/** * @author mrdoob / http://mrdoob.com/ * @author zz85 / http://joshuakoo.com/ * @author yomboprime / https://yombo.org */ THREE.SVGLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.SVGLoader.prototype = { constructor: THREE.SVGLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.FileLoader( scope.manager ); loader.setPath( scope.path ); loader.load( url, function ( text ) { onLoad( scope.parse( text ) ); }, onProgress, onError ); }, setPath: function ( value ) { this.path = value; return this; }, parse: function ( text ) { function parseNode( node, style ) { if ( node.nodeType !== 1 ) return; var transform = getNodeTransform( node ); var path = null; switch ( node.nodeName ) { case 'svg': break; case 'g': style = parseStyle( node, style ); break; case 'path': style = parseStyle( node, style ); if ( node.hasAttribute( 'd' ) && isVisible( style ) ) path = parsePathNode( node, style ); break; case 'rect': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parseRectNode( node, style ); break; case 'polygon': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parsePolygonNode( node, style ); break; case 'polyline': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parsePolylineNode( node, style ); break; case 'circle': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parseCircleNode( node, style ); break; case 'ellipse': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parseEllipseNode( node, style ); break; case 'line': style = parseStyle( node, style ); if ( isVisible( style ) ) path = parseLineNode( node, style ); break; default: console.log( node ); } if ( path ) { transformPath( path, currentTransform ); paths.push( path ); } var nodes = node.childNodes; for ( var i = 0; i < nodes.length; i ++ ) { parseNode( nodes[ i ], style ); } if ( transform ) { currentTransform.copy( transformStack.pop() ); } } function parsePathNode( node, style ) { var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var point = new THREE.Vector2(); var control = new THREE.Vector2(); var firstPoint = new THREE.Vector2(); var isFirstPoint = true; var doSetFirstPoint = false; var d = node.getAttribute( 'd' ); // console.log( d ); var commands = d.match( /[a-df-z][^a-df-z]*/ig ); for ( var i = 0, l = commands.length; i < l; i ++ ) { var command = commands[ i ]; var type = command.charAt( 0 ); var data = command.substr( 1 ).trim(); if ( isFirstPoint ) { doSetFirstPoint = true; } isFirstPoint = false; switch ( type ) { case 'M': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x = numbers[ j + 0 ]; point.y = numbers[ j + 1 ]; control.x = point.x; control.y = point.y; if ( j === 0 ) { path.moveTo( point.x, point.y ); } else { path.lineTo( point.x, point.y ); } } break; case 'H': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.x = numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'V': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.y = numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'L': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x = numbers[ j + 0 ]; point.y = numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'C': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) { path.bezierCurveTo( numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], numbers[ j + 5 ] ); control.x = numbers[ j + 2 ]; control.y = numbers[ j + 3 ]; point.x = numbers[ j + 4 ]; point.y = numbers[ j + 5 ]; } break; case 'S': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) { path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ] ); control.x = numbers[ j + 0 ]; control.y = numbers[ j + 1 ]; point.x = numbers[ j + 2 ]; point.y = numbers[ j + 3 ]; } break; case 'Q': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) { path.quadraticCurveTo( numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ] ); control.x = numbers[ j + 0 ]; control.y = numbers[ j + 1 ]; point.x = numbers[ j + 2 ]; point.y = numbers[ j + 3 ]; } break; case 'T': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { var rx = getReflection( point.x, control.x ); var ry = getReflection( point.y, control.y ); path.quadraticCurveTo( rx, ry, numbers[ j + 0 ], numbers[ j + 1 ] ); control.x = rx; control.y = ry; point.x = numbers[ j + 0 ]; point.y = numbers[ j + 1 ]; } break; case 'A': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) { var start = point.clone(); point.x = numbers[ j + 5 ]; point.y = numbers[ j + 6 ]; control.x = point.x; control.y = point.y; parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point ); } break; // case 'm': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x += numbers[ j + 0 ]; point.y += numbers[ j + 1 ]; control.x = point.x; control.y = point.y; if ( j === 0 ) { path.moveTo( point.x, point.y ); } else { path.lineTo( point.x, point.y ); } } break; case 'h': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.x += numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'v': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.y += numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'l': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x += numbers[ j + 0 ]; point.y += numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'c': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) { path.bezierCurveTo( point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ], point.x + numbers[ j + 4 ], point.y + numbers[ j + 5 ] ); control.x = point.x + numbers[ j + 2 ]; control.y = point.y + numbers[ j + 3 ]; point.x += numbers[ j + 4 ]; point.y += numbers[ j + 5 ]; } break; case 's': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) { path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ] ); control.x = point.x + numbers[ j + 0 ]; control.y = point.y + numbers[ j + 1 ]; point.x += numbers[ j + 2 ]; point.y += numbers[ j + 3 ]; } break; case 'q': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) { path.quadraticCurveTo( point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ] ); control.x = point.x + numbers[ j + 0 ]; control.y = point.y + numbers[ j + 1 ]; point.x += numbers[ j + 2 ]; point.y += numbers[ j + 3 ]; } break; case 't': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { var rx = getReflection( point.x, control.x ); var ry = getReflection( point.y, control.y ); path.quadraticCurveTo( rx, ry, point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ] ); control.x = rx; control.y = ry; point.x = point.x + numbers[ j + 0 ]; point.y = point.y + numbers[ j + 1 ]; } break; case 'a': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) { var start = point.clone(); point.x += numbers[ j + 5 ]; point.y += numbers[ j + 6 ]; control.x = point.x; control.y = point.y; parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point ); } break; // case 'Z': case 'z': path.currentPath.autoClose = true; if ( path.currentPath.curves.length > 0 ) { // Reset point to beginning of Path point.copy( firstPoint ); path.currentPath.currentPoint.copy( point ); isFirstPoint = true; } break; default: console.warn( command ); } // console.log( type, parseFloats( data ), parseFloats( data ).length ) if ( doSetFirstPoint ) { firstPoint.copy( point ); doSetFirstPoint = false; } } return path; } /** * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes * https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion * From * rx ry x-axis-rotation large-arc-flag sweep-flag x y * To * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation */ function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) { x_axis_rotation = x_axis_rotation * Math.PI / 180; // Ensure radii are positive rx = Math.abs( rx ); ry = Math.abs( ry ); // Compute (x1′, y1′) var dx2 = ( start.x - end.x ) / 2.0; var dy2 = ( start.y - end.y ) / 2.0; var x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2; var y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2; // Compute (cx′, cy′) var rxs = rx * rx; var rys = ry * ry; var x1ps = x1p * x1p; var y1ps = y1p * y1p; // Ensure radii are large enough var cr = x1ps / rxs + y1ps / rys; if ( cr > 1 ) { // scale up rx,ry equally so cr == 1 var s = Math.sqrt( cr ); rx = s * rx; ry = s * ry; rxs = rx * rx; rys = ry * ry; } var dq = ( rxs * y1ps + rys * x1ps ); var pq = ( rxs * rys - dq ) / dq; var q = Math.sqrt( Math.max( 0, pq ) ); if ( large_arc_flag === sweep_flag ) q = - q; var cxp = q * rx * y1p / ry; var cyp = - q * ry * x1p / rx; // Step 3: Compute (cx, cy) from (cx′, cy′) var cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2; var cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2; // Step 4: Compute θ1 and Δθ var theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry ); var delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 ); path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation ); } function svgAngle( ux, uy, vx, vy ) { var dot = ux * vx + uy * vy; var len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy ); var ang = Math.acos( Math.max( -1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang; return ang; } /* * According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute * rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough */ function parseRectNode( node, style ) { var x = parseFloat( node.getAttribute( 'x' ) || 0 ); var y = parseFloat( node.getAttribute( 'y' ) || 0 ); var rx = parseFloat( node.getAttribute( 'rx' ) || 0 ); var ry = parseFloat( node.getAttribute( 'ry' ) || 0 ); var w = parseFloat( node.getAttribute( 'width' ) ); var h = parseFloat( node.getAttribute( 'height' ) ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.moveTo( x + 2 * rx, y ); path.lineTo( x + w - 2 * rx, y ); if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y, x + w, y, x + w, y + 2 * ry ); path.lineTo( x + w, y + h - 2 * ry ); if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y + h, x + w, y + h, x + w - 2 * rx, y + h ); path.lineTo( x + 2 * rx, y + h ); if ( rx !== 0 || ry !== 0 ) { path.bezierCurveTo( x, y + h, x, y + h, x, y + h - 2 * ry ); } path.lineTo( x, y + 2 * ry ); if ( rx !== 0 || ry !== 0 ) { path.bezierCurveTo( x, y, x, y, x + 2 * rx, y ); } return path; } function parsePolygonNode( node, style ) { function iterator( match, a, b ) { var x = parseFloat( a ); var y = parseFloat( b ); if ( index === 0 ) { path.moveTo( x, y ); } else { path.lineTo( x, y ); } index ++; } var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g; var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var index = 0; node.getAttribute( 'points' ).replace(regex, iterator); path.currentPath.autoClose = true; return path; } function parsePolylineNode( node, style ) { function iterator( match, a, b ) { var x = parseFloat( a ); var y = parseFloat( b ); if ( index === 0 ) { path.moveTo( x, y ); } else { path.lineTo( x, y ); } index ++; } var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g; var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var index = 0; node.getAttribute( 'points' ).replace(regex, iterator); path.currentPath.autoClose = false; return path; } function parseCircleNode( node, style ) { var x = parseFloat( node.getAttribute( 'cx' ) ); var y = parseFloat( node.getAttribute( 'cy' ) ); var r = parseFloat( node.getAttribute( 'r' ) ); var subpath = new THREE.Path(); subpath.absarc( x, y, r, 0, Math.PI * 2 ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.subPaths.push( subpath ); return path; } function parseEllipseNode( node, style ) { var x = parseFloat( node.getAttribute( 'cx' ) ); var y = parseFloat( node.getAttribute( 'cy' ) ); var rx = parseFloat( node.getAttribute( 'rx' ) ); var ry = parseFloat( node.getAttribute( 'ry' ) ); var subpath = new THREE.Path(); subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.subPaths.push( subpath ); return path; } function parseLineNode( node, style ) { var x1 = parseFloat( node.getAttribute( 'x1' ) ); var y1 = parseFloat( node.getAttribute( 'y1' ) ); var x2 = parseFloat( node.getAttribute( 'x2' ) ); var y2 = parseFloat( node.getAttribute( 'y2' ) ); var path = new THREE.ShapePath(); path.moveTo( x1, y1 ); path.lineTo( x2, y2 ); path.currentPath.autoClose = false; return path; } // function parseStyle( node, style ) { style = Object.assign( {}, style ); // clone style if ( node.hasAttribute( 'fill' ) ) style.fill = node.getAttribute( 'fill' ); if ( node.style.fill !== '' ) style.fill = node.style.fill; return style; } function isVisible( style ) { return style.fill !== 'none' && style.fill !== 'transparent'; } // http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes function getReflection( a, b ) { return a - ( b - a ); } function parseFloats( string ) { var array = string.split( /[\s,]+|(?=\s?[+\-])/ ); for ( var i = 0; i < array.length; i ++ ) { var number = array[ i ]; // Handle values like 48.6037.7.8 // TODO Find a regex for this if ( number.indexOf( '.' ) !== number.lastIndexOf( '.' ) ) { var split = number.split( '.' ); for ( var s = 2; s < split.length; s ++ ) { array.splice( i + s - 1, 0, '0.' + split[ s ] ); } } array[ i ] = parseFloat( number ); } return array; } function getNodeTransform( node ) { if ( ! node.hasAttribute( 'transform' ) ) { return null; } var transform = parseTransformNode( node ); if ( transform ) { if ( transformStack.length > 0 ) { transform.premultiply( transformStack[ transformStack.length - 1 ] ); } currentTransform.copy( transform ); transformStack.push( transform ); } return transform; } function parseTransformNode( node ) { var transform = new THREE.Matrix3(); var currentTransform = tempTransform0; var transformsTexts = node.getAttribute( 'transform' ).split( ' ' ); for ( var tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex-- ) { var transformText = transformsTexts[ tIndex ]; var openParPos = transformText.indexOf( "(" ); var closeParPos = transformText.indexOf( ")" ); if ( openParPos > 0 && openParPos < closeParPos ) { var transformType = transformText.substr( 0, openParPos ); var array = parseFloats( transformText.substr( openParPos + 1, closeParPos - openParPos - 1 ) ); currentTransform.identity(); switch ( transformType ) { case "translate": if ( array.length >= 1 ) { var tx = array[ 0 ]; var ty = tx; if ( array.length >= 2 ) { ty = array[ 1 ]; } currentTransform.translate( tx, ty ); } break; case "rotate": if ( array.length >= 1 ) { var angle = 0; var cx = 0; var cy = 0; // Angle angle = - array[ 0 ] * Math.PI / 180; if ( array.length >= 3 ) { // Center x, y cx = array[ 1 ]; cy = array[ 2 ]; } // Rotate around center (cx, cy) tempTransform1.identity().translate( -cx, -cy ); tempTransform2.identity().rotate( angle ); tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 ); tempTransform1.identity().translate( cx, cy ); currentTransform.multiplyMatrices( tempTransform1, tempTransform3 ); } break; case "scale": if ( array.length >= 1 ) { var scaleX = array[ 0 ]; var scaleY = scaleX; if ( array.length >= 2 ) { scaleY = array[ 1 ]; } currentTransform.scale( scaleX, scaleY ); } break; case "skewX": if ( array.length === 1 ) { currentTransform.set( 1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0, 0, 1, 0, 0, 0, 1 ); } break; case "skewY": if ( array.length === 1 ) { currentTransform.set( 1, 0, 0, Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0, 0, 0, 1 ); } break; case "matrix": if ( array.length === 6 ) { currentTransform.set( array[ 0 ], array[ 2 ], array[ 4 ], array[ 1 ], array[ 3 ], array[ 5 ], 0, 0, 1 ); } break; } } transform.premultiply( currentTransform ); } return transform; } function transformPath( path, m ) { function transfVec2( v2 ) { tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m ); v2.set( tempV3.x, tempV3.y ); } var isRotated = isTransformRotated( m ); var tempV2 = new THREE.Vector2(); var tempV3 = new THREE.Vector3(); var subPaths = path.subPaths; for ( var i = 0, n = subPaths.length; i < n; i++ ) { var subPath = subPaths[ i ]; var curves = subPath.curves; for ( var j = 0; j < curves.length; j++ ) { var curve = curves[ j ]; if ( curve.isLineCurve ) { transfVec2( curve.v1 ); transfVec2( curve.v2 ); } else if ( curve.isCubicBezierCurve ) { transfVec2( curve.v0 ); transfVec2( curve.v1 ); transfVec2( curve.v2 ); transfVec2( curve.v3 ); } else if ( curve.isQuadraticBezierCurve ) { transfVec2( curve.v0 ); transfVec2( curve.v1 ); transfVec2( curve.v2 ); } else if ( curve.isEllipseCurve ) { if ( isRotated ) { console.warn( "SVGLoader: Elliptic arc or ellipse rotation or skewing is not implemented." ); } tempV2.set( curve.aX, curve.aY ); transfVec2( tempV2 ); curve.aX = tempV2.x; curve.aY = tempV2.y; curve.xRadius *= getTransformScaleX( m ); curve.yRadius *= getTransformScaleY( m ); } } } } function isTransformRotated( m ) { return m.elements[ 1 ] !== 0 || m.elements[ 3 ] !== 0; } function getTransformScaleX( m ) { var te = m.elements; return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] ) } function getTransformScaleY( m ) { var te = m.elements; return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] ) } // console.log( 'THREE.SVGLoader' ); var paths = []; var transformStack = []; var tempTransform0 = new THREE.Matrix3(); var tempTransform1 = new THREE.Matrix3(); var tempTransform2 = new THREE.Matrix3(); var tempTransform3 = new THREE.Matrix3(); var currentTransform = new THREE.Matrix3(); console.time( 'THREE.SVGLoader: DOMParser' ); var xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml console.timeEnd( 'THREE.SVGLoader: DOMParser' ); console.time( 'THREE.SVGLoader: Parse' ); parseNode( xml.documentElement, { fill: '#000' } ); // console.log( paths ); console.timeEnd( 'THREE.SVGLoader: Parse' ); return paths; } };