235 7236
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7237
		}
7238 7239 7240 7241 7242 7243
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7244 7245 7246 7247 7248 7249 7250 7251 7252
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7253
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7254
{
R
Rusty Russell 已提交
7255
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7269
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7270

7271
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7272

7273 7274
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7275 7276
			continue;

7277 7278 7279
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7280

7281
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7282 7283
}

I
Ingo Molnar 已提交
7284 7285
/*
 * Schedules idle task to be the next runnable task on current CPU.
7286 7287
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7288 7289 7290
 */
void sched_idle_next(void)
{
7291
	int this_cpu = smp_processor_id();
7292
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7293 7294 7295 7296
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7297
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7298

7299 7300 7301
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7302 7303 7304
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7305
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7306

7307 7308
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7309 7310 7311 7312

	spin_unlock_irqrestore(&rq->lock, flags);
}

7313 7314
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7328
/* called under rq->lock with disabled interrupts */
7329
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7330
{
7331
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7332 7333

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7334
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7335 7336

	/* Cannot have done final schedule yet: would have vanished. */
7337
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7338

7339
	get_task_struct(p);
L
Linus Torvalds 已提交
7340 7341 7342

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7343
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7344 7345
	 * fine.
	 */
7346
	spin_unlock_irq(&rq->lock);
7347
	move_task_off_dead_cpu(dead_cpu, p);
7348
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7349

7350
	put_task_struct(p);
L
Linus Torvalds 已提交
7351 7352 7353 7354 7355
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7356
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7357
	struct task_struct *next;
7358

I
Ingo Molnar 已提交
7359 7360 7361
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7362
		update_rq_clock(rq);
7363
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7364 7365
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7366
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7367
		migrate_dead(dead_cpu, next);
7368

L
Linus Torvalds 已提交
7369 7370
	}
}
7371 7372 7373 7374 7375 7376 7377

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7378
	rq->calc_load_active = 0;
7379
}
L
Linus Torvalds 已提交
7380 7381
#endif /* CONFIG_HOTPLUG_CPU */

7382 7383 7384
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7385 7386
	{
		.procname	= "sched_domain",
7387
		.mode		= 0555,
7388
	},
I
Ingo Molnar 已提交
7389
	{0, },
7390 7391 7392
};

static struct ctl_table sd_ctl_root[] = {
7393
	{
7394
		.ctl_name	= CTL_KERN,
7395
		.procname	= "kernel",
7396
		.mode		= 0555,
7397 7398
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7399
	{0, },
7400 7401 7402 7403 7404
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7405
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7406 7407 7408 7409

	return entry;
}

7410 7411
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7412
	struct ctl_table *entry;
7413

7414 7415 7416
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7417
	 * will always be set. In the lowest directory the names are
7418 7419 7420
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7421 7422
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7423 7424 7425
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7426 7427 7428 7429 7430

	kfree(*tablep);
	*tablep = NULL;
}

7431
static void
7432
set_table_entry(struct ctl_table *entry,
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7446
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7447

7448 7449 7450
	if (table == NULL)
		return NULL;

7451
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7452
		sizeof(long), 0644, proc_doulongvec_minmax);
7453
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7454
		sizeof(long), 0644, proc_doulongvec_minmax);
7455
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7456
		sizeof(int), 0644, proc_dointvec_minmax);
7457
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7458
		sizeof(int), 0644, proc_dointvec_minmax);
7459
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7460
		sizeof(int), 0644, proc_dointvec_minmax);
7461
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7462
		sizeof(int), 0644, proc_dointvec_minmax);
7463
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7464
		sizeof(int), 0644, proc_dointvec_minmax);
7465
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7466
		sizeof(int), 0644, proc_dointvec_minmax);
7467
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7468
		sizeof(int), 0644, proc_dointvec_minmax);
7469
	set_table_entry(&table[9], "cache_nice_tries",
7470 7471
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7472
	set_table_entry(&table[10], "flags", &sd->flags,
7473
		sizeof(int), 0644, proc_dointvec_minmax);
7474 7475 7476
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7477 7478 7479 7480

	return table;
}

7481
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7482 7483 7484 7485 7486 7487 7488 7489 7490
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7491 7492
	if (table == NULL)
		return NULL;
7493 7494 7495 7496 7497

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7498
		entry->mode = 0555;
7499 7500 7501 7502 7503 7504 7505 7506
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7507
static void register_sched_domain_sysctl(void)
7508 7509 7510 7511 7512
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7513 7514 7515
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7516 7517 7518
	if (entry == NULL)
		return;

7519
	for_each_online_cpu(i) {
7520 7521
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7522
		entry->mode = 0555;
7523
		entry->child = sd_alloc_ctl_cpu_table(i);
7524
		entry++;
7525
	}
7526 7527

	WARN_ON(sd_sysctl_header);
7528 7529
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7530

7531
/* may be called multiple times per register */
7532 7533
static void unregister_sched_domain_sysctl(void)
{
7534 7535
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7536
	sd_sysctl_header = NULL;
7537 7538
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7539
}
7540
#else
7541 7542 7543 7544
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7545 7546 7547 7548
{
}
#endif

7549 7550 7551 7552 7553
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7554
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7574
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7575 7576 7577 7578
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7579 7580 7581 7582
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7583 7584
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7585 7586
{
	struct task_struct *p;
7587
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7588
	unsigned long flags;
7589
	struct rq *rq;
L
Linus Torvalds 已提交
7590 7591

	switch (action) {
7592

L
Linus Torvalds 已提交
7593
	case CPU_UP_PREPARE:
7594
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7595
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7596 7597 7598 7599 7600
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7601
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7602
		task_rq_unlock(rq, &flags);
7603
		get_task_struct(p);
L
Linus Torvalds 已提交
7604
		cpu_rq(cpu)->migration_thread = p;
7605
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7606
		break;
7607

L
Linus Torvalds 已提交
7608
	case CPU_ONLINE:
7609
	case CPU_ONLINE_FROZEN:
7610
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7611
		wake_up_process(cpu_rq(cpu)->migration_thread);
7612 7613 7614 7615 7616

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7617
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7618 7619

			set_rq_online(rq);
7620 7621
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7622
		break;
7623

L
Linus Torvalds 已提交
7624 7625
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7626
	case CPU_UP_CANCELED_FROZEN:
7627 7628
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7629
		/* Unbind it from offline cpu so it can run. Fall thru. */
7630
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7631
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7632
		kthread_stop(cpu_rq(cpu)->migration_thread);
7633
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7634 7635
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7636

L
Linus Torvalds 已提交
7637
	case CPU_DEAD:
7638
	case CPU_DEAD_FROZEN:
7639
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7640 7641 7642
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7643
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7644 7645
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7646
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7647
		update_rq_clock(rq);
7648
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7649
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7650 7651
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7652
		migrate_dead_tasks(cpu);
7653
		spin_unlock_irq(&rq->lock);
7654
		cpuset_unlock();
L
Linus Torvalds 已提交
7655 7656
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7657
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7658 7659 7660 7661 7662
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7663 7664
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7665 7666
			struct migration_req *req;

L
Linus Torvalds 已提交
7667
			req = list_entry(rq->migration_queue.next,
7668
					 struct migration_req, list);
L
Linus Torvalds 已提交
7669
			list_del_init(&req->list);
B
Brian King 已提交
7670
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7671
			complete(&req->done);
B
Brian King 已提交
7672
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7673 7674 7675
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7676

7677 7678
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7679 7680 7681 7682
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7683
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7684
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7685 7686 7687
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7688 7689 7690 7691 7692
#endif
	}
	return NOTIFY_OK;
}

7693 7694 7695
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7696
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7697
 */
7698
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7699 7700 7701 7702
	.notifier_call = migration_call,
	.priority = 10
};

7703
static int __init migration_init(void)
L
Linus Torvalds 已提交
7704 7705
{
	void *cpu = (void *)(long)smp_processor_id();
7706
	int err;
7707 7708

	/* Start one for the boot CPU: */
7709 7710
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7711 7712
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7713

7714
	return 0;
L
Linus Torvalds 已提交
7715
}
7716
early_initcall(migration_init);
L
Linus Torvalds 已提交
7717 7718 7719
#endif

#ifdef CONFIG_SMP
7720

7721
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7722

7723
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7724
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7725
{
I
Ingo Molnar 已提交
7726
	struct sched_group *group = sd->groups;
7727
	char str[256];
L
Linus Torvalds 已提交
7728

R
Rusty Russell 已提交
7729
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7730
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7740 7741
	}

7742
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7743

7744
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7745 7746 7747
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7748
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7749 7750 7751
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7752

I
Ingo Molnar 已提交
7753
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7754
	do {
I
Ingo Molnar 已提交
7755 7756 7757
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7758 7759 7760
			break;
		}

7761
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7762 7763 7764 7765 7766
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7767

7768
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7769 7770 7771 7772
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7773

7774
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7775 7776 7777 7778
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7779

7780
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7781

R
Rusty Russell 已提交
7782
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7783 7784

		printk(KERN_CONT " %s", str);
7785 7786 7787
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7788
		}
L
Linus Torvalds 已提交
7789

I
Ingo Molnar 已提交
7790 7791 7792
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7793

7794
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7795
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7796

7797 7798
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7799 7800 7801 7802
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7803

I
Ingo Molnar 已提交
7804 7805
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7806
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7807
	int level = 0;
L
Linus Torvalds 已提交
7808

I
Ingo Molnar 已提交
7809 7810 7811 7812
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7813

I
Ingo Molnar 已提交
7814 7815
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7816
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7817 7818 7819 7820
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7821
	for (;;) {
7822
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7823
			break;
L
Linus Torvalds 已提交
7824 7825
		level++;
		sd = sd->parent;
7826
		if (!sd)
I
Ingo Molnar 已提交
7827 7828
			break;
	}
7829
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7830
}
7831
#else /* !CONFIG_SCHED_DEBUG */
7832
# define sched_domain_debug(sd, cpu) do { } while (0)
7833
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7834

7835
static int sd_degenerate(struct sched_domain *sd)
7836
{
7837
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7838 7839 7840 7841 7842 7843
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7844 7845 7846
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7847 7848 7849 7850 7851
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7852
	if (sd->flags & (SD_WAKE_AFFINE))
7853 7854 7855 7856 7857
		return 0;

	return 1;
}

7858 7859
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7860 7861 7862 7863 7864 7865
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7866
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7867 7868 7869 7870 7871 7872 7873
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7874 7875 7876
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7877 7878
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7879 7880 7881 7882 7883 7884 7885
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7886 7887
static void free_rootdomain(struct root_domain *rd)
{
7888 7889
	cpupri_cleanup(&rd->cpupri);

7890 7891 7892 7893 7894 7895
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7896 7897
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7898
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7899 7900 7901 7902 7903
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7904
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7905

7906
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7907
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7908

7909
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7910

I
Ingo Molnar 已提交
7911 7912 7913 7914 7915 7916 7917
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7918 7919 7920 7921 7922
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7923
	cpumask_set_cpu(rq->cpu, rd->span);
7924
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7925
		set_rq_online(rq);
G
Gregory Haskins 已提交
7926 7927

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7928 7929 7930

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7931 7932
}

L
Li Zefan 已提交
7933
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7934
{
7935 7936
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7937 7938
	memset(rd, 0, sizeof(*rd));

7939 7940
	if (bootmem)
		gfp = GFP_NOWAIT;
7941

7942
	if (!alloc_cpumask_var(&rd->span, gfp))
7943
		goto out;
7944
	if (!alloc_cpumask_var(&rd->online, gfp))
7945
		goto free_span;
7946
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7947
		goto free_online;
7948

P
Pekka Enberg 已提交
7949
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7950
		goto free_rto_mask;
7951
	return 0;
7952

7953 7954
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7955 7956 7957 7958
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7959
out:
7960
	return -ENOMEM;
G
Gregory Haskins 已提交
7961 7962 7963 7964
}

static void init_defrootdomain(void)
{
7965 7966
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7967 7968 7969
	atomic_set(&def_root_domain.refcount, 1);
}

7970
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7971 7972 7973 7974 7975 7976 7977
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7978 7979 7980 7981
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7982 7983 7984 7985

	return rd;
}

L
Linus Torvalds 已提交
7986
/*
I
Ingo Molnar 已提交
7987
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7988 7989
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7990 7991
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7992
{
7993
	struct rq *rq = cpu_rq(cpu);
7994 7995 7996
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7997
	for (tmp = sd; tmp; ) {
7998 7999 8000
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8001

8002
		if (sd_parent_degenerate(tmp, parent)) {
8003
			tmp->parent = parent->parent;
8004 8005
			if (parent->parent)
				parent->parent->child = tmp;
8006 8007
		} else
			tmp = tmp->parent;
8008 8009
	}

8010
	if (sd && sd_degenerate(sd)) {
8011
		sd = sd->parent;
8012 8013 8014
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8015 8016 8017

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8018
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8019
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8020 8021 8022
}

/* cpus with isolated domains */
8023
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8024 8025 8026 8027

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8028
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8029 8030 8031
	return 1;
}

I
Ingo Molnar 已提交
8032
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8033 8034

/*
8035 8036
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8037 8038
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8039 8040 8041 8042 8043
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8044
static void
8045 8046 8047
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8048
					struct sched_group **sg,
8049 8050
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8051 8052 8053 8054
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8055
	cpumask_clear(covered);
8056

8057
	for_each_cpu(i, span) {
8058
		struct sched_group *sg;
8059
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8060 8061
		int j;

8062
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8063 8064
			continue;

8065
		cpumask_clear(sched_group_cpus(sg));
8066
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8067

8068
		for_each_cpu(j, span) {
8069
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8070 8071
				continue;

8072
			cpumask_set_cpu(j, covered);
8073
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8084
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8085

8086
#ifdef CONFIG_NUMA
8087

8088 8089 8090 8091 8092
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8093
 * Find the next node to include in a given scheduling domain. Simply
8094 8095 8096 8097
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8098
static int find_next_best_node(int node, nodemask_t *used_nodes)
8099 8100 8101 8102 8103
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8104
	for (i = 0; i < nr_node_ids; i++) {
8105
		/* Start at @node */
8106
		n = (node + i) % nr_node_ids;
8107 8108 8109 8110 8111

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8112
		if (node_isset(n, *used_nodes))
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8124
	node_set(best_node, *used_nodes);
8125 8126 8127 8128 8129 8130
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8131
 * @span: resulting cpumask
8132
 *
I
Ingo Molnar 已提交
8133
 * Given a node, construct a good cpumask for its sched_domain to span. It
8134 8135 8136
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8137
static void sched_domain_node_span(int node, struct cpumask *span)
8138
{
8139
	nodemask_t used_nodes;
8140
	int i;
8141

8142
	cpumask_clear(span);
8143
	nodes_clear(used_nodes);
8144

8145
	cpumask_or(span, span, cpumask_of_node(node));
8146
	node_set(node, used_nodes);
8147 8148

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8149
		int next_node = find_next_best_node(node, &used_nodes);
8150

8151
		cpumask_or(span, span, cpumask_of_node(next_node));
8152 8153
	}
}
8154
#endif /* CONFIG_NUMA */
8155

8156
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8157

8158 8159
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8160 8161 8162
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8207
/*
8208
 * SMT sched-domains:
8209
 */
L
Linus Torvalds 已提交
8210
#ifdef CONFIG_SCHED_SMT
8211 8212
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8213

I
Ingo Molnar 已提交
8214
static int
8215 8216
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8217
{
8218
	if (sg)
8219
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8220 8221
	return cpu;
}
8222
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8223

8224 8225 8226
/*
 * multi-core sched-domains:
 */
8227
#ifdef CONFIG_SCHED_MC
8228 8229
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8230
#endif /* CONFIG_SCHED_MC */
8231 8232

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8233
static int
8234 8235
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8236
{
8237
	int group;
8238

8239
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8240
	group = cpumask_first(mask);
8241
	if (sg)
8242
		*sg = &per_cpu(sched_group_core, group).sg;
8243
	return group;
8244 8245
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8246
static int
8247 8248
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8249
{
8250
	if (sg)
8251
		*sg = &per_cpu(sched_group_core, cpu).sg;
8252 8253 8254 8255
	return cpu;
}
#endif

8256 8257
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8258

I
Ingo Molnar 已提交
8259
static int
8260 8261
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8262
{
8263
	int group;
8264
#ifdef CONFIG_SCHED_MC
8265
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8266
	group = cpumask_first(mask);
8267
#elif defined(CONFIG_SCHED_SMT)
8268
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8269
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8270
#else
8271
	group = cpu;
L
Linus Torvalds 已提交
8272
#endif
8273
	if (sg)
8274
		*sg = &per_cpu(sched_group_phys, group).sg;
8275
	return group;
L
Linus Torvalds 已提交
8276 8277 8278 8279
}

#ifdef CONFIG_NUMA
/*
8280 8281 8282
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8283
 */
8284
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8285
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8286

8287
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8288
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8289

8290 8291 8292
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8293
{
8294 8295
	int group;

8296
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8297
	group = cpumask_first(nodemask);
8298 8299

	if (sg)
8300
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8301
	return group;
L
Linus Torvalds 已提交
8302
}
8303

8304 8305 8306 8307 8308 8309 8310
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8311
	do {
8312
		for_each_cpu(j, sched_group_cpus(sg)) {
8313
			struct sched_domain *sd;
8314

8315
			sd = &per_cpu(phys_domains, j).sd;
8316
			if (j != group_first_cpu(sd->groups)) {
8317 8318 8319 8320 8321 8322
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8323

8324
			sg->cpu_power += sd->groups->cpu_power;
8325 8326 8327
		}
		sg = sg->next;
	} while (sg != group_head);
8328
}
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8361
	sg->cpu_power = 0;
8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8384
		sg->cpu_power = 0;
8385 8386 8387 8388 8389 8390 8391 8392 8393
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8394
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8395

8396
#ifdef CONFIG_NUMA
8397
/* Free memory allocated for various sched_group structures */
8398 8399
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8400
{
8401
	int cpu, i;
8402

8403
	for_each_cpu(cpu, cpu_map) {
8404 8405 8406 8407 8408 8409
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8410
		for (i = 0; i < nr_node_ids; i++) {
8411 8412
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8413
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8414
			if (cpumask_empty(nodemask))
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8431
#else /* !CONFIG_NUMA */
8432 8433
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8434 8435
{
}
8436
#endif /* CONFIG_NUMA */
8437

8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8452 8453
	long power;
	int weight;
8454 8455 8456

	WARN_ON(!sd || !sd->groups);

8457
	if (cpu != group_first_cpu(sd->groups))
8458 8459 8460 8461
		return;

	child = sd->child;

8462
	sd->groups->cpu_power = 0;
8463

8464 8465 8466 8467 8468
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8469 8470 8471
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8472
		 */
P
Peter Zijlstra 已提交
8473 8474
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8475
			power /= weight;
P
Peter Zijlstra 已提交
8476 8477
			power >>= SCHED_LOAD_SHIFT;
		}
8478
		sd->groups->cpu_power += power;
8479 8480 8481 8482
		return;
	}

	/*
8483
	 * Add cpu_power of each child group to this groups cpu_power.
8484 8485 8486
	 */
	group = child->groups;
	do {
8487
		sd->groups->cpu_power += group->cpu_power;
8488 8489 8490 8491
		group = group->next;
	} while (group != child->groups);
}

8492 8493 8494 8495 8496
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8497 8498 8499 8500 8501 8502
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8503
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8504

8505 8506 8507 8508 8509
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8510
	sd->level = SD_LV_##type;				\
8511
	SD_INIT_NAME(sd, type);					\
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8526 8527 8528 8529
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8530 8531 8532 8533 8534 8535
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8554
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8555 8556
	} else {
		/* turn on idle balance on this domain */
8557
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8558 8559 8560
	}
}

8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8581
#ifdef CONFIG_NUMA
8582 8583 8584 8585 8586 8587 8588
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8589
#endif
8590 8591 8592 8593
	case sa_none:
		break;
	}
}
8594

8595 8596 8597
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8598
#ifdef CONFIG_NUMA
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8609
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8610
		return sa_notcovered;
8611
	}
8612
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8613
#endif
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8626
		printk(KERN_WARNING "Cannot alloc root domain\n");
8627
		return sa_tmpmask;
G
Gregory Haskins 已提交
8628
	}
8629 8630
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8631

8632 8633 8634 8635
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8636
#ifdef CONFIG_NUMA
8637
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8638

8639 8640 8641 8642 8643
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8644
		set_domain_attribute(sd, attr);
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8659
#endif
8660 8661
	return sd;
}
L
Linus Torvalds 已提交
8662

8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8678

8679 8680 8681 8682 8683
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8684
#ifdef CONFIG_SCHED_MC
8685 8686 8687 8688 8689 8690 8691
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8692
#endif
8693 8694
	return sd;
}
8695

8696 8697 8698 8699 8700
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8701
#ifdef CONFIG_SCHED_SMT
8702 8703 8704 8705 8706 8707 8708
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8709
#endif
8710 8711
	return sd;
}
L
Linus Torvalds 已提交
8712

8713 8714 8715 8716
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8717
#ifdef CONFIG_SCHED_SMT
8718 8719 8720 8721 8722 8723 8724 8725
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8726
#endif
8727
#ifdef CONFIG_SCHED_MC
8728 8729 8730 8731 8732 8733 8734
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8735
#endif
8736 8737 8738 8739 8740 8741 8742
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8743
#ifdef CONFIG_NUMA
8744 8745 8746 8747 8748
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8749 8750
	default:
		break;
8751
	}
8752
}
8753

8754 8755 8756 8757 8758 8759 8760 8761 8762
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8763
	struct sched_domain *sd;
8764
	int i;
8765
#ifdef CONFIG_NUMA
8766
	d.sd_allnodes = 0;
8767
#endif
8768

8769 8770 8771 8772
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8773

L
Linus Torvalds 已提交
8774
	/*
8775
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8776
	 */
8777
	for_each_cpu(i, cpu_map) {
8778 8779
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8780

8781
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8782
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8783
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8784
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8785
	}
8786

8787
	for_each_cpu(i, cpu_map) {
8788
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8789
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8790
	}
8791

L
Linus Torvalds 已提交
8792
	/* Set up physical groups */
8793 8794
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8795

L
Linus Torvalds 已提交
8796 8797
#ifdef CONFIG_NUMA
	/* Set up node groups */
8798 8799
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8800

8801 8802
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8803
			goto error;
L
Linus Torvalds 已提交
8804 8805 8806
#endif

	/* Calculate CPU power for physical packages and nodes */
8807
#ifdef CONFIG_SCHED_SMT
8808
	for_each_cpu(i, cpu_map) {
8809
		sd = &per_cpu(cpu_domains, i).sd;
8810
		init_sched_groups_power(i, sd);
8811
	}
L
Linus Torvalds 已提交
8812
#endif
8813
#ifdef CONFIG_SCHED_MC
8814
	for_each_cpu(i, cpu_map) {
8815
		sd = &per_cpu(core_domains, i).sd;
8816
		init_sched_groups_power(i, sd);
8817 8818
	}
#endif
8819

8820
	for_each_cpu(i, cpu_map) {
8821
		sd = &per_cpu(phys_domains, i).sd;
8822
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8823 8824
	}

8825
#ifdef CONFIG_NUMA
8826
	for (i = 0; i < nr_node_ids; i++)
8827
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8828

8829
	if (d.sd_allnodes) {
8830
		struct sched_group *sg;
8831

8832
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8833
								d.tmpmask);
8834 8835
		init_numa_sched_groups_power(sg);
	}
8836 8837
#endif

L
Linus Torvalds 已提交
8838
	/* Attach the domains */
8839
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8840
#ifdef CONFIG_SCHED_SMT
8841
		sd = &per_cpu(cpu_domains, i).sd;
8842
#elif defined(CONFIG_SCHED_MC)
8843
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8844
#else
8845
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8846
#endif
8847
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8848
	}
8849

8850 8851 8852
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8853 8854

error:
8855 8856
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8857
}
P
Paul Jackson 已提交
8858

8859
static int build_sched_domains(const struct cpumask *cpu_map)
8860 8861 8862 8863
{
	return __build_sched_domains(cpu_map, NULL);
}

8864
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8865
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8866 8867
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8868 8869 8870

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8871 8872
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8873
 */
8874
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8875

8876 8877 8878 8879 8880 8881
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8882
{
8883
	return 0;
8884 8885
}

8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8911
/*
I
Ingo Molnar 已提交
8912
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8913 8914
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8915
 */
8916
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8917
{
8918 8919
	int err;

8920
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8921
	ndoms_cur = 1;
8922
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
8923
	if (!doms_cur)
8924 8925
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8926
	dattr_cur = NULL;
8927
	err = build_sched_domains(doms_cur[0]);
8928
	register_sched_domain_sysctl();
8929 8930

	return err;
8931 8932
}

8933 8934
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8935
{
8936
	free_sched_groups(cpu_map, tmpmask);
8937
}
L
Linus Torvalds 已提交
8938

8939 8940 8941 8942
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8943
static void detach_destroy_domains(const struct cpumask *cpu_map)
8944
{
8945 8946
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8947 8948
	int i;

8949
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8950
		cpu_attach_domain(NULL, &def_root_domain, i);
8951
	synchronize_sched();
8952
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8953 8954
}

8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8971 8972
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8973
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8974 8975 8976
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8977
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8978 8979 8980
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8981 8982 8983
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
8984 8985 8986 8987 8988 8989
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
8990
 *
8991
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8992 8993
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8994
 *
P
Paul Jackson 已提交
8995 8996
 * Call with hotplug lock held
 */
8997
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8998
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8999
{
9000
	int i, j, n;
9001
	int new_topology;
P
Paul Jackson 已提交
9002

9003
	mutex_lock(&sched_domains_mutex);
9004

9005 9006 9007
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9008 9009 9010
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9011
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9012 9013 9014

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9015
		for (j = 0; j < n && !new_topology; j++) {
9016
			if (cpumask_equal(doms_cur[i], doms_new[j])
9017
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9018 9019 9020
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9021
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9022 9023 9024 9025
match1:
		;
	}

9026 9027
	if (doms_new == NULL) {
		ndoms_cur = 0;
9028 9029
		doms_new = &fallback_doms;
		cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
9030
		WARN_ON_ONCE(dattr_new);
9031 9032
	}

P
Paul Jackson 已提交
9033 9034
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9035
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9036
			if (cpumask_equal(doms_new[i], doms_cur[j])
9037
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9038 9039 9040
				goto match2;
		}
		/* no match - add a new doms_new */
9041
		__build_sched_domains(doms_new[i],
9042
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9043 9044 9045 9046 9047
match2:
		;
	}

	/* Remember the new sched domains */
9048 9049
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9050
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9051
	doms_cur = doms_new;
9052
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9053
	ndoms_cur = ndoms_new;
9054 9055

	register_sched_domain_sysctl();
9056

9057
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9058 9059
}

9060
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9061
static void arch_reinit_sched_domains(void)
9062
{
9063
	get_online_cpus();
9064 9065 9066 9067

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9068
	rebuild_sched_domains();
9069
	put_online_cpus();
9070 9071 9072 9073
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9074
	unsigned int level = 0;
9075

9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9087 9088 9089
		return -EINVAL;

	if (smt)
9090
		sched_smt_power_savings = level;
9091
	else
9092
		sched_mc_power_savings = level;
9093

9094
	arch_reinit_sched_domains();
9095

9096
	return count;
9097 9098 9099
}

#ifdef CONFIG_SCHED_MC
9100 9101
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9102 9103 9104
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9105
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9106
					    const char *buf, size_t count)
9107 9108 9109
{
	return sched_power_savings_store(buf, count, 0);
}
9110 9111 9112
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9113 9114 9115
#endif

#ifdef CONFIG_SCHED_SMT
9116 9117
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9118 9119 9120
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9121
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9122
					     const char *buf, size_t count)
9123 9124 9125
{
	return sched_power_savings_store(buf, count, 1);
}
9126 9127
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9128 9129 9130
		   sched_smt_power_savings_store);
#endif

9131
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9147
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9148

9149
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9150
/*
9151 9152
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9153 9154 9155
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9156 9157 9158 9159 9160 9161
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9162
		partition_sched_domains(1, NULL, NULL);
9163 9164 9165 9166 9167 9168 9169 9170 9171 9172
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9173
{
P
Peter Zijlstra 已提交
9174 9175
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9176 9177
	switch (action) {
	case CPU_DOWN_PREPARE:
9178
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9179
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9180 9181 9182
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9183
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9184
	case CPU_ONLINE:
9185
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9186
		enable_runtime(cpu_rq(cpu));
9187 9188
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9189 9190 9191 9192 9193 9194 9195
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9196 9197 9198
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9199
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9200

9201 9202 9203 9204 9205
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9206
	get_online_cpus();
9207
	mutex_lock(&sched_domains_mutex);
9208 9209 9210 9211
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9212
	mutex_unlock(&sched_domains_mutex);
9213
	put_online_cpus();
9214 9215

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9216 9217
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9218 9219 9220 9221 9222
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9223
	init_hrtick();
9224 9225

	/* Move init over to a non-isolated CPU */
9226
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9227
		BUG();
I
Ingo Molnar 已提交
9228
	sched_init_granularity();
9229
	free_cpumask_var(non_isolated_cpus);
9230

9231
	init_sched_rt_class();
L
Linus Torvalds 已提交
9232 9233 9234 9235
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9236
	sched_init_granularity();
L
Linus Torvalds 已提交
9237 9238 9239
}
#endif /* CONFIG_SMP */

9240 9241
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9242 9243 9244 9245 9246 9247 9248
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9249
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9250 9251
{
	cfs_rq->tasks_timeline = RB_ROOT;
9252
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9253 9254 9255
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9256
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9257 9258
}

P
Peter Zijlstra 已提交
9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9272
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9273
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9274
#ifdef CONFIG_SMP
9275
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9276 9277
#endif
#endif
P
Peter Zijlstra 已提交
9278 9279 9280
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9281
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9282 9283 9284 9285
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9286 9287
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9288

9289
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9290
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9291 9292
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9293 9294
}

P
Peter Zijlstra 已提交
9295
#ifdef CONFIG_FAIR_GROUP_SCHED
9296 9297 9298
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9299
{
9300
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9301 9302 9303 9304 9305 9306 9307
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9308 9309 9310 9311
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9312 9313 9314 9315 9316
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9317 9318
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9319
	se->load.inv_weight = 0;
9320
	se->parent = parent;
P
Peter Zijlstra 已提交
9321
}
9322
#endif
P
Peter Zijlstra 已提交
9323

9324
#ifdef CONFIG_RT_GROUP_SCHED
9325 9326 9327
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9328
{
9329 9330
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9331 9332 9333 9334
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9335
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9336 9337 9338 9339
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9340 9341 9342
	if (!rt_se)
		return;

9343 9344 9345 9346 9347
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9348
	rt_se->my_q = rt_rq;
9349
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9350 9351 9352 9353
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9354 9355
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9356
	int i, j;
9357 9358 9359 9360 9361 9362 9363
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9364 9365 9366
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9367 9368
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9369
	alloc_size += num_possible_cpus() * cpumask_size();
9370 9371
#endif
	if (alloc_size) {
9372
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9373 9374 9375 9376 9377 9378 9379

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9380 9381 9382 9383 9384 9385 9386

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9387 9388
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9389 9390 9391 9392 9393
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9394 9395 9396 9397 9398 9399 9400 9401
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9402 9403
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9404 9405 9406 9407 9408 9409
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9410
	}
I
Ingo Molnar 已提交
9411

G
Gregory Haskins 已提交
9412 9413 9414 9415
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9416 9417 9418 9419 9420 9421
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9422 9423 9424
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9425 9426
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9427

9428
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9429
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9430 9431 9432 9433 9434 9435
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9436 9437
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9438

9439
	for_each_possible_cpu(i) {
9440
		struct rq *rq;
L
Linus Torvalds 已提交
9441 9442 9443

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9444
		rq->nr_running = 0;
9445 9446
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9447
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9448
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9449
#ifdef CONFIG_FAIR_GROUP_SCHED
9450
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9451
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9467
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9468 9469 9470 9471
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9472
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9473
#elif defined CONFIG_USER_SCHED
9474 9475
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9476 9477 9478 9479 9480 9481 9482 9483
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9484
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9485 9486
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9487
		init_tg_cfs_entry(&init_task_group,
9488
				&per_cpu(init_tg_cfs_rq, i),
9489 9490
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9491

9492
#endif
D
Dhaval Giani 已提交
9493 9494 9495
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9496
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9497
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9498
#ifdef CONFIG_CGROUP_SCHED
9499
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9500
#elif defined CONFIG_USER_SCHED
9501
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9502
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9503
				&per_cpu(init_rt_rq, i),
9504 9505
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9506
#endif
I
Ingo Molnar 已提交
9507
#endif
L
Linus Torvalds 已提交
9508

I
Ingo Molnar 已提交
9509 9510
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9511
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9512
		rq->sd = NULL;
G
Gregory Haskins 已提交
9513
		rq->rd = NULL;
9514
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9515
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9516
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9517
		rq->push_cpu = 0;
9518
		rq->cpu = i;
9519
		rq->online = 0;
L
Linus Torvalds 已提交
9520
		rq->migration_thread = NULL;
9521 9522
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9523
		INIT_LIST_HEAD(&rq->migration_queue);
9524
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9525
#endif
P
Peter Zijlstra 已提交
9526
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9527 9528 9529
		atomic_set(&rq->nr_iowait, 0);
	}

9530
	set_load_weight(&init_task);
9531

9532 9533 9534 9535
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9536
#ifdef CONFIG_SMP
9537
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9538 9539
#endif

9540 9541 9542 9543
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9557 9558 9559

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9560 9561 9562 9563
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9564

9565
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9566
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9567
#ifdef CONFIG_SMP
9568
#ifdef CONFIG_NO_HZ
9569 9570
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9571
#endif
9572
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9573
#endif /* SMP */
9574

9575
	perf_event_init();
9576

9577
	scheduler_running = 1;
L
Linus Torvalds 已提交
9578 9579 9580
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9581 9582 9583 9584 9585 9586 9587 9588
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9589
{
9590
#ifdef in_atomic
L
Linus Torvalds 已提交
9591 9592
	static unsigned long prev_jiffy;	/* ratelimiting */

9593 9594
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9612 9613 9614 9615 9616 9617
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9618 9619 9620
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9621

9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9633 9634
void normalize_rt_tasks(void)
{
9635
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9636
	unsigned long flags;
9637
	struct rq *rq;
L
Linus Torvalds 已提交
9638

9639
	read_lock_irqsave(&tasklist_lock, flags);
9640
	do_each_thread(g, p) {
9641 9642 9643 9644 9645 9646
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9647 9648
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9649 9650 9651
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9652
#endif
I
Ingo Molnar 已提交
9653 9654 9655 9656 9657 9658 9659 9660

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9661
			continue;
I
Ingo Molnar 已提交
9662
		}
L
Linus Torvalds 已提交
9663

9664
		spin_lock(&p->pi_lock);
9665
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9666

9667
		normalize_task(rq, p);
9668

9669
		__task_rq_unlock(rq);
9670
		spin_unlock(&p->pi_lock);
9671 9672
	} while_each_thread(g, p);

9673
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9674 9675 9676
}

#endif /* CONFIG_MAGIC_SYSRQ */
9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9695
struct task_struct *curr_task(int cpu)
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9706 9707
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9708 9709 9710 9711 9712 9713 9714
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9715
void set_curr_task(int cpu, struct task_struct *p)
9716 9717 9718 9719 9720
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9721

9722 9723
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9738 9739
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9740 9741
{
	struct cfs_rq *cfs_rq;
9742
	struct sched_entity *se;
9743
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9744 9745
	int i;

9746
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9747 9748
	if (!tg->cfs_rq)
		goto err;
9749
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9750 9751
	if (!tg->se)
		goto err;
9752 9753

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9754 9755

	for_each_possible_cpu(i) {
9756
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9757

9758 9759
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9760 9761 9762
		if (!cfs_rq)
			goto err;

9763 9764
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9765 9766 9767
		if (!se)
			goto err;

9768
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9787
#else /* !CONFG_FAIR_GROUP_SCHED */
9788 9789 9790 9791
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9792 9793
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9805
#endif /* CONFIG_FAIR_GROUP_SCHED */
9806 9807

#ifdef CONFIG_RT_GROUP_SCHED
9808 9809 9810 9811
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9812 9813
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9825 9826
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9827 9828
{
	struct rt_rq *rt_rq;
9829
	struct sched_rt_entity *rt_se;
9830 9831 9832
	struct rq *rq;
	int i;

9833
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9834 9835
	if (!tg->rt_rq)
		goto err;
9836
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9837 9838 9839
	if (!tg->rt_se)
		goto err;

9840 9841
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9842 9843 9844 9845

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9846 9847
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9848 9849
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9850

9851 9852
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9853 9854
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9855

9856
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9857 9858
	}

9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9875
#else /* !CONFIG_RT_GROUP_SCHED */
9876 9877 9878 9879
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9880 9881
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9893
#endif /* CONFIG_RT_GROUP_SCHED */
9894

9895
#ifdef CONFIG_GROUP_SCHED
9896 9897 9898 9899 9900 9901 9902 9903
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9904
struct task_group *sched_create_group(struct task_group *parent)
9905 9906 9907 9908 9909 9910 9911 9912 9913
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9914
	if (!alloc_fair_sched_group(tg, parent))
9915 9916
		goto err;

9917
	if (!alloc_rt_sched_group(tg, parent))
9918 9919
		goto err;

9920
	spin_lock_irqsave(&task_group_lock, flags);
9921
	for_each_possible_cpu(i) {
9922 9923
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9924
	}
P
Peter Zijlstra 已提交
9925
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9926 9927 9928 9929 9930

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9931
	list_add_rcu(&tg->siblings, &parent->children);
9932
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9933

9934
	return tg;
S
Srivatsa Vaddagiri 已提交
9935 9936

err:
P
Peter Zijlstra 已提交
9937
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9938 9939 9940
	return ERR_PTR(-ENOMEM);
}

9941
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9942
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9943 9944
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9945
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9946 9947
}

9948
/* Destroy runqueue etc associated with a task group */
9949
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9950
{
9951
	unsigned long flags;
9952
	int i;
S
Srivatsa Vaddagiri 已提交
9953

9954
	spin_lock_irqsave(&task_group_lock, flags);
9955
	for_each_possible_cpu(i) {
9956 9957
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9958
	}
P
Peter Zijlstra 已提交
9959
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9960
	list_del_rcu(&tg->siblings);
9961
	spin_unlock_irqrestore(&task_group_lock, flags);
9962 9963

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9964
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9965 9966
}

9967
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9968 9969 9970
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9971 9972
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9982
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9983 9984
	on_rq = tsk->se.on_rq;

9985
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9986
		dequeue_task(rq, tsk, 0);
9987 9988
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9989

P
Peter Zijlstra 已提交
9990
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9991

P
Peter Zijlstra 已提交
9992 9993 9994 9995 9996
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9997 9998 9999
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10000
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10001 10002 10003

	task_rq_unlock(rq, &flags);
}
10004
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10005

10006
#ifdef CONFIG_FAIR_GROUP_SCHED
10007
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10008 10009 10010 10011 10012
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10013
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10014 10015 10016
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10017
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10018

10019
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10020
		enqueue_entity(cfs_rq, se, 0);
10021
}
10022

10023 10024 10025 10026 10027 10028 10029 10030 10031
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10032 10033
}

10034 10035
static DEFINE_MUTEX(shares_mutex);

10036
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10037 10038
{
	int i;
10039
	unsigned long flags;
10040

10041 10042 10043 10044 10045 10046
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10047 10048
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10049 10050
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10051

10052
	mutex_lock(&shares_mutex);
10053
	if (tg->shares == shares)
10054
		goto done;
S
Srivatsa Vaddagiri 已提交
10055

10056
	spin_lock_irqsave(&task_group_lock, flags);
10057 10058
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10059
	list_del_rcu(&tg->siblings);
10060
	spin_unlock_irqrestore(&task_group_lock, flags);
10061 10062 10063 10064 10065 10066 10067 10068

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10069
	tg->shares = shares;
10070 10071 10072 10073 10074
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10075
		set_se_shares(tg->se[i], shares);
10076
	}
S
Srivatsa Vaddagiri 已提交
10077

10078 10079 10080 10081
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10082
	spin_lock_irqsave(&task_group_lock, flags);
10083 10084
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10085
	list_add_rcu(&tg->siblings, &tg->parent->children);
10086
	spin_unlock_irqrestore(&task_group_lock, flags);
10087
done:
10088
	mutex_unlock(&shares_mutex);
10089
	return 0;
S
Srivatsa Vaddagiri 已提交
10090 10091
}

10092 10093 10094 10095
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10096
#endif
10097

10098
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10099
/*
P
Peter Zijlstra 已提交
10100
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10101
 */
P
Peter Zijlstra 已提交
10102 10103 10104 10105 10106
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10107
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10108

P
Peter Zijlstra 已提交
10109
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10110 10111
}

P
Peter Zijlstra 已提交
10112 10113
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10114
{
P
Peter Zijlstra 已提交
10115
	struct task_struct *g, *p;
10116

P
Peter Zijlstra 已提交
10117 10118 10119 10120
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10121

P
Peter Zijlstra 已提交
10122 10123
	return 0;
}
10124

P
Peter Zijlstra 已提交
10125 10126 10127 10128 10129
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10130

P
Peter Zijlstra 已提交
10131 10132 10133 10134 10135 10136
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10137

P
Peter Zijlstra 已提交
10138 10139
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10140

P
Peter Zijlstra 已提交
10141 10142 10143
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10144 10145
	}

10146 10147 10148 10149 10150 10151 10152
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10153 10154 10155 10156 10157
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10158

10159 10160 10161
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10162 10163
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10164

P
Peter Zijlstra 已提交
10165
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10166

10167 10168 10169 10170 10171
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10172

10173 10174 10175
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10176 10177 10178
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10179

P
Peter Zijlstra 已提交
10180 10181 10182 10183
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10184

P
Peter Zijlstra 已提交
10185
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10186
	}
P
Peter Zijlstra 已提交
10187

P
Peter Zijlstra 已提交
10188 10189 10190 10191
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10192 10193
}

P
Peter Zijlstra 已提交
10194
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10195
{
P
Peter Zijlstra 已提交
10196 10197 10198 10199 10200 10201 10202
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10203 10204
}

10205 10206
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10207
{
P
Peter Zijlstra 已提交
10208
	int i, err = 0;
P
Peter Zijlstra 已提交
10209 10210

	mutex_lock(&rt_constraints_mutex);
10211
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10212 10213
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10214
		goto unlock;
P
Peter Zijlstra 已提交
10215 10216

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10217 10218
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10219 10220 10221 10222 10223 10224 10225 10226 10227

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10228
 unlock:
10229
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10230 10231 10232
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10233 10234
}

10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10247 10248 10249 10250
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10251
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10252 10253
		return -1;

10254
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10255 10256 10257
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10258 10259 10260 10261 10262 10263 10264 10265

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10266 10267 10268
	if (rt_period == 0)
		return -EINVAL;

10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10283
	u64 runtime, period;
10284 10285
	int ret = 0;

10286 10287 10288
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10289 10290 10291 10292 10293 10294 10295 10296
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10297

10298
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10299
	read_lock(&tasklist_lock);
10300
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10301
	read_unlock(&tasklist_lock);
10302 10303 10304 10305
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10306 10307 10308 10309 10310 10311 10312 10313 10314 10315

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10316
#else /* !CONFIG_RT_GROUP_SCHED */
10317 10318
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10319 10320 10321
	unsigned long flags;
	int i;

10322 10323 10324
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10325 10326 10327 10328 10329 10330 10331
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10332 10333 10334 10335 10336 10337 10338 10339 10340 10341
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10342 10343
	return 0;
}
10344
#endif /* CONFIG_RT_GROUP_SCHED */
10345 10346

int sched_rt_handler(struct ctl_table *table, int write,
10347
		void __user *buffer, size_t *lenp,
10348 10349 10350 10351 10352 10353 10354 10355 10356 10357
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10358
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10375

10376
#ifdef CONFIG_CGROUP_SCHED
10377 10378

/* return corresponding task_group object of a cgroup */
10379
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10380
{
10381 10382
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10383 10384 10385
}

static struct cgroup_subsys_state *
10386
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10387
{
10388
	struct task_group *tg, *parent;
10389

10390
	if (!cgrp->parent) {
10391 10392 10393 10394
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10395 10396
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10397 10398 10399 10400 10401 10402
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10403 10404
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10405
{
10406
	struct task_group *tg = cgroup_tg(cgrp);
10407 10408 10409 10410

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10411
static int
10412
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10413
{
10414
#ifdef CONFIG_RT_GROUP_SCHED
10415
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10416 10417
		return -EINVAL;
#else
10418 10419 10420
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10421
#endif
10422 10423
	return 0;
}
10424

10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10444 10445 10446 10447
	return 0;
}

static void
10448
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10449 10450
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10451 10452
{
	sched_move_task(tsk);
10453 10454 10455 10456 10457 10458 10459 10460
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10461 10462
}

10463
#ifdef CONFIG_FAIR_GROUP_SCHED
10464
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10465
				u64 shareval)
10466
{
10467
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10468 10469
}

10470
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10471
{
10472
	struct task_group *tg = cgroup_tg(cgrp);
10473 10474 10475

	return (u64) tg->shares;
}
10476
#endif /* CONFIG_FAIR_GROUP_SCHED */
10477

10478
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10479
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10480
				s64 val)
P
Peter Zijlstra 已提交
10481
{
10482
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10483 10484
}

10485
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10486
{
10487
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10488
}
10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10500
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10501

10502
static struct cftype cpu_files[] = {
10503
#ifdef CONFIG_FAIR_GROUP_SCHED
10504 10505
	{
		.name = "shares",
10506 10507
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10508
	},
10509 10510
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10511
	{
P
Peter Zijlstra 已提交
10512
		.name = "rt_runtime_us",
10513 10514
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10515
	},
10516 10517
	{
		.name = "rt_period_us",
10518 10519
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10520
	},
10521
#endif
10522 10523 10524 10525
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10526
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10527 10528 10529
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10530 10531 10532 10533 10534 10535 10536
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10537 10538 10539
	.early_init	= 1,
};

10540
#endif	/* CONFIG_CGROUP_SCHED */
10541 10542 10543 10544 10545 10546 10547 10548 10549 10550

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10551
/* track cpu usage of a group of tasks and its child groups */
10552 10553 10554 10555
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10556
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10557
	struct cpuacct *parent;
10558 10559 10560 10561 10562
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10563
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10564
{
10565
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10578
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10579 10580
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10581
	int i;
10582 10583

	if (!ca)
10584
		goto out;
10585 10586

	ca->cpuusage = alloc_percpu(u64);
10587 10588 10589 10590 10591 10592
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10593

10594 10595 10596
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10597
	return &ca->css;
10598 10599 10600 10601 10602 10603 10604 10605 10606

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10607 10608 10609
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10610
static void
10611
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10612
{
10613
	struct cpuacct *ca = cgroup_ca(cgrp);
10614
	int i;
10615

10616 10617
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10618 10619 10620 10621
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10622 10623
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10624
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10643
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10657
/* return total cpu usage (in nanoseconds) of a group */
10658
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10659
{
10660
	struct cpuacct *ca = cgroup_ca(cgrp);
10661 10662 10663
	u64 totalcpuusage = 0;
	int i;

10664 10665
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10666 10667 10668 10669

	return totalcpuusage;
}

10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10682 10683
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10684 10685 10686 10687 10688

out:
	return err;
}

10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10723 10724 10725
static struct cftype files[] = {
	{
		.name = "usage",
10726 10727
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10728
	},
10729 10730 10731 10732
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10733 10734 10735 10736
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10737 10738
};

10739
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10740
{
10741
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10742 10743 10744 10745 10746 10747 10748 10749 10750 10751
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10752
	int cpu;
10753

L
Li Zefan 已提交
10754
	if (unlikely(!cpuacct_subsys.active))
10755 10756
		return;

10757
	cpu = task_cpu(tsk);
10758 10759 10760

	rcu_read_lock();

10761 10762
	ca = task_ca(tsk);

10763
	for (; ca; ca = ca->parent) {
10764
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10765 10766
		*cpuusage += cputime;
	}
10767 10768

	rcu_read_unlock();
10769 10770
}

10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10792 10793 10794 10795 10796 10797 10798 10799
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */