/** * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * * Modified from the TorusKnotGeometry by @oosmoxiecode * * Creates a tube which extrudes along a 3d spline * * Uses parallel transport frames as described in * http://www.cs.indiana.edu/pub/techreports/TR425.pdf */ THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed, taper ) { THREE.Geometry.call( this ); this.type = 'TubeGeometry'; this.parameters = { path: path, segments: segments, radius: radius, radialSegments: radialSegments, closed: closed }; segments = segments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; taper = taper || THREE.TubeGeometry.NoTaper; var grid = []; var scope = this, tangent, normal, binormal, numpoints = segments + 1, u, v, r, cx, cy, pos, pos2 = new THREE.Vector3(), i, j, ip, jp, a, b, c, d, uva, uvb, uvc, uvd; var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ), tangents = frames.tangents, normals = frames.normals, binormals = frames.binormals; // proxy internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; function vert( x, y, z ) { return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1; } // construct the grid for ( i = 0; i < numpoints; i ++ ) { grid[ i ] = []; u = i / ( numpoints - 1 ); pos = path.getPointAt( u ); tangent = tangents[ i ]; normal = normals[ i ]; binormal = binormals[ i ]; r = radius * taper( u ); for ( j = 0; j < radialSegments; j ++ ) { v = j / radialSegments * 2 * Math.PI; cx = - r * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. cy = r * Math.sin( v ); pos2.copy( pos ); pos2.x += cx * normal.x + cy * binormal.x; pos2.y += cx * normal.y + cy * binormal.y; pos2.z += cx * normal.z + cy * binormal.z; grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z ); } } // construct the mesh for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < radialSegments; j ++ ) { ip = ( closed ) ? ( i + 1 ) % segments : i + 1; jp = ( j + 1 ) % radialSegments; a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! *** b = grid[ ip ][ j ]; c = grid[ ip ][ jp ]; d = grid[ i ][ jp ]; uva = new THREE.Vector2( i / segments, j / radialSegments ); uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments ); uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments ); uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry; THREE.TubeGeometry.prototype.clone = function() { return new this.constructor( this.parameters.path, this.parameters.segments, this.parameters.radius, this.parameters.radialSegments, this.parameters.closed, this.parameters.taper ); }; THREE.TubeGeometry.NoTaper = function ( u ) { return 1; }; THREE.TubeGeometry.SinusoidalTaper = function ( u ) { return Math.sin( Math.PI * u ); }; // For computing of Frenet frames, exposing the tangents, normals and binormals the spline THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) { var normal = new THREE.Vector3(), tangents = [], normals = [], binormals = [], vec = new THREE.Vector3(), mat = new THREE.Matrix4(), numpoints = segments + 1, theta, epsilon = 0.0001, smallest, tx, ty, tz, i, u; // expose internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; // compute the tangent vectors for each segment on the path for ( i = 0; i < numpoints; i ++ ) { u = i / ( numpoints - 1 ); tangents[ i ] = path.getTangentAt( u ); tangents[ i ].normalize(); } initialNormal3(); /* function initialNormal1(lastBinormal) { // fixed start binormal. Has dangers of 0 vectors normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 ); normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize(); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } function initialNormal2() { // This uses the Frenet-Serret formula for deriving binormal var t2 = path.getTangentAt( epsilon ); normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize(); binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] ); normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } */ function initialNormal3() { // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the smallest tangent xyz component normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); smallest = Number.MAX_VALUE; tx = Math.abs( tangents[ 0 ].x ); ty = Math.abs( tangents[ 0 ].y ); tz = Math.abs( tangents[ 0 ].z ); if ( tx <= smallest ) { smallest = tx; normal.set( 1, 0, 0 ); } if ( ty <= smallest ) { smallest = ty; normal.set( 0, 1, 0 ); } if ( tz <= smallest ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); } // compute the slowly-varying normal and binormal vectors for each segment on the path for ( i = 1; i < numpoints; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > epsilon ) { vec.normalize(); theta = Math.acos( THREE.Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed ) { theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints - 1 ] ), - 1, 1 ) ); theta /= ( numpoints - 1 ); if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints - 1 ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i < numpoints; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } };