/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/pybind/imperative.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "paddle/fluid/imperative/all_reduce.h" #include "paddle/fluid/imperative/amp_auto_cast.h" #include "paddle/fluid/imperative/backward_strategy.h" #include "paddle/fluid/imperative/basic_engine.h" #include "paddle/fluid/imperative/data_loader.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/nccl_context.h" #include "paddle/fluid/imperative/partial_grad_engine.h" #include "paddle/fluid/imperative/profiler.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/imperative/type_defs.h" #include "paddle/fluid/memory/allocation/mmap_allocator.h" #include "paddle/fluid/pybind/op_function.h" #include "paddle/fluid/pybind/pybind_boost_headers.h" #include "paddle/fluid/pybind/tensor_py.h" namespace paddle { namespace pybind { namespace py = ::pybind11; class Layer : public imperative::Layer { public: using imperative::Layer::Layer; // Inherit constructors std::vector> Forward( const std::vector> &inputs) override { PYBIND11_OVERLOAD(std::vector>, Layer, Forward, inputs); // NOLINT } }; static const platform::Place PyObjectToPlace(const py::object &place_obj) { if (py::isinstance(place_obj)) { return place_obj.cast(); } else if (py::isinstance(place_obj)) { return place_obj.cast(); } else if (py::isinstance(place_obj)) { return place_obj.cast(); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace")); } } static void InitTensorForVarBase(imperative::VarBase *self, const py::array &array, const platform::Place place, bool persistable = false, bool zero_copy = false, std::string name = "") { if (name == "") { name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var"); } new (self) imperative::VarBase(name); auto *tensor = self->MutableVar()->GetMutable(); if (platform::is_cpu_place(place)) { SetTensorFromPyArray( tensor, array, BOOST_GET_CONST(platform::CPUPlace, place), zero_copy); } else if (platform::is_gpu_place(place)) { SetTensorFromPyArray( tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place), zero_copy); } else if (platform::is_cuda_pinned_place(place)) { SetTensorFromPyArray( tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place), zero_copy); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace")); } self->SetPersistable(persistable); self->SetType(framework::proto::VarType::LOD_TENSOR); self->SetDataType(tensor->type()); } static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self, const py::kwargs &kwargs) { VLOG(4) << "Init VarBase"; PADDLE_ENFORCE_EQ( kwargs.contains("value"), true, platform::errors::NotFound( "The kwargs used to create Varbase misses argument: value")); auto persistable = kwargs.contains("persistable") ? kwargs["persistable"].cast() : false; auto array = kwargs.contains("value") ? kwargs["value"].cast() : py::array(); auto zero_copy = kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast() : false; auto name = kwargs.contains("name") ? kwargs["name"].cast() : ""; auto default_place = imperative::GetCurrentTracer()->ExpectedPlace(); auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"]) : default_place; InitTensorForVarBase(self, array, place, persistable, zero_copy, name); } template static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self, const py::array &array, const P &place, bool persistable = false, bool zero_copy = false, std::string name = "") { VLOG(4) << "Init VarBase"; // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name if (name == "") { name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var"); } new (self) imperative::VarBase(name); self->SetPersistable(persistable); auto *tensor = self->MutableVar()->GetMutable(); SetTensorFromPyArray

(tensor, array, place, zero_copy); self->SetType(framework::proto::VarType::LOD_TENSOR); self->SetDataType(tensor->type()); } static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self, const py::array &array) { VLOG(4) << "Init VarBase"; auto place = imperative::GetCurrentTracer()->ExpectedPlace(); InitTensorForVarBase(self, array, place); } static void InitVarBaseFromTensorWithArgDefault( imperative::VarBase *self, const framework::LoDTensor &tensor) { VLOG(4) << "Init VarBase"; auto place = imperative::GetCurrentTracer()->ExpectedPlace(); new (self) imperative::VarBase( imperative::GetCurrentTracer()->GenerateUniqueName("generated_var")); self->SetPersistable(false); self->SetType(framework::proto::VarType::LOD_TENSOR); self->SetDataType(tensor.type()); auto *new_tensor = self->MutableVar()->GetMutable(); // Same place,share data directly if (place == tensor.place()) { new_tensor->ShareDataWith(tensor); VLOG(4) << "Same place, do ShareDataWith"; } else { framework::TensorCopy(tensor, place, new_tensor); VLOG(4) << "Different place, do TensorCopy"; } } static std::string GetTypeName(const imperative::VarBase &var) { if (var.Type() == framework::proto::VarType::RAW) { return "RAW"; } else if (!var.Var().IsInitialized()) { return "nullptr"; } else { return framework::ToTypeName(var.Var().Type()); } } using PyNameVarBaseMap = std::unordered_map; template static T PyObjectCast(PyObject *obj) { try { return py::cast(py::handle(obj)); } catch (py::cast_error &) { PADDLE_THROW(platform::errors::InvalidArgument( "Python object is not type of %s", typeid(T).name())); } } // NOTE(zjl): py::handle is a very light wrapper of PyObject *. // Unlike py::object, py::handle does not change reference count of PyObject *. static std::vector> GetVarBaseListFromPyHandle(const py::handle &handle) { PyObject *py_obj = handle.ptr(); // get underlying PyObject // Python None is not nullptr in C++! if (!py_obj || py_obj == Py_None) { return {}; } std::vector> result; if (PyList_Check(py_obj)) { // List of VarBase size_t len = PyList_GET_SIZE(py_obj); result.reserve(len); for (size_t i = 0; i < len; ++i) { PyObject *py_ivar = PyList_GET_ITEM(py_obj, i); PADDLE_ENFORCE_NOT_NULL( py_ivar, platform::errors::InvalidArgument("Python Object is NULL")); result.emplace_back( PyObjectCast>(py_ivar)); } } else if (PyTuple_Check(py_obj)) { // Tuple of VarBase size_t len = PyTuple_GET_SIZE(py_obj); result.reserve(len); for (size_t i = 0; i < len; ++i) { PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i); PADDLE_ENFORCE_NOT_NULL( py_ivar, platform::errors::InvalidArgument("Python Object is NULL")); result.emplace_back( PyObjectCast>(py_ivar)); } } else { // VarBase result.emplace_back( PyObjectCast>(py_obj)); } return result; } static imperative::NameVarBaseMap ConvertToNameVarBaseMap( const PyNameVarBaseMap &map) { imperative::NameVarBaseMap result; for (auto &pair : map) { auto var_vec = GetVarBaseListFromPyHandle(pair.second); if (!var_vec.empty()) { result.emplace(pair.first, std::move(var_vec)); } } PADDLE_ENFORCE_EQ( PyErr_Occurred(), nullptr, platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred())))); return result; } static bool PyCheckInteger(PyObject *obj) { #if PY_VERSION_HEX < 0x03000000 return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj); #else return PyLong_Check(obj) && !PyBool_Check(obj); #endif } // NOTE(zhiqiu): Revised version of PySlice_GetIndices. From: // https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103 // Original PySlice_GetIndices return wrong result when // slice_item contains long int, such as arr[:180L]. // NOT sure why this happens !!! // Besides, PySlice_GetIndices cannot raise error when float in slice item. // So, I make a revised version of PySlice_GetIndices, named to // _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than // PySlice_GetIndices in the future. static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step) { /* XXX support long ints */ if (r->step == Py_None) { *step = 1; } else { if (PyCheckInteger(r->step)) { *step = PyLong_AsLong(r->step); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Currently, VarBase.__getitem__() only allows None or integers in " "slice item, but received %s.", std::string(Py_TYPE(r->step)->tp_name))); } } if (r->start == Py_None) { *start = *step < 0 ? length - 1 : 0; } else { if (PyCheckInteger(r->start)) { *start = PyLong_AsLong(r->start); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Currently, VarBase.__getitem__() only allows None or integers in " "slice item, but received %s.", std::string(Py_TYPE(r->start)->tp_name))); } if (*start < 0) *start += length; } if (r->stop == Py_None) { *stop = *step < 0 ? -1 : length; } else { if (PyCheckInteger(r->stop)) { *stop = PyLong_AsLong(r->stop); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Currently, VarBase.__getitem__() only allows None or integers in " "slice item, but received %s.", std::string(Py_TYPE(r->stop)->tp_name))); } if (*stop < 0) *stop += length; } if (*stop > length) return -1; if (*start >= length) return -1; if (*step == 0) return -1; return 0; } static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index, std::vector *slice_axes, std::vector *slice_starts, std::vector *slice_ends, std::vector *slice_strides, std::vector *decrease_axis, std::vector *infer_flags) { // We allow indexing by Integers, Slices, and tuples of those // types. // Ellipsis and None are not supported yet. // wrap to tuple PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index; PADDLE_ENFORCE_EQ( tensor->IsInitialized(), true, platform::errors::InvalidArgument("tensor has not been initialized")); const auto &shape = tensor->dims(); const int rank = shape.size(); const int size = PyTuple_GET_SIZE(index); PADDLE_ENFORCE_EQ( size <= rank, true, platform::errors::InvalidArgument( "too many indices (%d) for tensor of dimension %d", size, rank)); for (int dim = 0; dim < size; ++dim) { PyObject *slice_item = PyTuple_GetItem(index, dim); PADDLE_ENFORCE_EQ(PyCheckInteger(slice_item) || PySlice_Check(slice_item), true, platform::errors::InvalidArgument( "Currently, VarBase.__getitem__() only allows " "indexing by Integers, Slices, and tuples of " "these types, but received %s in %dth slice item", std::string(Py_TYPE(slice_item)->tp_name), dim + 1)); infer_flags->push_back(1); int dim_len = shape[dim]; if (PyCheckInteger(slice_item)) { // integer, PyLong_AsLong supports both int and long int start = static_cast(PyLong_AsLong(slice_item)); auto s_t = start; start = start < 0 ? start + dim_len : start; if (start >= dim_len) { std::string str_error_message = "The starting index " + std::to_string(s_t) + " of slice is out of bounds in tensor " + std::to_string(dim) + "-th axis, it shound be in the range of [" + std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")"; // py::index_error is corresponding to IndexError in Python // Used to indicate out of bounds access in __getitem__, __setitem__ throw py::index_error(str_error_message); } slice_axes->push_back(dim); slice_starts->push_back(start); slice_ends->push_back(start + 1); slice_strides->push_back(1); decrease_axis->push_back(dim); } else { // slice item Py_ssize_t start, end, step; PySliceObject *p = reinterpret_cast(slice_item); _PySlice_GetIndices(p, dim_len, &start, &end, &step); // :: or : or 0:dim_len:1 if (start == 0 && end == dim_len && step == 1) { continue; } slice_axes->push_back(dim); slice_starts->push_back(start); slice_ends->push_back(end); slice_strides->push_back(step); } } if (!PyTuple_Check(_index)) Py_DecRef(index); } // Bind Methods void BindImperative(py::module *m_ptr) { auto &m = *m_ptr; BindOpFunctions(&m); #ifndef _WIN32 // Dygraph DataLoader signal handler m.def("_set_process_pids", [](int64_t key, py::object &obj) { PADDLE_ENFORCE_EQ( py::isinstance(obj) || py::isinstance(obj), true, platform::errors::InvalidArgument( "The subprocess ids set in DataLoader is illegal." "Expected data type is tuple or list, but received %s", obj.get_type())); py::list pids = py::cast(obj); std::set pids_set = {}; for (size_t i = 0; i < pids.size(); i++) { pids_set.insert(pids[i].cast()); } imperative::SetLoadProcessPIDs(key, pids_set); }); m.def("_erase_process_pids", [](int64_t key) { imperative::EraseLoadProcessPIDs(key); }); m.def("_set_process_signal_handler", []() { imperative::SetLoadProcessSignalHandler(); }); m.def("_throw_error_if_process_failed", []() { imperative::ThrowErrorIfLoadProcessFailed(); }); // Dygraph DataLoader reader process & thread related functions m.def( "_convert_to_tensor_list", [](py::object &obj) -> py::list { // 0. input data check PADDLE_ENFORCE( py::isinstance(obj) || py::isinstance(obj), platform::errors::InvalidArgument( "The batch data read into DataLoader is illegal." "Expected data type is tuple or list, but received %s", obj.get_type())); py::list batch = py::cast(obj); py::list tensors; for (size_t i = 0; i < batch.size(); ++i) { // 1. cast to python array auto array = batch[i].cast(); PADDLE_ENFORCE_NE( string::Sprintf("%s", array.dtype()).compare("object"), 0, platform::errors::InvalidArgument( "Faild to convert input data to a regular ndarray.\n * " "Usually this means the input data contains nested " "lists with different lengths.\n * Check the reader " "function passed to 'set_(sample/sample_list/batch)" "_generator' to locate the data causes this issue.")); // 2. construcct LoDTensor framework::LoDTensor t; SetTensorFromPyArray(&t, array, platform::CPUPlace(), true); // 3. allocate shared memory void *data_ptr = t.data(); size_t data_size = t.numel() * framework::SizeOfType(t.type()); auto shared_writer_holder = memory::allocation::AllocateMemoryMapWriterAllocation(data_size); // 4. maintain mmap fd set & backup ipc_name const std::string &ipc_name = shared_writer_holder->ipc_name(); memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name); // 5. copy data & reset holder memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(), platform::CPUPlace(), data_ptr, data_size); t.ResetHolder(shared_writer_holder); // 6. append to result list tensors.append(t); } return tensors; }, py::return_value_policy::take_ownership); m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) { for (size_t i = 0; i < tensor_list.size(); ++i) { auto t = tensor_list[i].cast(); auto *mmap_writer_allocation = dynamic_cast( t.Holder().get()); PADDLE_ENFORCE_NOT_NULL( mmap_writer_allocation, platform::errors::NotFound("The shared memory of LoDTensor in " "DataLoader's child process has been " "released.")); memory::allocation::MemoryMapFdSet::Instance().Remove( mmap_writer_allocation->ipc_name()); } }); m.def("_cleanup_mmap_fds", []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); }); #endif py::class_ backward_strategy( m, "BackwardStrategy", R"DOC( BackwardStrategy is a descriptor of how to run the backward process. **Note**: **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode** Attribute: **sort_sum_gradient**: If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order. By Default: False Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): x_var = fluid.dygraph.to_variable(x) sums_inputs = [] # x_var will be multi-scales' input here for _ in range(10): sums_inputs.append(fluid.layers.scale(x_var)) ret2 = fluid.layers.sums(sums_inputs) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) )DOC"); backward_strategy.def(py::init()) .def_property("sort_sum_gradient", [](const imperative::detail::BackwardStrategy &self) { return self.sorted_sum_gradient_; }, [](imperative::detail::BackwardStrategy &self, bool sorted_sum_gradient) { self.sorted_sum_gradient_ = sorted_sum_gradient; }); m.def("start_imperative_gperf_profiler", []() { imperative::StartProfile(); }); m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); }); m.def("_is_dygraph_debug_enabled", []() { return imperative::IsDebugEnabled(); }); m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); }); m.def("_switch_tracer", [](const std::shared_ptr &tracer) { imperative::SetCurrentTracer(tracer); }); py::class_>( m, "VarBase", R"DOC()DOC") .def_static("_alive_vars", &imperative::VarBase::AliveVarNames) .def("__init__", [](imperative::VarBase &self, framework::proto::VarType::Type dtype, const std::vector &dims, const py::handle &name, framework::proto::VarType::Type type, bool persistable) { VLOG(4) << "Init VarBase"; std::string act_name = ""; if (!name.ptr() || name.ptr() == Py_None) { act_name = imperative::GetCurrentTracer()->GenerateUniqueName( "generated_var"); } else { act_name = name.cast(); } new (&self) imperative::VarBase(act_name); self.SetPersistable(persistable); self.SetType(type); self.SetDataType(dtype); if (type == framework::proto::VarType::LOD_TENSOR) { auto *tensor = self.MutableVar()->GetMutable(); tensor->Resize(framework::make_ddim(dims)); } }) .def("__init__", &InitVarBaseFromNumpyWithArg, py::arg("value"), py::arg("place"), py::arg("persistable") = false, py::arg("zero_copy") = false, py::arg("name") = "") .def("__init__", &InitVarBaseFromNumpyWithArg, py::arg("value"), py::arg("place"), py::arg("persistable") = false, py::arg("zero_copy") = false, py::arg("name") = "") .def("__init__", &InitVarBaseFromNumpyWithArg, py::arg("value"), py::arg("place"), py::arg("persistable") = false, py::arg("zero_copy") = false, py::arg("name") = "") .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value")) .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor")) .def("__init__", &InitVarBaseFromNumpyWithKwargs) .def("__getitem__", [](std::shared_ptr &self, py::handle _index) { std::vector slice_axes, slice_starts, slice_ends, slice_strides, decrease_axis, infer_flags; auto tensor = self->MutableVar()->GetMutable(); ParseIndexingSlice(tensor, _index.ptr(), &slice_axes, &slice_starts, &slice_ends, &slice_strides, &decrease_axis, &infer_flags); // release gil and do tracing py::gil_scoped_release release; const auto &tracer = imperative::GetCurrentTracer(); if (slice_axes.empty()) { return self; } else { imperative::NameVarBaseMap ins = {{"Input", {self}}}; framework::AttributeMap attrs = { {"axes", slice_axes}, {"starts", slice_starts}, {"ends", slice_ends}, {"infer_flags", infer_flags}, {"decrease_axis", decrease_axis}}; auto out = std::shared_ptr( new imperative::VarBase(tracer->GenerateUniqueName())); imperative::NameVarBaseMap outs = {{"Out", {out}}}; std::string op_type = "slice"; for (auto stride : slice_strides) { if (stride != 1) { op_type = "strided_slice"; attrs.insert({"strides", slice_strides}); attrs.erase("decrease_axis"); break; } } tracer->TraceOp(op_type, ins, outs, std::move(attrs)); return out; } }) .def("numpy", [](imperative::VarBase &self) -> py::array { const auto &tensor = self.MutableVar()->Get(); PADDLE_ENFORCE_EQ( tensor.IsInitialized(), true, platform::errors::InvalidArgument( "Tensor of %s is Empty, please check if it has no data.", self.Name())); return TensorToPyArray(tensor, true); }, R"DOC( **Notes**: **This API is ONLY available in Dygraph mode** Returns a numpy array shows the value of current :ref:`api_guide_Variable_en` Returns: ndarray: The numpy value of current Variable. Returns type: ndarray: dtype is same as current Variable Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import Linear import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): linear = Linear(32, 64) data = to_variable(data) x = linear(data) print(x.numpy()) )DOC") .def("detach", [](const imperative::VarBase &self) { const auto &tensor = self.Var().Get(); PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true, platform::errors::InvalidArgument( "%s has not been initialized", self.Name())); return self.NewVarBase(tensor.place(), false); }, py::return_value_policy::copy, R"DOC( **Notes**: **This API is ONLY available in Dygraph mode** Returns a new Variable, detached from the current graph. Returns: ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import Linear import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): linear = Linear(32, 64) data = to_variable(data) x = linear(data) y = x.detach() )DOC") .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC( **Notes**: **1. This API is ONLY available in Dygraph mode** **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC** Clear (set to ``0`` ) the Gradient of Current Variable Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) print(loss2.gradient()) loss2.clear_gradient() print("After clear {}".format(loss2.gradient())) )DOC") .def("_run_backward", [](imperative::VarBase &self, const imperative::detail::BackwardStrategy &bckst, const imperative::Tracer &tracer, bool retain_graph) { // TODO(jiabin): when we impl more backward execution we can // select them auto *engine = tracer.GetEngine(); engine->Init(&self, bckst, retain_graph); VLOG(3) << "Start backward"; engine->Execute(); VLOG(3) << "Finish backward"; }, py::call_guard()) .def("_grad_name", &imperative::VarBase::GradVarName) .def("_grad_value", [](imperative::VarBase &self) { return self.MutableGradVar()->Get(); }, py::return_value_policy::reference) .def("_set_grad_type", [](imperative::VarBase &self, framework::proto::VarType::Type type) { self.MutableGradVarBase()->SetType(type); }) .def("_grad_ivar", [](const imperative::VarBase &self) { auto &grad_var = self.GradVarBase(); if (grad_var && grad_var->Var().IsInitialized()) { auto *tensor = grad_var->MutableVar()->IsType() ? grad_var->MutableVar() ->GetMutable() : grad_var->MutableVar() ->GetMutable() ->mutable_value(); if (tensor->IsInitialized()) { return grad_var; } } return std::shared_ptr(nullptr); }, py::return_value_policy::copy) .def("_is_sparse", [](imperative::VarBase &self) { return self.Var().IsType(); }) .def("_allreduce", [](imperative::VarBase &self, const imperative::ParallelStrategy &strategy) { if (strategy.nranks_ > 1) { #ifdef PADDLE_WITH_NCCL #if NCCL_VERSION_CODE >= 2212 imperative::AllReduce(self.Var(), self.MutableVar(), strategy); #else if (!self.Var().IsType()) { imperative::AllReduce(self.Var(), self.MutableVar(), strategy); } else { PADDLE_THROW(platform::errors::Unimplemented( "Imperative SelectedRows allreduce is not supported when " "paddle is compiled with NCCL verison lower than v2.2.12. " "You can set is_sparse=False for the Layer containing " "this argument, such as Embedding(is_sparse=False).")); } #endif // NCCL_VERSION_CODE #else PADDLE_THROW(platform::errors::Unimplemented( "Imperative allreduce is not supported when paddle is " "not compiled with NCCL.")); #endif // PADDLE_WITH_NCCL } }, py::call_guard()) .def("_copy_to", [](const imperative::VarBase &self, const platform::CPUPlace &place, bool blocking) { return self.NewVarBase(place, blocking); }, py::return_value_policy::copy) .def("_copy_to", [](const imperative::VarBase &self, const platform::CUDAPlace &place, bool blocking) { return self.NewVarBase(place, blocking); }, py::return_value_policy::copy) .def("value", [](imperative::VarBase &self) { return self.MutableVar(); }, py::return_value_policy::reference) .def_property("name", &imperative::VarBase::Name, &imperative::VarBase::SetName) .def_property("stop_gradient", &imperative::VarBase::OverridedStopGradient, &imperative::VarBase::SetOverridedStopGradient) .def_property("persistable", &imperative::VarBase::Persistable, &imperative::VarBase::SetPersistable) .def_property_readonly( "shape", [](imperative::VarBase &self) { if (self.Var().IsType()) { return framework::vectorize( self.Var().Get().dims()); } else if (self.Var().IsType()) { return framework::vectorize( self.Var().Get().value().dims()); } else { VLOG(2) << "It is meaningless to get shape of variable type " << GetTypeName(self); return std::vector(); } }) .def_property_readonly("type", &imperative::VarBase::Type) .def_property_readonly("dtype", &imperative::VarBase::DataType); py::class_ layer(m, "Layer"); layer.def(py::init<>()) .def("forward", [](imperative::Layer &self, const std::vector> &inputs) { return self.Forward(inputs); }); py::class_(m, "ProgramDescTracer", "") .def("create_program_desc", &imperative::jit::ProgramDescTracer::CreateProgramDesc) .def("reset", &imperative::jit::ProgramDescTracer::Reset); py::class_>( m, "Tracer", R"DOC()DOC") .def("__init__", [](imperative::Tracer &self) { new (&self) imperative::Tracer(); }) .def_property("_enable_program_desc_tracing", &imperative::Tracer::IsProgramDescTracingEnabled, &imperative::Tracer::SetEnableProgramDescTracing) .def_property("_enable_autocast", &imperative::Tracer::IsAutoCastEnabled, &imperative::Tracer::SetEnableAutoCast) .def_property("_train_mode", &imperative::Tracer::HasGrad, &imperative::Tracer::SetHasGrad) .def_property( "_expected_place", [](const imperative::Tracer &self) -> py::object { return py::cast(self.ExpectedPlace()); }, [](imperative::Tracer &self, const py::object &obj) { if (py::isinstance(obj)) { auto p = obj.cast(); self.SetExpectedPlace(*p); } else if (py::isinstance(obj)) { auto p = obj.cast(); self.SetExpectedPlace(*p); } else if (py::isinstance(obj)) { auto p = obj.cast(); self.SetExpectedPlace(*p); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Incompatible Place Type: supports CUDAPlace, CPUPlace, " "and CUDAPinnedPlace, " "but got Unknown Type!")); } }) .def("_get_program_desc_tracer", &imperative::Tracer::GetProgramDescTracer, py::return_value_policy::reference) .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName, py::arg("key") = "eager_tmp") .def( "_set_amp_op_list", [](imperative::Tracer &self, std::unordered_set &allow_ops, std::unordered_set &block_ops) { // NOTE(zhiqiu): The automatic conversion in pybind11 between c++ // STL and python set/list/dict involve a copy operation that // prevents pass-by-reference semantics, so it is ok to swap. // The reaseon why not directly pass // std::shared_ptr> // is that pybind11 forbid shared_ptr where T is not custom type. imperative::AmpOperators::Instance().GetAllowOps()->swap(allow_ops); imperative::AmpOperators::Instance().GetBlockOps()->swap(block_ops); }) .def("_get_amp_op_list", [](imperative::Tracer &self) { return std::make_tuple( *(imperative::AmpOperators::Instance().GetAllowOps()), *(imperative::AmpOperators::Instance().GetBlockOps())); }) .def("trace", [](imperative::Tracer &self, const std::string &type, const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs, framework::AttributeMap attrs, const platform::CUDAPlace &place, bool trace_backward) { auto ins_map = ConvertToNameVarBaseMap(ins); auto outs_map = ConvertToNameVarBaseMap(outs); { py::gil_scoped_release release; self.TraceOp(type, std::move(ins_map), std::move(outs_map), std::move(attrs), place, trace_backward); } }) .def("trace", [](imperative::Tracer &self, const std::string &type, const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs, framework::AttributeMap attrs, const platform::CPUPlace &place, bool trace_backward) { auto ins_map = ConvertToNameVarBaseMap(ins); auto outs_map = ConvertToNameVarBaseMap(outs); { py::gil_scoped_release release; self.TraceOp(type, std::move(ins_map), std::move(outs_map), std::move(attrs), place, trace_backward); } }); // define parallel context py::class_ parallel_strategy( m, "ParallelStrategy", ""); parallel_strategy.def(py::init()) .def_property( "nranks", [](const imperative::ParallelStrategy &self) { return self.nranks_; }, [](imperative::ParallelStrategy &self, int nranks) { self.nranks_ = nranks; }) .def_property("local_rank", [](const imperative::ParallelStrategy &self) { return self.local_rank_; }, [](imperative::ParallelStrategy &self, int local_rank) { self.local_rank_ = local_rank; }) .def_property( "trainer_endpoints", [](const imperative::ParallelStrategy &self) { return self.trainer_endpoints_; }, [](imperative::ParallelStrategy &self, std::vector eps) { self.trainer_endpoints_ = eps; }) .def_property("current_endpoint", [](const imperative::ParallelStrategy &self) { return self.current_endpoint_; }, [](imperative::ParallelStrategy &self, const std::string &ep) { self.current_endpoint_ = ep; }); m.def( "dygraph_partial_grad", [](const std::vector> &input_targets, const std::vector> &output_targets, const std::vector> &output_grads, const std::vector> &no_grad_vars, const platform::Place &place, const imperative::detail::BackwardStrategy &strategy, bool create_graph, bool retain_graph, bool allow_unused, bool only_inputs) { imperative::PartialGradEngine engine( input_targets, output_targets, output_grads, no_grad_vars, place, strategy, create_graph, retain_graph, allow_unused, only_inputs); engine.Execute(); return engine.GetResult(); }, py::call_guard()); #if defined(PADDLE_WITH_NCCL) py::class_ nccl_ctx(m, "NCCLParallelContext"); nccl_ctx .def(py::init()) .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); }); #endif } } // namespace pybind } // namespace paddle