# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from six.moves import reduce from .. import core from ..layers import utils from . import layers from ..framework import Variable, OpProtoHolder from ..param_attr import ParamAttr from ..initializer import Normal, Constant __all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding'] class Conv2D(layers.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, use_cudnn=True, act=None, param_attr=None, bias_attr=None, name=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." super(Conv2D, self).__init__(name=name, dtype=dtype) # TODO(minqiyang): Move this to the top. from ..layer_helper import LayerHelper self._helper = LayerHelper( type(self).__name__, param_attr=param_attr, bias_attr=bias_attr, dtype=dtype, name=name, act=act) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn self._num_channels = num_channels if (self._num_channels == self._groups and num_filters % self._num_channels == 0 and not self._use_cudnn): self._l_type = 'depthwise_conv2d' else: self._l_type = 'conv2d' if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self._filter_param = self._helper.create_parameter( attr=self._helper.param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) if self._use_cudnn: self._helper.create_variable( name="kCUDNNFwdAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._helper.create_variable( name="kCUDNNBwdDataAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._helper.create_variable( name="kCUDNNBwdFilterAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._bias_param = self._helper.create_parameter( attr=self._helper.bias_attr, shape=[num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type=self._l_type, inputs={ 'Input': input, 'Filter': self._filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups, 'use_cudnn': self._use_cudnn, 'use_mkldnn': False, }) pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self._bias_param]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) # Currently, we don't support inplace in imperative mode return self._helper.append_activation(pre_act) class Pool2D(layers.Layer): def __init__(self, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True, name=None, dtype=core.VarDesc.VarType.FP32): if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When the global_pooling is False, pool_size must be passed " "and be a valid value. Received pool_size: " + str(pool_size)) if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") super(Pool2D, self).__init__(name=name, dtype=dtype) from ..layer_helper import LayerHelper self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name) self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding') self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') self._global_pooling = global_pooling self._use_cudnn = use_cudnn self._ceil_mode = ceil_mode self._exclusive = exclusive self._l_type = 'pool2d' def forward(self, input): pool_out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type=self._l_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": self._pool_type, "ksize": self._pool_size, "global_pooling": self._global_pooling, "strides": self._pool_stride, "paddings": self._pool_padding, "use_cudnn": self._use_cudnn, "ceil_mode": self._ceil_mode, "use_mkldnn": False, "exclusive": self._exclusive, }) return pool_out class FC(layers.Layer): def __init__(self, size, param_attr=None, bias_attr=None, num_flatten_dims=1, dtype=core.VarDesc.VarType.FP32, act=None, name=None): super(FC, self).__init__() self._size = size self._num_flatten_dims = num_flatten_dims self._dtype = dtype from ..layer_helper import LayerHelper self._helper = LayerHelper( 'FC', param_attr=param_attr, bias_attr=bias_attr, act=act, name=name) def parameters(self): return [self._w, self._b] def _build_once(self, input): input_shape = input.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) ] + [self._size] self._w = self._helper.create_parameter( attr=self._helper.param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) if self._helper.bias_attr: size = list([self._size]) self._b = self._helper.create_parameter( attr=self._helper.bias_attr, shape=size, dtype=self._dtype, is_bias=True) else: self._b = None def forward(self, input): tmp = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="mul", inputs={"X": input, "Y": self._w}, outputs={"Out": tmp}, attrs={ "x_num_col_dims": self._num_flatten_dims, "y_num_col_dims": 1 }) pre_bias = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="sum", inputs={"X": [tmp]}, outputs={"Out": pre_bias}, attrs={"use_mkldnn": False}) if self._b: pre_activation = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self._b]}, outputs={'Out': [pre_activation]}, attrs={'axis': self._num_flatten_dims}) else: pre_activation = pre_bias # Currently, we don't support inplace in imperative mode return self._helper.append_activation(pre_activation) class BatchNorm(layers.Layer): def __init__(self, num_channels, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, dtype=core.VarDesc.VarType.FP32, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, fuse_with_relu=False, use_global_stats=False): super(BatchNorm, self).__init__() assert bias_attr is not False, "bias_attr should not be False in batch_norm." from ..layer_helper import LayerHelper self._helper = LayerHelper( 'batch_norm', param_attr=param_attr, bias_attr=bias_attr, name=name, act=act) if dtype == core.VarDesc.VarType.FP16: self._dtype = core.VarDesc.VarType.FP32 else: self._dtype = dtype param_shape = [num_channels] # create parameter self._scale = self._helper.create_parameter( attr=self._helper.param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph # # setting stop_gradient=True to reduce computation # if use_global_stats and self._helper.param_attr.learning_rate == 0.: # self._scale.stop_gradient = True self._bias = self._helper.create_parameter( attr=self._helper.bias_attr, shape=param_shape, dtype=self._dtype, is_bias=True) # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph # # setting stop_gradient=True to reduce computation # if use_global_stats and self._helper.bias_attr.learning_rate == 0.: # self._bias.stop_gradient = True self._mean = self._helper.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._mean.stop_gradient = True self._variance = self._helper.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._variance.stop_gradient = True self._in_place = in_place self._momentum = momentum self._epsilon = epsilon self._is_test = is_test self._fuse_with_relu = fuse_with_relu self._use_global_stats = use_global_stats def _build_once(self, input): pass def forward(self, input): # create output # mean and mean_out share the same memory mean_out = self._mean # variance and variance out share the same memory variance_out = self._variance saved_mean = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) saved_variance = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="batch_norm", inputs={ "X": input, "Scale": self._scale, "Bias": self._bias, "Mean": self._mean, "Variance": self._variance }, outputs={ "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance }, attrs={ "momentum": self._momentum, "epsilon": self._epsilon, "is_test": self._is_test, "use_mkldnn": False, "fuse_with_relu": self._fuse_with_relu, "use_global_stats": self._use_global_stats }) # Currently, we don't support inplace in imperative mode return self._helper.append_activation(batch_norm_out) class Embedding(layers.Layer): """ **Embedding Layer** This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in a lookup table. The result of this lookup is the embedding of each ID in the :attr:`input`. All the input variables are passed in as local variables to the LayerHelper constructor. Args: size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively. is_sparse(bool): The flag indicating whether to use sparse update. is_distributed(bool): Whether to run lookup table from remote parameter server. padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup. Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. param_attr(ParamAttr): Parameters for this layer dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc Returns: Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python dict_size = len(dataset.ids) input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32') embedding = fluid.imperative.Embedding(size=[dict_size, 16]) fc = embedding(input) """ def __init__(self, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): super(Embedding, self).__init__() self._size = size self._is_sparse = is_sparse self._is_distributed = is_distributed self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) self._param_attr = param_attr self._dtype = dtype self._remote_prefetch = self._is_sparse and (not self._is_distributed) if self._remote_prefetch: assert self._is_sparse is True and self._is_distributed is False from ..layer_helper import LayerHelper self._helper = LayerHelper('embedding', param_attr=param_attr) self._w = self._helper.create_parameter( attr=self._param_attr, shape=self._size, dtype=self._dtype, is_bias=False) def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': self._w}, outputs={'Out': out}, attrs={ 'is_sparse': self._is_sparse, 'is_distributed': self._is_distributed, 'remote_prefetch': self._remote_prefetch, 'padding_idx': self._padding_idx }) return out