// Polyfills if ( Number.EPSILON === undefined ) { Number.EPSILON = Math.pow( 2, - 52 ); } // if ( Math.sign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; }; } if ( Function.prototype.name === undefined ) { // Missing in IE9-11. // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty( Function.prototype, 'name', { get: function () { return this.toString().match( /^\s*function\s*(\S*)\s*\(/ )[ 1 ]; } } ); } if ( Object.assign === undefined ) { // Missing in IE. // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign ( function () { Object.assign = function ( target ) { 'use strict'; if ( target === undefined || target === null ) { throw new TypeError( 'Cannot convert undefined or null to object' ); } var output = Object( target ); for ( var index = 1; index < arguments.length; index ++ ) { var source = arguments[ index ]; if ( source !== undefined && source !== null ) { for ( var nextKey in source ) { if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) { output[ nextKey ] = source[ nextKey ]; } } } } return output; }; } )(); } /** * https://github.com/mrdoob/eventdispatcher.js/ */ function EventDispatcher() {} Object.assign( EventDispatcher.prototype, { addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return false; var listeners = this._listeners; if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) { return true; } return false; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; var array = [], i = 0; var length = listenerArray.length; for ( i = 0; i < length; i ++ ) { array[ i ] = listenerArray[ i ]; } for ( i = 0; i < length; i ++ ) { array[ i ].call( this, event ); } } } } ); var REVISION = '82dev'; var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 }; var CullFaceNone = 0; var CullFaceBack = 1; var CullFaceFront = 2; var CullFaceFrontBack = 3; var FrontFaceDirectionCW = 0; var FrontFaceDirectionCCW = 1; var BasicShadowMap = 0; var PCFShadowMap = 1; var PCFSoftShadowMap = 2; var FrontSide = 0; var BackSide = 1; var DoubleSide = 2; var FlatShading = 1; var SmoothShading = 2; var NoColors = 0; var FaceColors = 1; var VertexColors = 2; var NoBlending = 0; var NormalBlending = 1; var AdditiveBlending = 2; var SubtractiveBlending = 3; var MultiplyBlending = 4; var CustomBlending = 5; var BlendingMode = { NoBlending: NoBlending, NormalBlending: NormalBlending, AdditiveBlending: AdditiveBlending, SubtractiveBlending: SubtractiveBlending, MultiplyBlending: MultiplyBlending, CustomBlending: CustomBlending }; var AddEquation = 100; var SubtractEquation = 101; var ReverseSubtractEquation = 102; var MinEquation = 103; var MaxEquation = 104; var ZeroFactor = 200; var OneFactor = 201; var SrcColorFactor = 202; var OneMinusSrcColorFactor = 203; var SrcAlphaFactor = 204; var OneMinusSrcAlphaFactor = 205; var DstAlphaFactor = 206; var OneMinusDstAlphaFactor = 207; var DstColorFactor = 208; var OneMinusDstColorFactor = 209; var SrcAlphaSaturateFactor = 210; var NeverDepth = 0; var AlwaysDepth = 1; var LessDepth = 2; var LessEqualDepth = 3; var EqualDepth = 4; var GreaterEqualDepth = 5; var GreaterDepth = 6; var NotEqualDepth = 7; var MultiplyOperation = 0; var MixOperation = 1; var AddOperation = 2; var NoToneMapping = 0; var LinearToneMapping = 1; var ReinhardToneMapping = 2; var Uncharted2ToneMapping = 3; var CineonToneMapping = 4; var UVMapping = 300; var CubeReflectionMapping = 301; var CubeRefractionMapping = 302; var EquirectangularReflectionMapping = 303; var EquirectangularRefractionMapping = 304; var SphericalReflectionMapping = 305; var CubeUVReflectionMapping = 306; var CubeUVRefractionMapping = 307; var TextureMapping = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, SphericalReflectionMapping: SphericalReflectionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping }; var RepeatWrapping = 1000; var ClampToEdgeWrapping = 1001; var MirroredRepeatWrapping = 1002; var TextureWrapping = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; var NearestFilter = 1003; var NearestMipMapNearestFilter = 1004; var NearestMipMapLinearFilter = 1005; var LinearFilter = 1006; var LinearMipMapNearestFilter = 1007; var LinearMipMapLinearFilter = 1008; var TextureFilter = { NearestFilter: NearestFilter, NearestMipMapNearestFilter: NearestMipMapNearestFilter, NearestMipMapLinearFilter: NearestMipMapLinearFilter, LinearFilter: LinearFilter, LinearMipMapNearestFilter: LinearMipMapNearestFilter, LinearMipMapLinearFilter: LinearMipMapLinearFilter }; var UnsignedByteType = 1009; var ByteType = 1010; var ShortType = 1011; var UnsignedShortType = 1012; var IntType = 1013; var UnsignedIntType = 1014; var FloatType = 1015; var HalfFloatType = 1016; var UnsignedShort4444Type = 1017; var UnsignedShort5551Type = 1018; var UnsignedShort565Type = 1019; var UnsignedInt248Type = 1020; var AlphaFormat = 1021; var RGBFormat = 1022; var RGBAFormat = 1023; var LuminanceFormat = 1024; var LuminanceAlphaFormat = 1025; var RGBEFormat = RGBAFormat; var DepthFormat = 1026; var DepthStencilFormat = 1027; var RGB_S3TC_DXT1_Format = 2001; var RGBA_S3TC_DXT1_Format = 2002; var RGBA_S3TC_DXT3_Format = 2003; var RGBA_S3TC_DXT5_Format = 2004; var RGB_PVRTC_4BPPV1_Format = 2100; var RGB_PVRTC_2BPPV1_Format = 2101; var RGBA_PVRTC_4BPPV1_Format = 2102; var RGBA_PVRTC_2BPPV1_Format = 2103; var RGB_ETC1_Format = 2151; var LoopOnce = 2200; var LoopRepeat = 2201; var LoopPingPong = 2202; var InterpolateDiscrete = 2300; var InterpolateLinear = 2301; var InterpolateSmooth = 2302; var ZeroCurvatureEnding = 2400; var ZeroSlopeEnding = 2401; var WrapAroundEnding = 2402; var TrianglesDrawMode = 0; var TriangleStripDrawMode = 1; var TriangleFanDrawMode = 2; var LinearEncoding = 3000; var sRGBEncoding = 3001; var GammaEncoding = 3007; var RGBEEncoding = 3002; var LogLuvEncoding = 3003; var RGBM7Encoding = 3004; var RGBM16Encoding = 3005; var RGBDEncoding = 3006; var BasicDepthPacking = 3200; var RGBADepthPacking = 3201; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ var _Math = { DEG2RAD: Math.PI / 180, RAD2DEG: 180 / Math.PI, generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function generateUUID() { for ( var i = 0; i < 36; i ++ ) { if ( i === 8 || i === 13 || i === 18 || i === 23 ) { uuid[ i ] = '-'; } else if ( i === 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), clamp: function ( value, min, max ) { return Math.max( min, Math.min( max, value ) ); }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function ( n, m ) { return ( ( n % m ) + m ) % m; }, // Linear mapping from range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // https://en.wikipedia.org/wiki/Linear_interpolation lerp: function ( x, y, t ) { return ( 1 - t ) * x + t * y; }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, random16: function () { console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' ); return Math.random(); }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, degToRad: function ( degrees ) { return degrees * _Math.DEG2RAD; }, radToDeg: function ( radians ) { return radians * _Math.RAD2DEG; }, isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, nearestPowerOfTwo: function ( value ) { return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) ); }, nextPowerOfTwo: function ( value ) { value --; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value ++; return value; } }; /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ function Vector2( x, y ) { this.x = x || 0; this.y = y || 0; } Vector2.prototype = { constructor: Vector2, isVector2: true, get width() { return this.x; }, set width( value ) { this.x = value; }, get height() { return this.y; }, set height( value ) { this.y = value; }, // set: function ( x, y ) { this.x = x; this.y = y; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; } else { this.x = 0; this.y = 0; } return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new Vector2(); max = new Vector2(); } min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); return this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, lengthManhattan: function() { return Math.abs( this.x ) + Math.abs( this.y ); }, normalize: function () { return this.divideScalar( this.length() ); }, angle: function () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2( this.y, this.x ); if ( angle < 0 ) angle += 2 * Math.PI; return angle; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, distanceToManhattan: function ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; return this; }, rotateAround: function ( center, angle ) { var c = Math.cos( angle ), s = Math.sin( angle ); var x = this.x - center.x; var y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { Object.defineProperty( this, 'id', { value: TextureIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.sourceFile = ''; this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : RGBAFormat; this.type = type !== undefined ? type : UnsignedByteType; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding !== undefined ? encoding : LinearEncoding; this.version = 0; this.onUpdate = null; } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Texture.prototype = { constructor: Texture, isTexture: true, set needsUpdate( value ) { if ( value === true ) this.version ++; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; }, toJSON: function ( meta ) { if ( meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } function getDataURL( image ) { var canvas; if ( image.toDataURL !== undefined ) { canvas = image; } else { canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = image.width; canvas.height = image.height; canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height ); } if ( canvas.width > 2048 || canvas.height > 2048 ) { return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } var output = { metadata: { version: 4.4, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], wrap: [ this.wrapS, this.wrapT ], minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image var image = this.image; if ( image.uuid === undefined ) { image.uuid = _Math.generateUUID(); // UGH } if ( meta.images[ image.uuid ] === undefined ) { meta.images[ image.uuid ] = { uuid: image.uuid, url: getDataURL( image ) }; } output.image = image.uuid; } meta.textures[ this.uuid ] = output; return output; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); }, transformUv: function ( uv ) { if ( this.mapping !== UVMapping ) return; uv.multiply( this.repeat ); uv.add( this.offset ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } } }; Object.assign( Texture.prototype, EventDispatcher.prototype ); var count = 0; function TextureIdCount() { return count++; } /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector4( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; } Vector4.prototype = { constructor: Vector4, isVector4: true, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setW: function ( w ) { this.w = w; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z, this.w ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } return this; }, applyMatrix4: function ( m ) { var x = this.x, y = this.y, z = this.z, w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new Vector4(); max = new Vector4(); } min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; this.w = attribute.array[ index + 3 ]; return this; } }; /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */ /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ function WebGLRenderTarget( width, height, options ) { this.uuid = _Math.generateUUID(); this.width = width; this.height = height; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); options = options || {}; if ( options.minFilter === undefined ) options.minFilter = LinearFilter; this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, { isWebGLRenderTarget: true, setSize: function ( width, height ) { if ( this.width !== width || this.height !== height ) { this.width = width; this.height = height; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.width = source.width; this.height = source.height; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author alteredq / http://alteredqualia.com */ function WebGLRenderTargetCube( width, height, options ) { WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 this.activeMipMapLevel = 0; } WebGLRenderTargetCube.prototype = Object.create( WebGLRenderTarget.prototype ); WebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube; WebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Quaternion( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; } Quaternion.prototype = { constructor: Quaternion, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get w () { return this._w; }, set w ( value ) { this._w = value; this.onChangeCallback(); }, set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._w ); }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( (euler && euler.isEuler) === false ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( euler._x / 2 ); var c2 = Math.cos( euler._y / 2 ); var c3 = Math.cos( euler._z / 2 ); var s1 = Math.sin( euler._x / 2 ); var s2 = Math.sin( euler._y / 2 ); var s3 = Math.sin( euler._z / 2 ); var order = euler.order; if ( order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final // assumes direction vectors vFrom and vTo are normalized var v1, r; var EPS = 0.000001; return function setFromUnitVectors( vFrom, vTo ) { if ( v1 === undefined ) v1 = new Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; return this.normalize(); }; }(), inverse: function () { return this.conjugate().normalize(); }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, premultiply: function ( q ) { return this.multiplyQuaternions( q, this ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, slerp: function ( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; Object.assign( Quaternion, { slerp: function( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); }, slerpFlat: function( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ], x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { var s = 1 - t, cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } var tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author *kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector3( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; } Vector3.prototype = { constructor: Vector3, isVector3: true, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion; return function applyEuler( euler ) { if ( (euler && euler.isEuler) === false ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } if ( quaternion === undefined ) quaternion = new Quaternion(); return this.applyQuaternion( quaternion.setFromEuler( euler ) ); }; }(), applyAxisAngle: function () { var quaternion; return function applyAxisAngle( axis, angle ) { if ( quaternion === undefined ) quaternion = new Quaternion(); return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); }; }(), applyMatrix3: function ( m ) { var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { // input: THREE.Matrix4 affine matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ]; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ]; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ]; return this; }, applyProjection: function ( m ) { // input: THREE.Matrix4 projection matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d; return this; }, applyQuaternion: function ( q ) { var x = this.x, y = this.y, z = this.z; var qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, project: function () { var matrix; return function project( camera ) { if ( matrix === undefined ) matrix = new Matrix4(); matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) ); return this.applyProjection( matrix ); }; }(), unproject: function () { var matrix; return function unproject( camera ) { if ( matrix === undefined ) matrix = new Matrix4(); matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) ); return this.applyProjection( matrix ); }; }(), transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new Vector3(); max = new Vector3(); } min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); return this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function ( vector ) { var scalar = vector.dot( this ) / vector.lengthSq(); return this.copy( vector ).multiplyScalar( scalar ); }, projectOnPlane: function () { var v1; return function projectOnPlane( planeNormal ) { if ( v1 === undefined ) v1 = new Vector3(); v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); }; }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1; return function reflect( normal ) { if ( v1 === undefined ) v1 = new Vector3(); return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); }; }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) ); // clamp, to handle numerical problems return Math.acos( _Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, distanceToManhattan: function ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); }, setFromSpherical: function( s ) { var sinPhiRadius = Math.sin( s.phi ) * s.radius; this.x = sinPhiRadius * Math.sin( s.theta ); this.y = Math.cos( s.phi ) * s.radius; this.z = sinPhiRadius * Math.cos( s.theta ); return this; }, setFromMatrixPosition: function ( m ) { return this.setFromMatrixColumn( m, 3 ); }, setFromMatrixScale: function ( m ) { var sx = this.setFromMatrixColumn( m, 0 ).length(); var sy = this.setFromMatrixColumn( m, 1 ).length(); var sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( m, index ) { if ( typeof m === 'number' ) { console.warn( 'THREE.Vector3: setFromMatrixColumn now expects ( matrix, index ).' ); var temp = m; m = index; index = temp; } return this.fromArray( m.elements, index * 4 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; return this; } }; /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Matrix4() { this.elements = new Float32Array( [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } } Matrix4.prototype = { constructor: Matrix4, isMatrix4: true, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, clone: function () { return new Matrix4().fromArray( this.elements ); }, copy: function ( m ) { this.elements.set( m.elements ); return this; }, copyPosition: function ( m ) { var te = this.elements; var me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }, extractBasis: function ( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; }, makeBasis: function ( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; }, extractRotation: function () { var v1; return function extractRotation( m ) { if ( v1 === undefined ) v1 = new Vector3(); var te = this.elements; var me = m.elements; var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length(); var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length(); var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; return this; }; }(), makeRotationFromEuler: function ( euler ) { if ( (euler && euler.isEuler) === false ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz ); te[ 4 ] = xy - wz; te[ 8 ] = xz + wy; te[ 1 ] = xy + wz; te[ 5 ] = 1 - ( xx + zz ); te[ 9 ] = yz - wx; te[ 2 ] = xz - wy; te[ 6 ] = yz + wx; te[ 10 ] = 1 - ( xx + yy ); // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, lookAt: function () { var x, y, z; return function lookAt( eye, target, up ) { if ( x === undefined ) { x = new Vector3(); y = new Vector3(); z = new Vector3(); } var te = this.elements; z.subVectors( eye, target ).normalize(); if ( z.lengthSq() === 0 ) { z.z = 1; } x.crossVectors( up, z ).normalize(); if ( x.lengthSq() === 0 ) { z.z += 0.0001; x.crossVectors( up, z ).normalize(); } y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; }; }(), multiply: function ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }, premultiply: function ( m ) { return this.multiplyMatrices( m, this ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiplyMatrices( a, b ); r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ]; r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ]; r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ]; r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }, applyToVector3Array: function () { var v1; return function applyToVector3Array( array, offset, length ) { if ( v1 === undefined ) v1 = new Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix4( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix4( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " + "- just use .toArray instead." ); return this.toArray( array, offset ); }, getPosition: function () { var v1; return function getPosition() { if ( v1 === undefined ) v1 = new Vector3(); console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return v1.setFromMatrixColumn( this, 3 ); }; }(), setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z; return this; }, getInverse: function ( m, throwOnDegenerate ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) { var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate === true ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); }, makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion ); this.scale( scale ); this.setPosition( position ); return this; }, decompose: function () { var vector, matrix; return function decompose( position, quaternion, scale ) { if ( vector === undefined ) { vector = new Vector3(); matrix = new Matrix4(); } var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) { sx = - sx; } position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy() var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; }(), makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( _Math.DEG2RAD * fov * 0.5 ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = 1.0 / ( right - left ); var h = 1.0 / ( top - bottom ); var p = 1.0 / ( far - near ); var x = ( right + left ) * w; var y = ( top + bottom ) * h; var z = ( far + near ) * p; te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; }, equals: function ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; for( var i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } }; /** * @author mrdoob / http://mrdoob.com/ */ function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.flipY = false; } CubeTexture.prototype = Object.create( Texture.prototype ); CubeTexture.prototype.constructor = CubeTexture; CubeTexture.prototype.isCubeTexture = true; Object.defineProperty( CubeTexture.prototype, 'images', { get: function () { return this.image; }, set: function ( value ) { this.image = value; } } ); /** * @author tschw * * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program, renderer )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [renderer] ) * * uploads a uniform value(s) * the 'renderer' parameter is needed for sampler uniforms * * * Static methods of the top-level container (renderer factorizations): * * .upload( gl, seq, values, renderer ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (renderer factorizations): * * .setValue( gl, name, value ) * * sets uniform with name 'name' to 'value' * * .set( gl, obj, prop ) * * sets uniform from object and property with same name than uniform * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ var emptyTexture = new Texture(); var emptyCubeTexture = new CubeTexture(); // --- Base for inner nodes (including the root) --- function UniformContainer() { this.seq = []; this.map = {}; } // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) var arrayCacheF32 = []; var arrayCacheI32 = []; // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { var firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 var n = nBlocks * blockSize, r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } // Texture unit allocation function allocTexUnits( renderer, n ) { var r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( var i = 0; i !== n; ++ i ) r[ i ] = renderer.allocTextureUnit(); return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); } function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); } // Single float vector (from flat array or THREE.VectorN) function setValue2fv( gl, v ) { if ( v.x === undefined ) gl.uniform2fv( this.addr, v ); else gl.uniform2f( this.addr, v.x, v.y ); } function setValue3fv( gl, v ) { if ( v.x !== undefined ) gl.uniform3f( this.addr, v.x, v.y, v.z ); else if ( v.r !== undefined ) gl.uniform3f( this.addr, v.r, v.g, v.b ); else gl.uniform3fv( this.addr, v ); } function setValue4fv( gl, v ) { if ( v.x === undefined ) gl.uniform4fv( this.addr, v ); else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); } // Single matrix (from flat array or MatrixN) function setValue2fm( gl, v ) { gl.uniformMatrix2fv( this.addr, false, v.elements || v ); } function setValue3fm( gl, v ) { gl.uniformMatrix3fv( this.addr, false, v.elements || v ); } function setValue4fm( gl, v ) { gl.uniformMatrix4fv( this.addr, false, v.elements || v ); } // Single texture (2D / Cube) function setValueT1( gl, v, renderer ) { var unit = renderer.allocTextureUnit(); gl.uniform1i( this.addr, unit ); renderer.setTexture2D( v || emptyTexture, unit ); } function setValueT6( gl, v, renderer ) { var unit = renderer.allocTextureUnit(); gl.uniform1i( this.addr, unit ); renderer.setTextureCube( v || emptyCubeTexture, unit ); } // Integer / Boolean vectors or arrays thereof (always flat arrays) function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValue1f; // FLOAT case 0x8b50: return setValue2fv; // _VEC2 case 0x8b51: return setValue3fv; // _VEC3 case 0x8b52: return setValue4fv; // _VEC4 case 0x8b5a: return setValue2fm; // _MAT2 case 0x8b5b: return setValue3fm; // _MAT3 case 0x8b5c: return setValue4fm; // _MAT4 case 0x8b5e: return setValueT1; // SAMPLER_2D case 0x8b60: return setValueT6; // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4 } } // Array of scalars function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); } function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of vectors (flat or from THREE classes) function setValueV2a( gl, v ) { gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) ); } function setValueV3a( gl, v ) { gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) ); } function setValueV4a( gl, v ) { gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) ); } // Array of matrices (flat or from THREE clases) function setValueM2a( gl, v ) { gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) ); } function setValueM3a( gl, v ) { gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) ); } function setValueM4a( gl, v ) { gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) ); } // Array of textures (2D / Cube) function setValueT1a( gl, v, renderer ) { var n = v.length, units = allocTexUnits( renderer, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT6a( gl, v, renderer ) { var n = v.length, units = allocTexUnits( renderer, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValue1fv; // FLOAT case 0x8b50: return setValueV2a; // _VEC2 case 0x8b51: return setValueV3a; // _VEC3 case 0x8b52: return setValueV4a; // _VEC4 case 0x8b5a: return setValueM2a; // _MAT2 case 0x8b5b: return setValueM3a; // _MAT3 case 0x8b5c: return setValueM4a; // _MAT4 case 0x8b5e: return setValueT1a; // SAMPLER_2D case 0x8b60: return setValueT6a; // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4 } } // --- Uniform Classes --- function SingleUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function PureArrayUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function StructuredUniform( id ) { this.id = id; UniformContainer.call( this ); // mix-in } StructuredUniform.prototype.setValue = function( gl, value ) { // Note: Don't need an extra 'renderer' parameter, since samplers // are not allowed in structured uniforms. var seq = this.seq; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; u.setValue( gl, value[ u.id ] ); } }; // --- Top-level --- // Parser - builds up the property tree from the path strings var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { var path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; for (; ;) { var match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex, id = match[ 1 ], idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist var map = container.map, next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container function WebGLUniforms( gl, program, renderer ) { UniformContainer.call( this ); this.renderer = renderer; var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( var i = 0; i !== n; ++ i ) { var info = gl.getActiveUniform( program, i ), path = info.name, addr = gl.getUniformLocation( program, path ); parseUniform( info, addr, this ); } } WebGLUniforms.prototype.setValue = function( gl, name, value ) { var u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, this.renderer ); }; WebGLUniforms.prototype.set = function( gl, object, name ) { var u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, object[ name ], this.renderer ); }; WebGLUniforms.prototype.setOptional = function( gl, object, name ) { var v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); }; // Static interface WebGLUniforms.upload = function( gl, seq, values, renderer ) { for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, renderer ); } } }; WebGLUniforms.seqWithValue = function( seq, values ) { var r = []; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; }; /** * Uniform Utilities */ var UniformsUtils = { merge: function ( uniforms ) { var merged = {}; for ( var u = 0; u < uniforms.length; u ++ ) { var tmp = this.clone( uniforms[ u ] ); for ( var p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var uniforms_dst = {}; for ( var u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( var p in uniforms_src[ u ] ) { var parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src.isColor || parameter_src.isMatrix3 || parameter_src.isMatrix4 || parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 || parameter_src.isTexture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( Array.isArray( parameter_src ) ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif\n"; var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif\n"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var begin_vertex = "\nvec3 transformed = vec3( position );\n"; var beginnormal_vertex = "\nvec3 objectNormal = vec3( normal );\n"; var bsdfs = "bool testLightInRange( const in float lightDistance, const in float cutoffDistance ) {\n\treturn any( bvec2( cutoffDistance == 0.0, lightDistance < cutoffDistance ) );\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t\tif( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t\treturn distanceFalloff * maxDistanceCutoffFactor;\n#else\n\t\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n\t\t}\n\t\treturn 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n\treturn specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = dFdx( surf_pos );\n\t\tvec3 vSigmaY = dFdy( surf_pos );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif\n"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\n\t\tvec4 plane = clippingPlanes[ i ];\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t\t\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\n\t\t\tvec4 plane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\tif ( clipped ) discard;\n\t\n\t#endif\n#endif\n"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\n\t\tvarying vec3 vViewPosition;\n\t#endif\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvarying vec3 vViewPosition;\n#endif\n"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n"; var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif\n"; var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif"; var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\n"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_textureSize (1024.0)\nint getFaceFromDirection(vec3 direction) {\n\tvec3 absDirection = abs(direction);\n\tint face = -1;\n\tif( absDirection.x > absDirection.z ) {\n\t\tif(absDirection.x > absDirection.y )\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\telse {\n\t\tif(absDirection.z > absDirection.y )\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\treturn face;\n}\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n\tfloat dxRoughness = dFdx(roughness);\n\tfloat dyRoughness = dFdy(roughness);\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\n\tfloat mipLevel = 0.5 * log2(d);\n\treturn vec2(floor(mipLevel), fract(mipLevel));\n}\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n\tbool bRes = mipLevel == 0.0;\n\tscale = bRes && (scale < a) ? a : scale;\n\tvec3 r;\n\tvec2 offset;\n\tint face = getFaceFromDirection(direction);\n\tfloat rcpPowScale = 1.0 / powScale;\n\tif( face == 0) {\n\t\tr = vec3(direction.x, -direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 1) {\n\t\tr = vec3(direction.y, direction.x, direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 2) {\n\t\tr = vec3(direction.z, direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 3) {\n\t\tr = vec3(direction.x, direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse if( face == 4) {\n\t\tr = vec3(direction.y, direction.x, -direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse {\n\t\tr = vec3(direction.z, -direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\tr = normalize(r);\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n\tvec2 base = offset + vec2( texelOffset );\n\treturn base + s * ( scale - 2.0 * texelOffset );\n}\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\n\tfloat r1 = floor(roughnessVal);\n\tfloat r2 = r1 + 1.0;\n\tfloat t = fract(roughnessVal);\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n\tfloat s = mipInfo.y;\n\tfloat level0 = mipInfo.x;\n\tfloat level1 = level0 + 1.0;\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n\tvec4 result = mix(color10, color20, t);\n\treturn vec4(result.rgb, 1.0);\n}\n#endif\n"; var defaultnormal_vertex = "#ifdef FLIP_SIDED\n\tobjectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif\n"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif\n"; var encodings_fragment = " gl_FragColor = linearToOutputTexel( gl_FragColor );\n"; var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n return value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n float maxComponent = max( max( value.r, value.g ), value.b );\n float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n M = ceil( M * 255.0 ) / 255.0;\n return vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float D = max( maxRange / maxRGB, 1.0 );\n D = min( floor( D ) / 255.0, 1.0 );\n return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n vec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n Xp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n vec4 vResult;\n vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n vResult.w = fract(Le);\n vResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n return vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n float Le = value.z * 255.0 + value.w;\n vec3 Xp_Y_XYZp;\n Xp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n vec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n return vec4( max(vRGB, 0.0), 1.0 );\n}\n"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\tsampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\tenvColor = envMapTexelToLinear( envColor );\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif\n"; var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n\tuniform float reflectivity;\n\tuniform float envMapIntenstiy;\n#endif\n#ifdef USE_ENVMAP\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n\t\tvarying vec3 vWorldPosition;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\tuniform float flipEnvMap;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif\n"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif\n"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif\n"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tfloat depth = gl_FragDepthEXT / gl_FragCoord.w;\n\t#else\n\t\tfloat depth = gl_FragCoord.z / gl_FragCoord.w;\n\t#endif\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * depth * depth * LOG2 ) );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, depth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_DIR_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n#endif\n"; var lights_pars = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tif ( testLightInRange( lightDistance, pointLight.distance ) ) {\n\t\t\tdirectLight.color = pointLight.color;\n\t\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( all( bvec2( angleCos > spotLight.coneCos, testLightInRange( lightDistance, spotLight.distance ) ) ) ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\t#include \n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n\t\t#endif\n\t\t#include \n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n\t\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif\n"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)\n"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.clearCoat = saturate( clearCoat );\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\n#endif\n"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n\t#ifndef STANDARD\n\t\tfloat clearCoat;\n\t\tfloat clearCoatRoughness;\n\t#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifndef STANDARD\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\t#ifndef STANDARD\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifndef STANDARD\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\tfloat dotNL = dotNV;\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n\t#ifndef STANDARD\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n"; var lights_template = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#ifdef USE_LIGHTMAP\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t \tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n\t#endif\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n\t#ifndef STANDARD\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\n\t#else\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\n\t#endif\n\t\t\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\n#endif\n"; var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\n\tuniform float logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n#endif\n"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n\tuniform float logDepthBufFC;\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t#else\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n\t#endif\n#endif\n"; var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif\n"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n"; var map_particle_fragment = "#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n"; var map_particle_pars_fragment = "#ifdef USE_MAP\n\tuniform vec4 offsetRepeat;\n\tuniform sampler2D map;\n#endif\n"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.r;\n#endif\n"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\t#endif\n#endif\n"; var normal_flip = "#ifdef DOUBLE_SIDED\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n#else\n\tfloat flipNormal = 1.0;\n#endif\n"; var normal_fragment = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal ) * flipNormal;\n#endif\n#ifdef USE_NORMALMAP\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n\t\tvec3 N = normalize( surf_norm );\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\tmapN.xy = normalScale * mapN.xy;\n\t\tmat3 tsn = mat3( S, T, N );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif\n"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n return normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n return 1.0 - 2.0 * rgb.xyz;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n return ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n return linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n return (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n return ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif\n"; var project_vertex = "#ifdef USE_SKINNING\n\tvec4 mvPosition = modelViewMatrix * skinned;\n#else\n\tvec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.r;\n#endif\n"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n\t\tvec2 f = fract( uv * size + 0.5 );\n\t\tfloat a = mix( lb, lt, f.y );\n\t\tfloat b = mix( rb, rt, f.y );\n\t\tfloat c = mix( a, b, f.x );\n\t\treturn c;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\treturn (\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn 1.0;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\tfloat dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif\n"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n#endif\n"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n#endif\n"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tDirectionalLight directionalLight;\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tSpotLight spotLight;\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tPointLight pointLight;\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#endif\n\treturn shadow;\n}\n"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform sampler2D boneTexture;\n\t\tuniform int boneTextureWidth;\n\t\tuniform int boneTextureHeight;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureWidth ) );\n\t\t\tfloat y = floor( j / float( boneTextureWidth ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureWidth );\n\t\t\tfloat dy = 1.0 / float( boneTextureHeight );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif\n"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\tskinned = bindMatrixInverse * skinned;\n#endif\n"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n"; var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n return toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n"; var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n#endif"; var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n\tuniform vec4 offsetRepeat;\n#endif\n"; var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = uv2;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n\t#ifdef USE_SKINNING\n\t\tvec4 worldPosition = modelMatrix * skinned;\n\t#else\n\t\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n\t#endif\n#endif\n"; var cube_frag = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldPosition;\n#include \nvoid main() {\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n\tgl_FragColor.a *= opacity;\n}\n"; var cube_vert = "varying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}\n"; var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n\t#endif\n}\n"; var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var distanceRGBA_frag = "uniform vec3 lightPos;\nvarying vec4 vWorldPosition;\n#include \n#include \n#include \nvoid main () {\n\t#include \n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\n}\n"; var distanceRGBA_vert = "varying vec4 vWorldPosition;\n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition;\n}\n"; var equirect_frag = "uniform sampler2D tEquirect;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldPosition );\n\tvec2 sampleUV;\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n}\n"; var equirect_vert = "varying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}\n"; var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvLineDistance = scale * lineDistance;\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n}\n"; var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight;\n\treflectedLight.directDiffuse = vec3( 0.0 );\n\treflectedLight.directSpecular = vec3( 0.0 );\n\treflectedLight.indirectDiffuse = diffuseColor.rgb;\n\treflectedLight.indirectSpecular = vec3( 0.0 );\n\t#include \n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}\n"; var meshphysical_frag = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifndef STANDARD\n\tuniform float clearCoat;\n\tuniform float clearCoatRoughness;\n#endif\nuniform float envMapIntensity;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var meshphysical_vert = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n}\n"; var normal_frag = "uniform float opacity;\nvarying vec3 vNormal;\n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( vNormal ), opacity );\n\t#include \n}\n"; var normal_vert = "varying vec3 vNormal;\n#include \n#include \n#include \n#include \nvoid main() {\n\tvNormal = normalize( normalMatrix * normal );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#ifdef USE_SIZEATTENUATION\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\n\t#else\n\t\tgl_PointSize = size;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var shadow_frag = "uniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\n}\n"; var shadow_vert = "#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n}\n"; var ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_vertex: envmap_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars: lights_pars, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_template: lights_template, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_flip: normal_flip, normal_fragment: normal_fragment, normalmap_pars_fragment: normalmap_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert }; /** * @author mrdoob / http://mrdoob.com/ */ function Color( r, g, b ) { if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string return this.set( r ); } return this.setRGB( r, g, b ); } Color.prototype = { constructor: Color, isColor: true, r: 1, g: 1, b: 1, set: function ( value ) { if ( (value && value.isColor) ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }, setScalar: function ( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSL: function () { function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } return function setHSL( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = _Math.euclideanModulo( h, 1 ); s = _Math.clamp( s, 0, 1 ); l = _Math.clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }; }(), setStyle: function ( style ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } var m; if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { // rgb / hsl var color; var name = m[ 1 ]; var components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 5 ] ); return this; } if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 5 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 5 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { // hex color var hex = m[ 1 ]; var size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { // color keywords var hex = ColorKeywords[ style ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } } return this; }, clone: function () { return new this.constructor( this.r, this.g, this.b ); }, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; }, copyLinearToGamma: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, getHex: function () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }, getHexString: function () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }, getHSL: function ( optionalTarget ) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 }; var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } hsl.h = hue; hsl.s = saturation; hsl.l = lightness; return hsl; }, getStyle: function () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }, offsetHSL: function ( h, s, l ) { var hsl = this.getHSL(); hsl.h += h; hsl.s += s; hsl.l += l; this.setHSL( hsl.h, hsl.s, hsl.l ); return this; }, add: function ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }, addColors: function ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }, addScalar: function ( s ) { this.r += s; this.g += s; this.b += s; return this; }, sub: function( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; }, multiply: function ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }, multiplyScalar: function ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }, lerp: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, equals: function ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; }, toJSON: function () { return this.getHex(); } }; var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; /** * Uniforms library for shared webgl shaders */ var UniformsLib = { common: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, map: { value: null }, offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }, specularMap: { value: null }, alphaMap: { value: null }, envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } } }, points: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) } } }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ var ShaderLib = { basic: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive : { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive : { value: new Color( 0x000000 ) }, specular : { value: new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive : { value: new Color( 0x000000 ) }, roughness: { value: 0.5 }, metalness: { value: 0 }, envMapIntensity : { value: 1 }, // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, points: { uniforms: UniformsUtils.merge( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.fog, { scale : { value: 1 }, dashSize : { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: { opacity : { value: 1.0 } }, vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: { tCube: { value: null }, tFlip: { value: - 1 }, opacity: { value: 1.0 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ equirect: { uniforms: { tEquirect: { value: null }, tFlip: { value: - 1 } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: { lightPos: { value: new Vector3() } }, vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag } }; ShaderLib.physical = { uniforms: UniformsUtils.merge( [ ShaderLib.standard.uniforms, { clearCoat: { value: 0 }, clearCoatRoughness: { value: 0 } } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; /** * @author bhouston / http://clara.io */ function Box2( min, max ) { this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity ); } Box2.prototype = { constructor: Box2, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new Vector2(); return function setFromCenterAndSize( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector2(); return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, getSize: function ( optionalTarget ) { var result = optionalTarget || new Vector2(); return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector2(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ) { return false; } return true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector2(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new Vector2(); return function distanceToPoint( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function LensFlarePlugin( renderer, flares ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var shader, program, attributes, uniforms; var tempTexture, occlusionTexture; function init() { var vertices = new Float32Array( [ - 1, - 1, 0, 0, 1, - 1, 1, 0, 1, 1, 1, 1, - 1, 1, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); // buffers vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); // textures tempTexture = gl.createTexture(); occlusionTexture = gl.createTexture(); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = visibility.r / 9.0;", "vVisibility *= 1.0 - visibility.g / 9.0;", "vVisibility *= visibility.b / 9.0;", "vVisibility *= 1.0 - visibility.a / 9.0;", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform lowp int renderType;", "uniform sampler2D map;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; program = createProgram( shader ); attributes = { vertex: gl.getAttribLocation ( program, "position" ), uv: gl.getAttribLocation ( program, "uv" ) }; uniforms = { renderType: gl.getUniformLocation( program, "renderType" ), map: gl.getUniformLocation( program, "map" ), occlusionMap: gl.getUniformLocation( program, "occlusionMap" ), opacity: gl.getUniformLocation( program, "opacity" ), color: gl.getUniformLocation( program, "color" ), scale: gl.getUniformLocation( program, "scale" ), rotation: gl.getUniformLocation( program, "rotation" ), screenPosition: gl.getUniformLocation( program, "screenPosition" ) }; } /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. */ this.render = function ( scene, camera, viewport ) { if ( flares.length === 0 ) return; var tempPosition = new Vector3(); var invAspect = viewport.w / viewport.z, halfViewportWidth = viewport.z * 0.5, halfViewportHeight = viewport.w * 0.5; var size = 16 / viewport.w, scale = new Vector2( size * invAspect, size ); var screenPosition = new Vector3( 1, 1, 0 ), screenPositionPixels = new Vector2( 1, 1 ); var validArea = new Box2(); validArea.min.set( viewport.x, viewport.y ); validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) ); if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.vertex ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/uniforms gl.uniform1i( uniforms.occlusionMap, 0 ); gl.uniform1i( uniforms.map, 1 ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); state.disable( gl.CULL_FACE ); state.setDepthWrite( false ); for ( var i = 0, l = flares.length; i < l; i ++ ) { size = 16 / viewport.w; scale.set( size * invAspect, size ); // calc object screen position var flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] ); tempPosition.applyMatrix4( camera.matrixWorldInverse ); tempPosition.applyProjection( camera.projectionMatrix ); // setup arrays for gl programs screenPosition.copy( tempPosition ); // horizontal and vertical coordinate of the lower left corner of the pixels to copy screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8; screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8; // screen cull if ( validArea.containsPoint( screenPositionPixels ) === true ) { // save current RGB to temp texture state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, null ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 ); // render pink quad gl.uniform1i( uniforms.renderType, 0 ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); state.disable( gl.BLEND ); state.enable( gl.DEPTH_TEST ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 ); // restore graphics gl.uniform1i( uniforms.renderType, 1 ); state.disable( gl.DEPTH_TEST ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ); if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares gl.uniform1i( uniforms.renderType, 2 ); state.enable( gl.BLEND ); for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { var sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewport.w; scale.x = size * invAspect; scale.y = size; gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform1f( uniforms.rotation, sprite.rotation ); gl.uniform1f( uniforms.opacity, sprite.opacity ); gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); renderer.setTexture2D( sprite.texture, 1 ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl state.enable( gl.CULL_FACE ); state.enable( gl.DEPTH_TEST ); state.setDepthWrite( true ); renderer.resetGLState(); }; function createProgram( shader ) { var program = gl.createProgram(); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var prefix = "precision " + renderer.getPrecision() + " float;\n"; gl.shaderSource( fragmentShader, prefix + shader.fragmentShader ); gl.shaderSource( vertexShader, prefix + shader.vertexShader ); gl.compileShader( fragmentShader ); gl.compileShader( vertexShader ); gl.attachShader( program, fragmentShader ); gl.attachShader( program, vertexShader ); gl.linkProgram( program ); return program; } } /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function SpritePlugin( renderer, sprites ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var texture; // decompose matrixWorld var spritePosition = new Vector3(); var spriteRotation = new Quaternion(); var spriteScale = new Vector3(); function init() { var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0.5, - 0.5, 1, 0, 0.5, 0.5, 1, 1, - 0.5, 0.5, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); program = createProgram(); attributes = { position: gl.getAttribLocation ( program, 'position' ), uv: gl.getAttribLocation ( program, 'uv' ) }; uniforms = { uvOffset: gl.getUniformLocation( program, 'uvOffset' ), uvScale: gl.getUniformLocation( program, 'uvScale' ), rotation: gl.getUniformLocation( program, 'rotation' ), scale: gl.getUniformLocation( program, 'scale' ), color: gl.getUniformLocation( program, 'color' ), map: gl.getUniformLocation( program, 'map' ), opacity: gl.getUniformLocation( program, 'opacity' ), modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ), projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ), fogType: gl.getUniformLocation( program, 'fogType' ), fogDensity: gl.getUniformLocation( program, 'fogDensity' ), fogNear: gl.getUniformLocation( program, 'fogNear' ), fogFar: gl.getUniformLocation( program, 'fogFar' ), fogColor: gl.getUniformLocation( program, 'fogColor' ), alphaTest: gl.getUniformLocation( program, 'alphaTest' ) }; var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = 8; canvas.height = 8; var context = canvas.getContext( '2d' ); context.fillStyle = 'white'; context.fillRect( 0, 0, 8, 8 ); texture = new Texture( canvas ); texture.needsUpdate = true; } this.render = function ( scene, camera ) { if ( sprites.length === 0 ) return; // setup gl if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.position ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); state.disable( gl.CULL_FACE ); state.enable( gl.BLEND ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); state.activeTexture( gl.TEXTURE0 ); gl.uniform1i( uniforms.map, 0 ); var oldFogType = 0; var sceneFogType = 0; var fog = scene.fog; if ( fog ) { gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b ); if ( (fog && fog.isFog) ) { gl.uniform1f( uniforms.fogNear, fog.near ); gl.uniform1f( uniforms.fogFar, fog.far ); gl.uniform1i( uniforms.fogType, 1 ); oldFogType = 1; sceneFogType = 1; } else if ( (fog && fog.isFogExp2) ) { gl.uniform1f( uniforms.fogDensity, fog.density ); gl.uniform1i( uniforms.fogType, 2 ); oldFogType = 2; sceneFogType = 2; } } else { gl.uniform1i( uniforms.fogType, 0 ); oldFogType = 0; sceneFogType = 0; } // update positions and sort for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite.modelViewMatrix.elements[ 14 ]; } sprites.sort( painterSortStable ); // render all sprites var scale = []; for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; if ( material.visible === false ) continue; gl.uniform1f( uniforms.alphaTest, material.alphaTest ); gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements ); sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale ); scale[ 0 ] = spriteScale.x; scale[ 1 ] = spriteScale.y; var fogType = 0; if ( scene.fog && material.fog ) { fogType = sceneFogType; } if ( oldFogType !== fogType ) { gl.uniform1i( uniforms.fogType, fogType ); oldFogType = fogType; } if ( material.map !== null ) { gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y ); gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y ); } else { gl.uniform2f( uniforms.uvOffset, 0, 0 ); gl.uniform2f( uniforms.uvScale, 1, 1 ); } gl.uniform1f( uniforms.opacity, material.opacity ); gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b ); gl.uniform1f( uniforms.rotation, material.rotation ); gl.uniform2fv( uniforms.scale, scale ); state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); if ( material.map ) { renderer.setTexture2D( material.map, 0 ); } else { renderer.setTexture2D( texture, 0 ); } gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } // restore gl state.enable( gl.CULL_FACE ); renderer.resetGLState(); }; function createProgram() { var program = gl.createProgram(); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); gl.shaderSource( vertexShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'void main() {', 'vUV = uvOffset + uv * uvScale;', 'vec2 alignedPosition = position * scale;', 'vec2 rotatedPosition;', 'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', 'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', 'vec4 finalPosition;', 'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', 'finalPosition.xy += rotatedPosition;', 'finalPosition = projectionMatrix * finalPosition;', 'gl_Position = finalPosition;', '}' ].join( '\n' ) ); gl.shaderSource( fragmentShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'void main() {', 'vec4 texture = texture2D( map, vUV );', 'if ( texture.a < alphaTest ) discard;', 'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', 'if ( fogType > 0 ) {', 'float depth = gl_FragCoord.z / gl_FragCoord.w;', 'float fogFactor = 0.0;', 'if ( fogType == 1 ) {', 'fogFactor = smoothstep( fogNear, fogFar, depth );', '} else {', 'const float LOG2 = 1.442695;', 'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );', 'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', '}', 'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );', '}', '}' ].join( '\n' ) ); gl.compileShader( vertexShader ); gl.compileShader( fragmentShader ); gl.attachShader( program, vertexShader ); gl.attachShader( program, fragmentShader ); gl.linkProgram( program ); return program; } function painterSortStable( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return b.id - a.id; } } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Material() { Object.defineProperty( this, 'id', { value: MaterialIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Material'; this.fog = true; this.lights = true; this.blending = NormalBlending; this.side = FrontSide; this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.alphaTest = 0; this.premultipliedAlpha = false; this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true; this._needsUpdate = true; } Material.prototype = { constructor: Material, isMaterial: true, get needsUpdate() { return this._needsUpdate; }, set needsUpdate( value ) { if ( value === true ) this.update(); this._needsUpdate = value; }, setValues: function ( values ) { if ( values === undefined ) return; for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } var currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue; } if ( (currentValue && currentValue.isColor) ) { currentValue.set( newValue ); } else if ( (currentValue && currentValue.isVector3) && (newValue && newValue.isVector3) ) { currentValue.copy( newValue ); } else if ( key === 'overdraw' ) { // ensure overdraw is backwards-compatible with legacy boolean type this[ key ] = Number( newValue ); } else { this[ key ] = newValue; } } }, toJSON: function ( meta ) { var isRoot = meta === undefined; if ( isRoot ) { meta = { textures: {}, images: {} }; } var data = { metadata: { version: 4.4, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( (this.color && this.color.isColor) ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( (this.emissive && this.emissive.isColor) ) data.emissive = this.emissive.getHex(); if ( (this.specular && this.specular.isColor) ) data.specular = this.specular.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( (this.map && this.map.isTexture) ) data.map = this.map.toJSON( meta ).uuid; if ( (this.alphaMap && this.alphaMap.isTexture) ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( (this.lightMap && this.lightMap.isTexture) ) data.lightMap = this.lightMap.toJSON( meta ).uuid; if ( (this.bumpMap && this.bumpMap.isTexture) ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( (this.normalMap && this.normalMap.isTexture) ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalScale = this.normalScale.toArray(); } if ( (this.displacementMap && this.displacementMap.isTexture) ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( (this.roughnessMap && this.roughnessMap.isTexture) ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( (this.metalnessMap && this.metalnessMap.isTexture) ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( (this.emissiveMap && this.emissiveMap.isTexture) ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( (this.specularMap && this.specularMap.isTexture) ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( (this.envMap && this.envMap.isTexture) ) { data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap } if ( this.size !== undefined ) data.size = this.size; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.shading !== SmoothShading ) data.shading = this.shading; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; data.skinning = this.skinning; data.morphTargets = this.morphTargets; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.fog = source.fog; this.lights = source.lights; this.blending = source.blending; this.side = source.side; this.shading = source.shading; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.alphaTest = source.alphaTest; this.premultipliedAlpha = source.premultipliedAlpha; this.overdraw = source.overdraw; this.visible = source.visible; this.clipShadows = source.clipShadows; this.clipIntersection = source.clipIntersection; var srcPlanes = source.clippingPlanes, dstPlanes = null; if ( srcPlanes !== null ) { var n = srcPlanes.length; dstPlanes = new Array( n ); for ( var i = 0; i !== n; ++ i ) dstPlanes[ i ] = srcPlanes[ i ].clone(); } this.clippingPlanes = dstPlanes; return this; }, update: function () { this.dispatchEvent( { type: 'update' } ); }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; Object.assign( Material.prototype, EventDispatcher.prototype ); var count$1 = 0; function MaterialIdCount() { return count$1++; } /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * skinning: , * morphTargets: , * morphNormals: * } */ function ShaderMaterial( parameters ) { Material.call( this ); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } } ShaderMaterial.prototype = Object.create( Material.prototype ); ShaderMaterial.prototype.constructor = ShaderMaterial; ShaderMaterial.prototype.isShaderMaterial = true; ShaderMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = UniformsUtils.clone( source.uniforms ); this.defines = source.defines; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = source.extensions; return this; }; ShaderMaterial.prototype.toJSON = function ( meta ) { var data = Material.prototype.toJSON.call( this, meta ); data.uniforms = this.uniforms; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; return data; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / https://clara.io * @author WestLangley / http://github.com/WestLangley * * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ function MeshDepthMaterial( parameters ) { Material.call( this ); this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.skinning = false; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.lights = false; this.setValues( parameters ); } MeshDepthMaterial.prototype = Object.create( Material.prototype ); MeshDepthMaterial.prototype.constructor = MeshDepthMaterial; MeshDepthMaterial.prototype.isMeshDepthMaterial = true; MeshDepthMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.depthPacking = source.depthPacking; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Box3( min, max ) { this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity ); } Box3.prototype = { constructor: Box3, isBox3: true, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromArray: function ( array ) { var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, l = array.length; i < l; i += 3 ) { var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new Vector3(); return function setFromCenterAndSize( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), setFromObject: function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms var v1 = new Vector3(); return function setFromObject( object ) { var scope = this; object.updateMatrixWorld( true ); this.makeEmpty(); object.traverse( function ( node ) { var geometry = node.geometry; if ( geometry !== undefined ) { if ( (geometry && geometry.isGeometry) ) { var vertices = geometry.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { v1.copy( vertices[ i ] ); v1.applyMatrix4( node.matrixWorld ); scope.expandByPoint( v1 ); } } else if ( (geometry && geometry.isBufferGeometry) ) { var attribute = geometry.attributes.position; if ( attribute !== undefined ) { var array, offset, stride; if ( (attribute && attribute.isInterleavedBufferAttribute) ) { array = attribute.data.array; offset = attribute.offset; stride = attribute.data.stride; } else { array = attribute.array; offset = 0; stride = 3; } for ( var i = offset, il = array.length; i < il; i += stride ) { v1.fromArray( array, i ); v1.applyMatrix4( node.matrixWorld ); scope.expandByPoint( v1 ); } } } } } ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, getSize: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) && ( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector3(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ) { return false; } return true; }, intersectsSphere: ( function () { var closestPoint; return function intersectsSphere( sphere ) { if ( closestPoint === undefined ) closestPoint = new Vector3(); // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, closestPoint ); // If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); }; } )(), intersectsPlane: function ( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= plane.constant && max >= plane.constant ); }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new Vector3(); return function distanceToPoint( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), getBoundingSphere: function () { var v1 = new Vector3(); return function getBoundingSphere( optionalTarget ) { var result = optionalTarget || new Sphere(); this.getCenter( result.center ); result.radius = this.getSize( v1 ).length() * 0.5; return result; }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if( this.isEmpty() ) this.makeEmpty(); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, applyMatrix4: function () { var points = [ new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3() ]; return function applyMatrix4( matrix ) { // transform of empty box is an empty box. if( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( points ); return this; }; }(), translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Sphere( center, radius ) { this.center = ( center !== undefined ) ? center : new Vector3(); this.radius = ( radius !== undefined ) ? radius : 0; } Sphere.prototype = { constructor: Sphere, set: function ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }, setFromPoints: function () { var box = new Box3(); return function setFromPoints( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { box.setFromPoints( points ).getCenter( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }, empty: function () { return ( this.radius <= 0 ); }, containsPoint: function ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }, distanceToPoint: function ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }, intersectsSphere: function ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }, intersectsBox: function ( box ) { return box.intersectsSphere( this ); }, intersectsPlane: function ( plane ) { // We use the following equation to compute the signed distance from // the center of the sphere to the plane. // // distance = q * n - d // // If this distance is greater than the radius of the sphere, // then there is no intersection. return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius; }, clampPoint: function ( point, optionalTarget ) { var deltaLengthSq = this.center.distanceToSquared( point ); var result = optionalTarget || new Vector3(); result.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { result.sub( this.center ).normalize(); result.multiplyScalar( this.radius ).add( this.center ); } return result; }, getBoundingBox: function ( optionalTarget ) { var box = optionalTarget || new Box3(); box.set( this.center, this.center ); box.expandByScalar( this.radius ); return box; }, applyMatrix4: function ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }, translate: function ( offset ) { this.center.add( offset ); return this; }, equals: function ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } }; /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io * @author tschw */ function Matrix3() { this.elements = new Float32Array( [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } } Matrix3.prototype = { constructor: Matrix3, isMatrix3: true, set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; }, identity: function () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }, clone: function () { return new this.constructor().fromArray( this.elements ); }, copy: function ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], me[ 1 ], me[ 4 ], me[ 7 ], me[ 2 ], me[ 5 ], me[ 8 ] ); return this; }, setFromMatrix4: function( m ) { var me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; }, applyToVector3Array: function () { var v1; return function applyToVector3Array( array, offset, length ) { if ( v1 === undefined ) v1 = new Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix3( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix3( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }, determinant: function () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }, getInverse: function ( matrix, throwOnDegenerate ) { if ( (matrix && matrix.isMatrix4) ) { console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." ); } var me = matrix.elements, te = this.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) { var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate === true ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; }, transpose: function () { var tmp, m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " + "- just use .toArray instead." ); return this.toArray( array, offset ); }, getNormalMatrix: function ( matrix4 ) { return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose(); }, transposeIntoArray: function ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; for( var i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } }; /** * @author bhouston / http://clara.io */ function Plane( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; } Plane.prototype = { constructor: Plane, set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }, setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }, setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; }, setFromCoplanarPoints: function () { var v1 = new Vector3(); var v2 = new Vector3(); return function setFromCoplanarPoints( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }, negate: function () { this.constant *= - 1; this.normal.negate(); return this; }, distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; }, distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }, projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); }, orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); var result = optionalTarget || new Vector3(); return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); }, intersectLine: function () { var v1 = new Vector3(); return function intersectLine( line, optionalTarget ) { var result = optionalTarget || new Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return result.copy( direction ).multiplyScalar( t ).add( line.start ); }; }(), intersectsLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }, intersectsBox: function ( box ) { return box.intersectsPlane( this ); }, intersectsSphere: function ( sphere ) { return sphere.intersectsPlane( this ); }, coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); }, applyMatrix4: function () { var v1 = new Vector3(); var m1 = new Matrix3(); return function applyMatrix4( matrix, optionalNormalMatrix ) { var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix ); // transform normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var normal = this.normal.applyMatrix3( normalMatrix ).normalize(); // recalculate constant (like in setFromNormalAndCoplanarPoint) this.constant = - referencePoint.dot( normal ); return this; }; }(), translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; }, equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */ function Frustum( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new Plane(), ( p1 !== undefined ) ? p1 : new Plane(), ( p2 !== undefined ) ? p2 : new Plane(), ( p3 !== undefined ) ? p3 : new Plane(), ( p4 !== undefined ) ? p4 : new Plane(), ( p5 !== undefined ) ? p5 : new Plane() ]; } Frustum.prototype = { constructor: Frustum, set: function ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }, setFromMatrix: function ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }, intersectsObject: function () { var sphere = new Sphere(); return function intersectsObject( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ) .applyMatrix4( object.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSprite: function () { var sphere = new Sphere(); return function intersectsSprite( sprite ) { sphere.center.set( 0, 0, 0 ); sphere.radius = 0.7071067811865476; sphere.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSphere: function ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }, intersectsBox: function () { var p1 = new Vector3(), p2 = new Vector3(); return function intersectsBox( box ) { var planes = this.planes; for ( var i = 0; i < 6 ; i ++ ) { var plane = planes[ i ]; p1.x = plane.normal.x > 0 ? box.min.x : box.max.x; p2.x = plane.normal.x > 0 ? box.max.x : box.min.x; p1.y = plane.normal.y > 0 ? box.min.y : box.max.y; p2.y = plane.normal.y > 0 ? box.max.y : box.min.y; p1.z = plane.normal.z > 0 ? box.min.z : box.max.z; p2.z = plane.normal.z > 0 ? box.max.z : box.min.z; var d1 = plane.distanceToPoint( p1 ); var d2 = plane.distanceToPoint( p2 ); // if both outside plane, no intersection if ( d1 < 0 && d2 < 0 ) { return false; } } return true; }; }(), containsPoint: function ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function WebGLShadowMap( _renderer, _lights, _objects, capabilities ) { var _gl = _renderer.context, _state = _renderer.state, _frustum = new Frustum(), _projScreenMatrix = new Matrix4(), _lightShadows = _lights.shadows, _shadowMapSize = new Vector2(), _maxShadowMapSize = new Vector2( capabilities.maxTextureSize, capabilities.maxTextureSize ), _lookTarget = new Vector3(), _lightPositionWorld = new Vector3(), _renderList = [], _MorphingFlag = 1, _SkinningFlag = 2, _NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1, _depthMaterials = new Array( _NumberOfMaterialVariants ), _distanceMaterials = new Array( _NumberOfMaterialVariants ), _materialCache = {}; var cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ]; var cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ]; var cube2DViewPorts = [ new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4() ]; // init var depthMaterialTemplate = new MeshDepthMaterial(); depthMaterialTemplate.depthPacking = RGBADepthPacking; depthMaterialTemplate.clipping = true; var distanceShader = ShaderLib[ "distanceRGBA" ]; var distanceUniforms = UniformsUtils.clone( distanceShader.uniforms ); for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) { var useMorphing = ( i & _MorphingFlag ) !== 0; var useSkinning = ( i & _SkinningFlag ) !== 0; var depthMaterial = depthMaterialTemplate.clone(); depthMaterial.morphTargets = useMorphing; depthMaterial.skinning = useSkinning; _depthMaterials[ i ] = depthMaterial; var distanceMaterial = new ShaderMaterial( { defines: { 'USE_SHADOWMAP': '' }, uniforms: distanceUniforms, vertexShader: distanceShader.vertexShader, fragmentShader: distanceShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning, clipping: true } ); _distanceMaterials[ i ] = distanceMaterial; } // var scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.renderReverseSided = true; this.renderSingleSided = true; this.render = function ( scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( _lightShadows.length === 0 ) return; // Set GL state for depth map. _state.clearColor( 1, 1, 1, 1 ); _state.disable( _gl.BLEND ); _state.setDepthTest( true ); _state.setScissorTest( false ); // render depth map var faceCount, isPointLight; for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) { var light = _lightShadows[ i ]; var shadow = light.shadow; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } var shadowCamera = shadow.camera; _shadowMapSize.copy( shadow.mapSize ); _shadowMapSize.min( _maxShadowMapSize ); if ( (light && light.isPointLight) ) { faceCount = 6; isPointLight = true; var vpWidth = _shadowMapSize.x; var vpHeight = _shadowMapSize.y; // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight ); // negative X cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight ); // positive Z cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight ); // negative Z cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight ); // positive Y cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight ); // negative Y cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight ); _shadowMapSize.x *= 4.0; _shadowMapSize.y *= 2.0; } else { faceCount = 1; isPointLight = false; } if ( shadow.map === null ) { var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadowCamera.updateProjectionMatrix(); } if ( (shadow && shadow.isSpotLightShadow) ) { shadow.update( light ); } var shadowMap = shadow.map; var shadowMatrix = shadow.matrix; _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld ); _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // render shadow map for each cube face (if omni-directional) or // run a single pass if not for ( var face = 0; face < faceCount; face ++ ) { if ( isPointLight ) { _lookTarget.copy( shadowCamera.position ); _lookTarget.add( cubeDirections[ face ] ); shadowCamera.up.copy( cubeUps[ face ] ); shadowCamera.lookAt( _lookTarget ); var vpDimensions = cube2DViewPorts[ face ]; _state.viewport( vpDimensions ); } else { _lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget ); } shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // set object matrices & frustum culling _renderList.length = 0; projectObject( scene, camera, shadowCamera ); // render shadow map // render regular objects for ( var j = 0, jl = _renderList.length; j < jl; j ++ ) { var object = _renderList[ j ]; var geometry = _objects.update( object ); var material = object.material; if ( (material && material.isMultiMaterial) ) { var groups = geometry.groups; var materials = material.materials; for ( var k = 0, kl = groups.length; k < kl; k ++ ) { var group = groups[ k ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else { var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } } // Restore GL state. var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _renderer.setClearColor( clearColor, clearAlpha ); scope.needsUpdate = false; }; function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) { var geometry = object.geometry; var result = null; var materialVariants = _depthMaterials; var customMaterial = object.customDepthMaterial; if ( isPointLight ) { materialVariants = _distanceMaterials; customMaterial = object.customDistanceMaterial; } if ( ! customMaterial ) { var useMorphing = false; if ( material.morphTargets ) { if ( (geometry && geometry.isBufferGeometry) ) { useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0; } else if ( (geometry && geometry.isGeometry) ) { useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0; } } var useSkinning = object.isSkinnedMesh && material.skinning; var variantIndex = 0; if ( useMorphing ) variantIndex |= _MorphingFlag; if ( useSkinning ) variantIndex |= _SkinningFlag; result = materialVariants[ variantIndex ]; } else { result = customMaterial; } if ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) { // in this case we need a unique material instance reflecting the // appropriate state var keyA = result.uuid, keyB = material.uuid; var materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } var cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; var side = material.side; if ( scope.renderSingleSided && side == DoubleSide ) { side = FrontSide; } if ( scope.renderReverseSided ) { if ( side === FrontSide ) side = BackSide; else if ( side === BackSide ) side = FrontSide; } result.side = side; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( isPointLight && result.uniforms.lightPos !== undefined ) { result.uniforms.lightPos.value.copy( lightPositionWorld ); } return result; } function projectObject( object, camera, shadowCamera ) { if ( object.visible === false ) return; var visible = ( object.layers.mask & camera.layers.mask ) !== 0; if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( object.castShadow && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) { var material = object.material; if ( material.visible === true ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderList.push( object ); } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, shadowCamera ); } } } /** * @author bhouston / http://clara.io */ function Ray( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new Vector3(); this.direction = ( direction !== undefined ) ? direction : new Vector3(); } Ray.prototype = { constructor: Ray, set: function ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }, at: function ( t, optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }, lookAt: function ( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; }, recast: function () { var v1 = new Vector3(); return function recast( t ) { this.origin.copy( this.at( t, v1 ) ); return this; }; }(), closestPointToPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector3(); result.subVectors( point, this.origin ); var directionDistance = result.dot( this.direction ); if ( directionDistance < 0 ) { return result.copy( this.origin ); } return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }, distanceToPoint: function ( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); }, distanceSqToPoint: function () { var v1 = new Vector3(); return function distanceSqToPoint( point ) { var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return v1.distanceToSquared( point ); }; }(), distanceSqToSegment: function () { var segCenter = new Vector3(); var segDir = new Vector3(); var diff = new Vector3(); return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); segDir.copy( v1 ).sub( v0 ).normalize(); diff.copy( this.origin ).sub( segCenter ); var segExtent = v0.distanceTo( v1 ) * 0.5; var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter ); } return sqrDist; }; }(), intersectSphere: function () { var v1 = new Vector3(); return function intersectSphere( sphere, optionalTarget ) { v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, optionalTarget ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, optionalTarget ); }; }(), intersectsSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, distanceToPlane: function ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }, intersectPlane: function ( plane, optionalTarget ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, optionalTarget ); }, intersectsPlane: function ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }, intersectBox: function ( box, optionalTarget ) { var tmin, tmax, tymin, tymax, tzmin, tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, optionalTarget ); }, intersectsBox: ( function () { var v = new Vector3(); return function intersectsBox( box ) { return this.intersectBox( box, v ) !== null; }; } )(), intersectTriangle: function () { // Compute the offset origin, edges, and normal. var diff = new Vector3(); var edge1 = new Vector3(); var edge2 = new Vector3(); var normal = new Vector3(); return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, optionalTarget ); }; }(), applyMatrix4: function ( matrix4 ) { this.direction.add( this.origin ).applyMatrix4( matrix4 ); this.origin.applyMatrix4( matrix4 ); this.direction.sub( this.origin ); this.direction.normalize(); return this; }, equals: function ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } }; /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Euler( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || Euler.DefaultOrder; } Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; Euler.DefaultOrder = 'XYZ'; Euler.prototype = { constructor: Euler, isEuler: true, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get order () { return this._order; }, set order ( value ) { this._order = value; this.onChangeCallback(); }, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._order ); }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order, update ) { var clamp = _Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ); } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, setFromQuaternion: function () { var matrix; return function setFromQuaternion( q, order, update ) { if ( matrix === undefined ) matrix = new Matrix4(); matrix.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( matrix, order, update ); }; }(), setFromVector3: function ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new Quaternion(); return function reorder( newOrder ) { q.setFromEuler( this ); return this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; }, toVector3: function ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new Vector3( this._x, this._y, this._z ); } }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; /** * @author mrdoob / http://mrdoob.com/ */ function Layers() { this.mask = 1; } Layers.prototype = { constructor: Layers, set: function ( channel ) { this.mask = 1 << channel; }, enable: function ( channel ) { this.mask |= 1 << channel; }, toggle: function ( channel ) { this.mask ^= 1 << channel; }, disable: function ( channel ) { this.mask &= ~ ( 1 << channel ); }, test: function ( layers ) { return ( this.mask & layers.mask ) !== 0; } }; /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */ function Object3D() { Object.defineProperty( this, 'id', { value: Object3DIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); var position = new Vector3(); var rotation = new Euler(); var quaternion = new Quaternion(); var scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation.onChange( onRotationChange ); quaternion.onChange( onQuaternionChange ); Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.userData = {}; this.onBeforeRender = function(){}; this.onAfterRender = function(){}; } Object3D.DefaultUp = new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true; Object.assign( Object3D.prototype, EventDispatcher.prototype, { isObject3D: true, applyMatrix: function ( matrix ) { this.matrix.multiplyMatrices( matrix, this.matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new Quaternion(); return function rotateOnAxis( axis, angle ) { q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( q1 ); return this; }; }(), rotateX: function () { var v1 = new Vector3( 1, 0, 0 ); return function rotateX( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateY: function () { var v1 = new Vector3( 0, 1, 0 ); return function rotateY( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateZ: function () { var v1 = new Vector3( 0, 0, 1 ); return function rotateZ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), translateOnAxis: function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new Vector3(); return function translateOnAxis( axis, distance ) { v1.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( v1.multiplyScalar( distance ) ); return this; }; }(), translateX: function () { var v1 = new Vector3( 1, 0, 0 ); return function translateX( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateY: function () { var v1 = new Vector3( 0, 1, 0 ); return function translateY( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateZ: function () { var v1 = new Vector3( 0, 0, 1 ); return function translateZ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function () { var m1 = new Matrix4(); return function worldToLocal( vector ) { return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) ); }; }(), lookAt: function () { // This routine does not support objects with rotated and/or translated parent(s) var m1 = new Matrix4(); return function lookAt( vector ) { m1.lookAt( vector, this.position, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(), add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this; } if ( (object && object.isObject3D) ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; object.dispatchEvent( { type: 'added' } ); this.children.push( object ); } else { console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } } var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; object.dispatchEvent( { type: 'removed' } ); this.children.splice( index, 1 ); } }, getObjectById: function ( id ) { return this.getObjectByProperty( 'id', id ); }, getObjectByName: function ( name ) { return this.getObjectByProperty( 'name', name ); }, getObjectByProperty: function ( name, value ) { if ( this[ name ] === value ) return this; for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; var object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; }, getWorldPosition: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); this.updateMatrixWorld( true ); return result.setFromMatrixPosition( this.matrixWorld ); }, getWorldQuaternion: function () { var position = new Vector3(); var scale = new Vector3(); return function getWorldQuaternion( optionalTarget ) { var result = optionalTarget || new Quaternion(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, result, scale ); return result; }; }(), getWorldRotation: function () { var quaternion = new Quaternion(); return function getWorldRotation( optionalTarget ) { var result = optionalTarget || new Euler(); this.getWorldQuaternion( quaternion ); return result.setFromQuaternion( quaternion, this.rotation.order, false ); }; }(), getWorldScale: function () { var position = new Vector3(); var quaternion = new Quaternion(); return function getWorldScale( optionalTarget ) { var result = optionalTarget || new Vector3(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, quaternion, result ); return result; }; }(), getWorldDirection: function () { var quaternion = new Quaternion(); return function getWorldDirection( optionalTarget ) { var result = optionalTarget || new Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, 1 ).applyQuaternion( quaternion ); }; }(), raycast: function () {}, traverse: function ( callback ) { callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) return; callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } }, traverseAncestors: function ( callback ) { var parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate === true ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate === true || force === true ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( force ); } }, toJSON: function ( meta ) { // meta is '' when called from JSON.stringify var isRootObject = ( meta === undefined || meta === '' ); var output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {} }; output.metadata = { version: 4.4, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization var object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; object.matrix = this.matrix.toArray(); // if ( this.geometry !== undefined ) { if ( meta.geometries[ this.geometry.uuid ] === undefined ) { meta.geometries[ this.geometry.uuid ] = this.geometry.toJSON( meta ); } object.geometry = this.geometry.uuid; } if ( this.material !== undefined ) { if ( meta.materials[ this.material.uuid ] === undefined ) { meta.materials[ this.material.uuid ] = this.material.toJSON( meta ); } object.material = this.material.uuid; } // if ( this.children.length > 0 ) { object.children = []; for ( var i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } if ( isRootObject ) { var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } }, clone: function ( recursive ) { return new this.constructor().copy( this, recursive ); }, copy: function ( source, recursive ) { if ( recursive === undefined ) recursive = true; this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( var i = 0; i < source.children.length; i ++ ) { var child = source.children[ i ]; this.add( child.clone() ); } } return this; } } ); var count$2 = 0; function Object3DIdCount() { return count$2++; } /** * @author bhouston / http://clara.io */ function Line3( start, end ) { this.start = ( start !== undefined ) ? start : new Vector3(); this.end = ( end !== undefined ) ? end : new Vector3(); } Line3.prototype = { constructor: Line3, set: function ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }, delta: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.subVectors( this.end, this.start ); }, distanceSq: function () { return this.start.distanceToSquared( this.end ); }, distance: function () { return this.start.distanceTo( this.end ); }, at: function ( t, optionalTarget ) { var result = optionalTarget || new Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, closestPointToPointParameter: function () { var startP = new Vector3(); var startEnd = new Vector3(); return function closestPointToPointParameter( point, clampToLine ) { startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start ); var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = _Math.clamp( t, 0, 1 ); } return t; }; }(), closestPointToPoint: function ( point, clampToLine, optionalTarget ) { var t = this.closestPointToPointParameter( point, clampToLine ); var result = optionalTarget || new Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, applyMatrix4: function ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }, equals: function ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } }; /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Triangle( a, b, c ) { this.a = ( a !== undefined ) ? a : new Vector3(); this.b = ( b !== undefined ) ? b : new Vector3(); this.c = ( c !== undefined ) ? c : new Vector3(); } Triangle.normal = function () { var v0 = new Vector3(); return function normal( a, b, c, optionalTarget ) { var result = optionalTarget || new Vector3(); result.subVectors( c, b ); v0.subVectors( a, b ); result.cross( v0 ); var resultLengthSq = result.lengthSq(); if ( resultLengthSq > 0 ) { return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) ); } return result.set( 0, 0, 0 ); }; }(); // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html Triangle.barycoordFromPoint = function () { var v0 = new Vector3(); var v1 = new Vector3(); var v2 = new Vector3(); return function barycoordFromPoint( point, a, b, c, optionalTarget ) { v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a ); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); var result = optionalTarget || new Vector3(); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return result.set( 1 - u - v, v, u ); }; }(); Triangle.containsPoint = function () { var v1 = new Vector3(); return function containsPoint( point, a, b, c ) { var result = Triangle.barycoordFromPoint( point, a, b, c, v1 ); return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 ); }; }(); Triangle.prototype = { constructor: Triangle, set: function ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }, setFromPointsAndIndices: function ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }, area: function () { var v0 = new Vector3(); var v1 = new Vector3(); return function area() { v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b ); return v0.cross( v1 ).length() * 0.5; }; }(), midpoint: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }, normal: function ( optionalTarget ) { return Triangle.normal( this.a, this.b, this.c, optionalTarget ); }, plane: function ( optionalTarget ) { var result = optionalTarget || new Plane(); return result.setFromCoplanarPoints( this.a, this.b, this.c ); }, barycoordFromPoint: function ( point, optionalTarget ) { return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget ); }, containsPoint: function ( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); }, closestPointToPoint: function () { var plane, edgeList, projectedPoint, closestPoint; return function closestPointToPoint( point, optionalTarget ) { if ( plane === undefined ) { plane = new Plane(); edgeList = [ new Line3(), new Line3(), new Line3() ]; projectedPoint = new Vector3(); closestPoint = new Vector3(); } var result = optionalTarget || new Vector3(); var minDistance = Infinity; // project the point onto the plane of the triangle plane.setFromCoplanarPoints( this.a, this.b, this.c ); plane.projectPoint( point, projectedPoint ); // check if the projection lies within the triangle if( this.containsPoint( projectedPoint ) === true ) { // if so, this is the closest point result.copy( projectedPoint ); } else { // if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices edgeList[ 0 ].set( this.a, this.b ); edgeList[ 1 ].set( this.b, this.c ); edgeList[ 2 ].set( this.c, this.a ); for( var i = 0; i < edgeList.length; i ++ ) { edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint ); var distance = projectedPoint.distanceToSquared( closestPoint ); if( distance < minDistance ) { minDistance = distance; result.copy( closestPoint ); } } } return result; }; }(), equals: function ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Face3( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = (normal && normal.isVector3) ? normal : new Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : []; this.color = (color && color.isColor) ? color : new Color(); this.vertexColors = Array.isArray( color ) ? color : []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; } Face3.prototype = { constructor: Face3, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.a = source.a; this.b = source.b; this.c = source.c; this.normal.copy( source.normal ); this.color.copy( source.color ); this.materialIndex = source.materialIndex; for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); } for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) { this.vertexColors[ i ] = source.vertexColors[ i ].clone(); } return this; } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: * } */ function MeshBasicMaterial( parameters ) { Material.call( this ); this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.lights = false; this.setValues( parameters ); } MeshBasicMaterial.prototype = Object.create( Material.prototype ); MeshBasicMaterial.prototype.constructor = MeshBasicMaterial; MeshBasicMaterial.prototype.isMeshBasicMaterial = true; MeshBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; return this; }; /** * @author mrdoob / http://mrdoob.com/ */ function BufferAttribute( array, itemSize, normalized ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.uuid = _Math.generateUUID(); this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; } BufferAttribute.prototype = { constructor: BufferAttribute, isBufferAttribute: true, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setArray: function ( array ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.count = array !== undefined ? array.length / this.itemSize : 0; this.array = array; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( var i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, copyArray: function ( array ) { this.array.set( array ); return this; }, copyColorsArray: function ( colors ) { var array = this.array, offset = 0; for ( var i = 0, l = colors.length; i < l; i ++ ) { var color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; }, copyIndicesArray: function ( indices ) { var array = this.array, offset = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { var index = indices[ i ]; array[ offset ++ ] = index.a; array[ offset ++ ] = index.b; array[ offset ++ ] = index.c; } return this; }, copyVector2sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; }, copyVector3sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; }, copyVector4sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, getX: function ( index ) { return this.array[ index * this.itemSize ]; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, getY: function ( index ) { return this.array[ index * this.itemSize + 1 ]; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, getZ: function ( index ) { return this.array[ index * this.itemSize + 2 ]; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, getW: function ( index ) { return this.array[ index * this.itemSize + 3 ]; }, setW: function ( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; }, clone: function () { return new this.constructor().copy( this ); } }; // function Int8Attribute( array, itemSize ) { return new BufferAttribute( new Int8Array( array ), itemSize ); } function Uint8Attribute( array, itemSize ) { return new BufferAttribute( new Uint8Array( array ), itemSize ); } function Uint8ClampedAttribute( array, itemSize ) { return new BufferAttribute( new Uint8ClampedArray( array ), itemSize ); } function Int16Attribute( array, itemSize ) { return new BufferAttribute( new Int16Array( array ), itemSize ); } function Uint16Attribute( array, itemSize ) { return new BufferAttribute( new Uint16Array( array ), itemSize ); } function Int32Attribute( array, itemSize ) { return new BufferAttribute( new Int32Array( array ), itemSize ); } function Uint32Attribute( array, itemSize ) { return new BufferAttribute( new Uint32Array( array ), itemSize ); } function Float32Attribute( array, itemSize ) { return new BufferAttribute( new Float32Array( array ), itemSize ); } function Float64Attribute( array, itemSize ) { return new BufferAttribute( new Float64Array( array ), itemSize ); } // Deprecated function DynamicBufferAttribute( array, itemSize ) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' ); return new BufferAttribute( array, itemSize ).setDynamic( true ); } /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */ function Geometry() { Object.defineProperty( this, 'id', { value: GeometryIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Geometry'; this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [ [] ]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.elementsNeedUpdate = false; this.verticesNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false; } Object.assign( Geometry.prototype, EventDispatcher.prototype, { isGeometry: true, applyMatrix: function ( matrix ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } this.verticesNeedUpdate = true; this.normalsNeedUpdate = true; return this; }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), fromBufferGeometry: function ( geometry ) { var scope = this; var indices = geometry.index !== null ? geometry.index.array : undefined; var attributes = geometry.attributes; var positions = attributes.position.array; var normals = attributes.normal !== undefined ? attributes.normal.array : undefined; var colors = attributes.color !== undefined ? attributes.color.array : undefined; var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined; var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined; if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = []; var tempNormals = []; var tempUVs = []; var tempUVs2 = []; for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) { scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) ); if ( normals !== undefined ) { tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) ); } if ( colors !== undefined ) { scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) ); } if ( uvs !== undefined ) { tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) ); } if ( uvs2 !== undefined ) { tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) ); } } function addFace( a, b, c, materialIndex ) { var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : []; var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : []; var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex ); scope.faces.push( face ); if ( uvs !== undefined ) { scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] ); } if ( uvs2 !== undefined ) { scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] ); } } if ( indices !== undefined ) { var groups = geometry.groups; if ( groups.length > 0 ) { for ( var i = 0; i < groups.length; i ++ ) { var group = groups[ i ]; var start = group.start; var count = group.count; for ( var j = start, jl = start + count; j < jl; j += 3 ) { addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex ); } } } else { for ( var i = 0; i < indices.length; i += 3 ) { addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] ); } } } else { for ( var i = 0; i < positions.length / 3; i += 3 ) { addFace( i, i + 1, i + 2 ); } } this.computeFaceNormals(); if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } return this; }, center: function () { this.computeBoundingBox(); var offset = this.boundingBox.getCenter().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, normalize: function () { this.computeBoundingSphere(); var center = this.boundingSphere.center; var radius = this.boundingSphere.radius; var s = radius === 0 ? 1 : 1.0 / radius; var matrix = new Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 ); this.applyMatrix( matrix ); return this; }, computeFaceNormals: function () { var cb = new Vector3(), ab = new Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { if ( areaWeighted === undefined ) areaWeighted = true; var v, vl, f, fl, face, vertices; vertices = new Array( this.vertices.length ); for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC; var cb = new Vector3(), ab = new Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { this.computeFaceNormals(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( vertices[ face.a ] ); vertexNormals[ 1 ].copy( vertices[ face.b ] ); vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else { vertexNormals[ 0 ] = vertices[ face.a ].clone(); vertexNormals[ 1 ] = vertices[ face.b ].clone(); vertexNormals[ 2 ] = vertices[ face.c ].clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeFlatVertexNormals: function () { var f, fl, face; this.computeFaceNormals(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( face.normal ); vertexNormals[ 1 ].copy( face.normal ); vertexNormals[ 2 ].copy( face.normal ); } else { vertexNormals[ 0 ] = face.normal.clone(); vertexNormals[ 1 ] = face.normal.clone(); vertexNormals[ 2 ] = face.normal.clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { faceNormal = new Vector3(); vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { console.warn( 'THREE.Geometry: .computeTangents() has been removed.' ); }, computeLineDistances: function () { var d = 0; var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { if ( i > 0 ) { d += vertices[ i ].distanceTo( vertices[ i - 1 ] ); } this.lineDistances[ i ] = d; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( (geometry && geometry.isGeometry) === false ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ], colors1 = this.colors, colors2 = geometry.colors; if ( materialIndexOffset === undefined ) materialIndexOffset = 0; if ( matrix !== undefined ) { normalMatrix = new Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix ); vertices1.push( vertexCopy ); } // colors for ( var i = 0, il = colors2.length; i < il; i ++ ) { colors1.push( colors2[ i ].clone() ); } // faces for ( i = 0, il = faces2.length; i < il; i ++ ) { var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) { color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( i = 0, il = uvs2.length; i < il; i ++ ) { var uv = uvs2[ i ], uvCopy = []; if ( uv === undefined ) { continue; } for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( uv[ j ].clone() ); } uvs1.push( uvCopy ); } }, mergeMesh: function ( mesh ) { if ( (mesh && mesh.isMesh) === false ) { console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return; } mesh.matrixAutoUpdate && mesh.updateMatrix(); this.merge( mesh.geometry, mesh.matrix ); }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i, il, face; var indices, j, jl; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; indices = [ face.a, face.b, face.c ]; var dupIndex = - 1; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { dupIndex = n; faceIndicesToRemove.push( i ); break; } } } for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) { var idx = faceIndicesToRemove[ i ]; this.faces.splice( idx, 1 ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, sortFacesByMaterialIndex: function () { var faces = this.faces; var length = faces.length; // tag faces for ( var i = 0; i < length; i ++ ) { faces[ i ]._id = i; } // sort faces function materialIndexSort( a, b ) { return a.materialIndex - b.materialIndex; } faces.sort( materialIndexSort ); // sort uvs var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ]; var newUvs1, newUvs2; if ( uvs1 && uvs1.length === length ) newUvs1 = []; if ( uvs2 && uvs2.length === length ) newUvs2 = []; for ( var i = 0; i < length; i ++ ) { var id = faces[ i ]._id; if ( newUvs1 ) newUvs1.push( uvs1[ id ] ); if ( newUvs2 ) newUvs2.push( uvs2[ id ] ); } if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1; if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'Geometry', generator: 'Geometry.toJSON' } }; // standard Geometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } var vertices = []; for ( var i = 0; i < this.vertices.length; i ++ ) { var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z ); } var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {}; for ( var i = 0; i < this.faces.length; i ++ ) { var face = this.faces[ i ]; var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0; var faceType = 0; faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor ); faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex ); if ( hasFaceVertexUv ) { var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ]; faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) ); } if ( hasFaceNormal ) { faces.push( getNormalIndex( face.normal ) ); } if ( hasFaceVertexNormal ) { var vertexNormals = face.vertexNormals; faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) ); } if ( hasFaceColor ) { faces.push( getColorIndex( face.color ) ); } if ( hasFaceVertexColor ) { var vertexColors = face.vertexColors; faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) ); } } function setBit( value, position, enabled ) { return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); } function getNormalIndex( normal ) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); if ( normalsHash[ hash ] !== undefined ) { return normalsHash[ hash ]; } normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z ); return normalsHash[ hash ]; } function getColorIndex( color ) { var hash = color.r.toString() + color.g.toString() + color.b.toString(); if ( colorsHash[ hash ] !== undefined ) { return colorsHash[ hash ]; } colorsHash[ hash ] = colors.length; colors.push( color.getHex() ); return colorsHash[ hash ]; } function getUvIndex( uv ) { var hash = uv.x.toString() + uv.y.toString(); if ( uvsHash[ hash ] !== undefined ) { return uvsHash[ hash ]; } uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y ); return uvsHash[ hash ]; } data.data = {}; data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) data.data.colors = colors; if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility data.data.faces = faces; return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new Geometry().copy( this ); }, copy: function ( source ) { this.vertices = []; this.faces = []; this.faceVertexUvs = [ [] ]; this.colors = []; var vertices = source.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { this.vertices.push( vertices[ i ].clone() ); } var colors = source.colors; for ( var i = 0, il = colors.length; i < il; i ++ ) { this.colors.push( colors[ i ].clone() ); } var faces = source.faces; for ( var i = 0, il = faces.length; i < il; i ++ ) { this.faces.push( faces[ i ].clone() ); } for ( var i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) { var faceVertexUvs = source.faceVertexUvs[ i ]; if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; } for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { var uvs = faceVertexUvs[ j ], uvsCopy = []; for ( var k = 0, kl = uvs.length; k < kl; k ++ ) { var uv = uvs[ k ]; uvsCopy.push( uv.clone() ); } this.faceVertexUvs[ i ].push( uvsCopy ); } } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); var count$3 = 0; function GeometryIdCount() { return count$3++; } /** * @author mrdoob / http://mrdoob.com/ */ function DirectGeometry() { Object.defineProperty( this, 'id', { value: GeometryIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'DirectGeometry'; this.indices = []; this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = []; this.groups = []; this.morphTargets = {}; this.skinWeights = []; this.skinIndices = []; // this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false; } Object.assign( DirectGeometry.prototype, EventDispatcher.prototype, { computeBoundingBox: Geometry.prototype.computeBoundingBox, computeBoundingSphere: Geometry.prototype.computeBoundingSphere, computeFaceNormals: function () { console.warn( 'THREE.DirectGeometry: computeFaceNormals() is not a method of this type of geometry.' ); }, computeVertexNormals: function () { console.warn( 'THREE.DirectGeometry: computeVertexNormals() is not a method of this type of geometry.' ); }, computeGroups: function ( geometry ) { var group; var groups = []; var materialIndex; var faces = geometry.faces; for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; // materials if ( face.materialIndex !== materialIndex ) { materialIndex = face.materialIndex; if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } group = { start: i * 3, materialIndex: materialIndex }; } } if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } this.groups = groups; }, fromGeometry: function ( geometry ) { var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length; var morphTargetsPosition; if ( morphTargetsLength > 0 ) { morphTargetsPosition = []; for ( var i = 0; i < morphTargetsLength; i ++ ) { morphTargetsPosition[ i ] = []; } this.morphTargets.position = morphTargetsPosition; } var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length; var morphTargetsNormal; if ( morphNormalsLength > 0 ) { morphTargetsNormal = []; for ( var i = 0; i < morphNormalsLength; i ++ ) { morphTargetsNormal[ i ] = []; } this.morphTargets.normal = morphTargetsNormal; } // skins var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights; var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length; // for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); } else { var normal = face.normal; this.normals.push( normal, normal, normal ); } var vertexColors = face.vertexColors; if ( vertexColors.length === 3 ) { this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); } else { var color = face.color; this.colors.push( color, color, color ); } if ( hasFaceVertexUv === true ) { var vertexUvs = faceVertexUvs[ 0 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i ); this.uvs.push( new Vector2(), new Vector2(), new Vector2() ); } } if ( hasFaceVertexUv2 === true ) { var vertexUvs = faceVertexUvs[ 1 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i ); this.uvs2.push( new Vector2(), new Vector2(), new Vector2() ); } } // morphs for ( var j = 0; j < morphTargetsLength; j ++ ) { var morphTarget = morphTargets[ j ].vertices; morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); } for ( var j = 0; j < morphNormalsLength; j ++ ) { var morphNormal = morphNormals[ j ].vertexNormals[ i ]; morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c ); } // skins if ( hasSkinIndices ) { this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); } if ( hasSkinWeights ) { this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); } } this.computeGroups( geometry ); this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function BufferGeometry() { Object.defineProperty( this, 'id', { value: GeometryIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; } Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, { isBufferGeometry: true, getIndex: function () { return this.index; }, setIndex: function ( index ) { this.index = index; }, addAttribute: function ( name, attribute ) { if ( (attribute && attribute.isBufferAttribute) === false && (attribute && attribute.isInterleavedBufferAttribute) === false ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); return; } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return; } this.attributes[ name ] = attribute; return this; }, getAttribute: function ( name ) { return this.attributes[ name ]; }, removeAttribute: function ( name ) { delete this.attributes[ name ]; return this; }, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 } ); }, clearGroups: function () { this.groups = []; }, setDrawRange: function ( start, count ) { this.drawRange.start = start; this.drawRange.count = count; }, applyMatrix: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { matrix.applyToVector3Array( position.array ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); normalMatrix.applyToVector3Array( normal.array ); normal.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), center: function () { this.computeBoundingBox(); var offset = this.boundingBox.getCenter().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, setFromObject: function ( object ) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry; if ( (object && object.isPoints) || (object && object.isLine) ) { var positions = new Float32Attribute( geometry.vertices.length * 3, 3 ); var colors = new Float32Attribute( geometry.colors.length * 3, 3 ); this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { var lineDistances = new Float32Attribute( geometry.lineDistances.length, 1 ); this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } } else if ( (object && object.isMesh) ) { if ( (geometry && geometry.isGeometry) ) { this.fromGeometry( geometry ); } } return this; }, updateFromObject: function ( object ) { var geometry = object.geometry; if ( (object && object.isMesh) ) { var direct = geometry.__directGeometry; if ( geometry.elementsNeedUpdate === true ) { direct = undefined; geometry.elementsNeedUpdate = false; } if ( direct === undefined ) { return this.fromGeometry( geometry ); } direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate; geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false; geometry = direct; } var attribute; if ( geometry.verticesNeedUpdate === true ) { attribute = this.attributes.position; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true; } geometry.verticesNeedUpdate = false; } if ( geometry.normalsNeedUpdate === true ) { attribute = this.attributes.normal; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.normals ); attribute.needsUpdate = true; } geometry.normalsNeedUpdate = false; } if ( geometry.colorsNeedUpdate === true ) { attribute = this.attributes.color; if ( attribute !== undefined ) { attribute.copyColorsArray( geometry.colors ); attribute.needsUpdate = true; } geometry.colorsNeedUpdate = false; } if ( geometry.uvsNeedUpdate ) { attribute = this.attributes.uv; if ( attribute !== undefined ) { attribute.copyVector2sArray( geometry.uvs ); attribute.needsUpdate = true; } geometry.uvsNeedUpdate = false; } if ( geometry.lineDistancesNeedUpdate ) { attribute = this.attributes.lineDistance; if ( attribute !== undefined ) { attribute.copyArray( geometry.lineDistances ); attribute.needsUpdate = true; } geometry.lineDistancesNeedUpdate = false; } if ( geometry.groupsNeedUpdate ) { geometry.computeGroups( object.geometry ); this.groups = geometry.groups; geometry.groupsNeedUpdate = false; } return this; }, fromGeometry: function ( geometry ) { geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry ); return this.fromDirectGeometry( geometry.__directGeometry ); }, fromDirectGeometry: function ( geometry ) { var positions = new Float32Array( geometry.vertices.length * 3 ); this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); } if ( geometry.indices.length > 0 ) { var TypeArray = geometry.vertices.length > 65535 ? Uint32Array : Uint16Array; var indices = new TypeArray( geometry.indices.length * 3 ); this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) ); } // groups this.groups = geometry.groups; // morphs for ( var name in geometry.morphTargets ) { var array = []; var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; var attribute = new Float32Attribute( morphTarget.length * 3, 3 ); array.push( attribute.copyVector3sArray( morphTarget ) ); } this.morphAttributes[ name ] = array; } // skinning if ( geometry.skinIndices.length > 0 ) { var skinIndices = new Float32Attribute( geometry.skinIndices.length * 4, 4 ); this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); } if ( geometry.skinWeights.length > 0 ) { var skinWeights = new Float32Attribute( geometry.skinWeights.length * 4, 4 ); this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); } // if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } var positions = this.attributes.position.array; if ( positions !== undefined ) { this.boundingBox.setFromArray( positions ); } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } }, computeBoundingSphere: function () { var box = new Box3(); var vector = new Vector3(); return function computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } var positions = this.attributes.position; if ( positions ) { var array = positions.array; var center = this.boundingSphere.center; box.setFromArray( array ); box.getCenter( center ); // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i = 0, il = array.length; i < il; i += 3 ) { vector.fromArray( array, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) ); } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } }; }(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index; var attributes = this.attributes; var groups = this.groups; if ( attributes.position ) { var positions = attributes.position.array; if ( attributes.normal === undefined ) { this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) ); } else { // reset existing normals to zero var array = attributes.normal.array; for ( var i = 0, il = array.length; i < il; i ++ ) { array[ i ] = 0; } } var normals = attributes.normal.array; var vA, vB, vC, pA = new Vector3(), pB = new Vector3(), pC = new Vector3(), cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { var indices = index.array; if ( groups.length === 0 ) { this.addGroup( 0, indices.length ); } for ( var j = 0, jl = groups.length; j < jl; ++ j ) { var group = groups[ j ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { vA = indices[ i + 0 ] * 3; vB = indices[ i + 1 ] * 3; vC = indices[ i + 2 ] * 3; pA.fromArray( positions, vA ); pB.fromArray( positions, vB ); pC.fromArray( positions, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ vA ] += cb.x; normals[ vA + 1 ] += cb.y; normals[ vA + 2 ] += cb.z; normals[ vB ] += cb.x; normals[ vB + 1 ] += cb.y; normals[ vB + 2 ] += cb.z; normals[ vC ] += cb.x; normals[ vC + 1 ] += cb.y; normals[ vC + 2 ] += cb.z; } } } else { // non-indexed elements (unconnected triangle soup) for ( var i = 0, il = positions.length; i < il; i += 9 ) { pA.fromArray( positions, i ); pB.fromArray( positions, i + 3 ); pC.fromArray( positions, i + 6 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z; normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z; normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z; } } this.normalizeNormals(); attributes.normal.needsUpdate = true; } }, merge: function ( geometry, offset ) { if ( (geometry && geometry.isBufferGeometry) === false ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) offset = 0; var attributes = this.attributes; for ( var key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array; var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array; var attributeSize = attribute2.itemSize; for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; }, normalizeNormals: function () { var normals = this.attributes.normal.array; var x, y, z, n; for ( var i = 0, il = normals.length; i < il; i += 3 ) { x = normals[ i ]; y = normals[ i + 1 ]; z = normals[ i + 2 ]; n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals[ i ] *= n; normals[ i + 1 ] *= n; normals[ i + 2 ] *= n; } }, toNonIndexed: function () { if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this; } var geometry2 = new BufferGeometry(); var indices = this.index.array; var attributes = this.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; var array = attribute.array; var itemSize = attribute.itemSize; var array2 = new array.constructor( indices.length * itemSize ); var index = 0, index2 = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { index = indices[ i ] * itemSize; for ( var j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) ); } return geometry2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } data.data = { attributes: {} }; var index = this.index; if ( index !== null ) { var array = Array.prototype.slice.call( index.array ); data.data.index = { type: index.array.constructor.name, array: array }; } var attributes = this.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var array = Array.prototype.slice.call( attribute.array ); data.data.attributes[ key ] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array, normalized: attribute.normalized }; } var groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } var boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy( this ); }, copy: function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); BufferGeometry.MaxIndex = 65535; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ function Mesh( geometry, material ) { Object3D.call( this ); this.type = 'Mesh'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } ); this.drawMode = TrianglesDrawMode; this.updateMorphTargets(); } Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Mesh, isMesh: true, setDrawMode: function ( value ) { this.drawMode = value; }, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.drawMode = source.drawMode; return this; }, updateMorphTargets: function () { var morphTargets = this.geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = morphTargets.length; m < ml; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ morphTargets[ m ].name ] = m; } } }, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); var vA = new Vector3(); var vB = new Vector3(); var vC = new Vector3(); var tempA = new Vector3(); var tempB = new Vector3(); var tempC = new Vector3(); var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2(); var barycoord = new Vector3(); var intersectionPoint = new Vector3(); var intersectionPointWorld = new Vector3(); function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) { Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord ); uv1.multiplyScalar( barycoord.x ); uv2.multiplyScalar( barycoord.y ); uv3.multiplyScalar( barycoord.z ); uv1.add( uv2 ).add( uv3 ); return uv1.clone(); } function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) { var intersect; var material = object.material; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); } if ( intersect === null ) return null; intersectionPointWorld.copy( point ); intersectionPointWorld.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, raycaster, ray, positions, uvs, a, b, c ) { vA.fromArray( positions, a * 3 ); vB.fromArray( positions, b * 3 ); vC.fromArray( positions, c * 3 ); var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint ); if ( intersection ) { if ( uvs ) { uvA.fromArray( uvs, a * 2 ); uvB.fromArray( uvs, b * 2 ); uvC.fromArray( uvs, c * 2 ); intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC ); } intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) ); intersection.faceIndex = a; } return intersection; } return function raycast( raycaster, intersects ) { var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( ray.intersectsBox( geometry.boundingBox ) === false ) return; } var uvs, intersection; if ( (geometry && geometry.isBufferGeometry) ) { var a, b, c; var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( attributes.uv !== undefined ) { uvs = attributes.uv.array; } if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length; i < l; i += 3 ) { a = indices[ i ]; b = indices[ i + 1 ]; c = indices[ i + 2 ]; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics intersects.push( intersection ); } } } else { for ( var i = 0, l = positions.length; i < l; i += 9 ) { a = i / 3; b = a + 1; c = a + 2; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.index = a; // triangle number in positions buffer semantics intersects.push( intersection ); } } } } else if ( (geometry && geometry.isGeometry) ) { var fvA, fvB, fvC; var isFaceMaterial = (material && material.isMultiMaterial); var materials = isFaceMaterial === true ? material.materials : null; var vertices = geometry.vertices; var faces = geometry.faces; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs; for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var faceMaterial = isFaceMaterial === true ? materials[ face.materialIndex ] : material; if ( faceMaterial === undefined ) continue; fvA = vertices[ face.a ]; fvB = vertices[ face.b ]; fvC = vertices[ face.c ]; if ( faceMaterial.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences; vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence ); vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence ); vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence ); } vA.add( fvA ); vB.add( fvB ); vC.add( fvC ); fvA = vA; fvB = vB; fvC = vC; } intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint ); if ( intersection ) { if ( uvs ) { var uvs_f = uvs[ f ]; uvA.copy( uvs_f[ 0 ] ); uvB.copy( uvs_f[ 1 ] ); uvC.copy( uvs_f[ 2 ] ); intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC ); } intersection.face = face; intersection.faceIndex = f; intersects.push( intersection ); } } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author Mugen87 / https://github.com/Mugen87 */ function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { BufferGeometry.call( this ); this.type = 'BoxBufferGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; var scope = this; // segments widthSegments = Math.floor( widthSegments ) || 1; heightSegments = Math.floor( heightSegments ) || 1; depthSegments = Math.floor( depthSegments ) || 1; // these are used to calculate buffer length var vertexCount = calculateVertexCount( widthSegments, heightSegments, depthSegments ); var indexCount = calculateIndexCount( widthSegments, heightSegments, depthSegments ); // buffers var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ); var vertices = new Float32Array( vertexCount * 3 ); var normals = new Float32Array( vertexCount * 3 ); var uvs = new Float32Array( vertexCount * 2 ); // offset variables var vertexBufferOffset = 0; var uvBufferOffset = 0; var indexBufferOffset = 0; var numberOfVertices = 0; // group variables var groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( new BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ) ); // helper functions function calculateVertexCount( w, h, d ) { var vertices = 0; // calculate the amount of vertices for each side (plane) vertices += (w + 1) * (h + 1) * 2; // xy vertices += (w + 1) * (d + 1) * 2; // xz vertices += (d + 1) * (h + 1) * 2; // zy return vertices; } function calculateIndexCount( w, h, d ) { var index = 0; // calculate the amount of squares for each side index += w * h * 2; // xy index += w * d * 2; // xz index += d * h * 2; // zy return index * 6; // two triangles per square => six vertices per square } function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { var segmentWidth = width / gridX; var segmentHeight = height / gridY; var widthHalf = width / 2; var heightHalf = height / 2; var depthHalf = depth / 2; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var vertexCounter = 0; var groupCount = 0; var vector = new Vector3(); // generate vertices, normals and uvs for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segmentHeight - heightHalf; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices[ vertexBufferOffset ] = vector.x; vertices[ vertexBufferOffset + 1 ] = vector.y; vertices[ vertexBufferOffset + 2 ] = vector.z; // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals[ vertexBufferOffset ] = vector.x; normals[ vertexBufferOffset + 1 ] = vector.y; normals[ vertexBufferOffset + 2 ] = vector.z; // uvs uvs[ uvBufferOffset ] = ix / gridX; uvs[ uvBufferOffset + 1 ] = 1 - ( iy / gridY ); // update offsets and counters vertexBufferOffset += 3; uvBufferOffset += 2; vertexCounter += 1; } } // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { // indices var a = numberOfVertices + ix + gridX1 * iy; var b = numberOfVertices + ix + gridX1 * ( iy + 1 ); var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // face one indices[ indexBufferOffset ] = a; indices[ indexBufferOffset + 1 ] = b; indices[ indexBufferOffset + 2 ] = d; // face two indices[ indexBufferOffset + 3 ] = b; indices[ indexBufferOffset + 4 ] = c; indices[ indexBufferOffset + 5 ] = d; // update offsets and counters indexBufferOffset += 6; groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); BoxBufferGeometry.prototype.constructor = BoxBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) { BufferGeometry.call( this ); this.type = 'PlaneBufferGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; var width_half = width / 2; var height_half = height / 2; var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var segment_width = width / gridX; var segment_height = height / gridY; var vertices = new Float32Array( gridX1 * gridY1 * 3 ); var normals = new Float32Array( gridX1 * gridY1 * 3 ); var uvs = new Float32Array( gridX1 * gridY1 * 2 ); var offset = 0; var offset2 = 0; for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segment_height - height_half; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; vertices[ offset ] = x; vertices[ offset + 1 ] = - y; normals[ offset + 2 ] = 1; uvs[ offset2 ] = ix / gridX; uvs[ offset2 + 1 ] = 1 - ( iy / gridY ); offset += 3; offset2 += 2; } } offset = 0; var indices = new ( ( vertices.length / 3 ) > 65535 ? Uint32Array : Uint16Array )( gridX * gridY * 6 ); for ( var iy = 0; iy < gridY; iy ++ ) { for ( var ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; indices[ offset ] = a; indices[ offset + 1 ] = b; indices[ offset + 2 ] = d; indices[ offset + 3 ] = b; indices[ offset + 4 ] = c; indices[ offset + 5 ] = d; offset += 6; } } this.setIndex( new BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ) ); } PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ function Camera() { Object3D.call( this ); this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); } Camera.prototype = Object.create( Object3D.prototype ); Camera.prototype.constructor = Camera; Camera.prototype.isCamera = true; Camera.prototype.getWorldDirection = function () { var quaternion = new Quaternion(); return function getWorldDirection( optionalTarget ) { var result = optionalTarget || new Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, - 1 ).applyQuaternion( quaternion ); }; }(); Camera.prototype.lookAt = function () { // This routine does not support cameras with rotated and/or translated parent(s) var m1 = new Matrix4(); return function lookAt( vector ) { m1.lookAt( this.position, vector, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(); Camera.prototype.clone = function () { return new this.constructor().copy( this ); }; Camera.prototype.copy = function ( source ) { Object3D.prototype.copy.call( this, source ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author tschw */ function PerspectiveCamera( fov, aspect, near, far ) { Camera.call( this ); this.type = 'PerspectiveCamera'; this.fov = fov !== undefined ? fov : 50; this.zoom = 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.focus = 10; this.aspect = aspect !== undefined ? aspect : 1; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: PerspectiveCamera, isPerspectiveCamera: true, copy: function ( source ) { Camera.prototype.copy.call( this, source ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; }, /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength: function ( focalLength ) { // see http://www.bobatkins.com/photography/technical/field_of_view.html var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); }, /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength: function () { var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; }, getEffectiveFOV: function () { return _Math.RAD2DEG * 2 * Math.atan( Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom ); }, getFilmWidth: function () { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); }, getFilmHeight: function () { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); }, /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; this.view = { fullWidth: fullWidth, fullHeight: fullHeight, offsetX: x, offsetY: y, width: width, height: height }; this.updateProjectionMatrix(); }, clearViewOffset: function() { this.view = null; this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var near = this.near, top = near * Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom, height = 2 * top, width = this.aspect * height, left = - 0.5 * width, view = this.view; if ( view !== null ) { var fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } var skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makeFrustum( left, left + width, top - height, top, near, this.far ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } ); /** * @author alteredq / http://alteredqualia.com/ * @author arose / http://github.com/arose */ function OrthographicCamera( left, right, top, bottom, near, far ) { Camera.call( this ); this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); } OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: OrthographicCamera, isOrthographicCamera: true, copy: function ( source ) { Camera.prototype.copy.call( this, source ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; }, setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) { this.view = { fullWidth: fullWidth, fullHeight: fullHeight, offsetX: x, offsetY: y, width: width, height: height }; this.updateProjectionMatrix(); }, clearViewOffset: function() { this.view = null; this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2; var left = cx - dx; var right = cx + dx; var top = cy + dy; var bottom = cy - dy; if ( this.view !== null ) { var zoomW = this.zoom / ( this.view.width / this.view.fullWidth ); var zoomH = this.zoom / ( this.view.height / this.view.fullHeight ); var scaleW = ( this.right - this.left ) / this.view.width; var scaleH = ( this.top - this.bottom ) / this.view.height; left += scaleW * ( this.view.offsetX / zoomW ); right = left + scaleW * ( this.view.width / zoomW ); top -= scaleH * ( this.view.offsetY / zoomH ); bottom = top - scaleH * ( this.view.height / zoomH ); } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function WebGLIndexedBufferRenderer( gl, extensions, infoRender ) { var mode; function setMode( value ) { mode = value; } var type, size; function setIndex( index ) { if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) { type = gl.UNSIGNED_INT; size = 4; } else { type = gl.UNSIGNED_SHORT; size = 2; } } function render( start, count ) { gl.drawElements( mode, count, type, start * size ); infoRender.calls ++; infoRender.vertices += count; if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3; } function renderInstances( geometry, start, count ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount ); infoRender.calls ++; infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3; } return { setMode: setMode, setIndex: setIndex, render: render, renderInstances: renderInstances }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLBufferRenderer( gl, extensions, infoRender ) { var mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); infoRender.calls ++; infoRender.vertices += count; if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3; } function renderInstances( geometry ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } var position = geometry.attributes.position; var count = 0; if ( (position && position.isInterleavedBufferAttribute) ) { count = position.data.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } else { count = position.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } infoRender.calls ++; infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3; } return { setMode: setMode, render: render, renderInstances: renderInstances }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLLights() { var lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color(), shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } /** * @author mrdoob / http://mrdoob.com/ */ function addLineNumbers( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } function WebGLShader( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) { console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' ); } if ( gl.getShaderInfoLog( shader ) !== '' ) { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) ); } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader; } /** * @author mrdoob / http://mrdoob.com/ */ var programIdCount = 0; function getEncodingComponents( encoding ) { switch ( encoding ) { case LinearEncoding: return [ 'Linear','( value )' ]; case sRGBEncoding: return [ 'sRGB','( value )' ]; case RGBEEncoding: return [ 'RGBE','( value )' ]; case RGBM7Encoding: return [ 'RGBM','( value, 7.0 )' ]; case RGBM16Encoding: return [ 'RGBM','( value, 16.0 )' ]; case RGBDEncoding: return [ 'RGBD','( value, 256.0 )' ]; case GammaEncoding: return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ]; default: throw new Error( 'unsupported encoding: ' + encoding ); } } function getTexelDecodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }"; } function getTexelEncodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }"; } function getToneMappingFunction( functionName, toneMapping ) { var toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = "Linear"; break; case ReinhardToneMapping: toneMappingName = "Reinhard"; break; case Uncharted2ToneMapping: toneMappingName = "Uncharted2"; break; case CineonToneMapping: toneMappingName = "OptimizedCineon"; break; default: throw new Error( 'unsupported toneMapping: ' + toneMapping ); } return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }"; } function generateExtensions( extensions, parameters, rendererExtensions ) { extensions = extensions || {}; var chunks = [ ( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '', ( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '', ( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '', ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { var chunks = []; for ( var name in defines ) { var value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program, identifiers ) { var attributes = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveAttrib( program, i ); var name = info.name; // console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i ); attributes[ name ] = gl.getAttribLocation( program, name ); } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ); } function parseIncludes( string ) { var pattern = /#include +<([\w\d.]+)>/g; function replace( match, include ) { var replace = ShaderChunk[ include ]; if ( replace === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return parseIncludes( replace ); } return string.replace( pattern, replace ); } function unrollLoops( string ) { var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; function replace( match, start, end, snippet ) { var unroll = ''; for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' ); } return unroll; } return string.replace( pattern, replace ); } function WebGLProgram( renderer, code, material, parameters ) { var gl = renderer.context; var extensions = material.extensions; var defines = material.defines; var vertexShader = material.__webglShader.vertexShader; var fragmentShader = material.__webglShader.fragmentShader; var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; if ( parameters.envMap ) { switch ( material.envMap.mapping ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; case EquirectangularReflectionMapping: case EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; break; case SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE'; break; } switch ( material.envMap.mapping ) { case CubeRefractionMapping: case EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } switch ( material.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; // console.log( 'building new program ' ); // var customExtensions = generateExtensions( extensions, parameters, renderer.extensions ); var customDefines = generateDefines( defines ); // var program = gl.createProgram(); var prefixVertex, prefixFragment; if ( material.isRawShaderMaterial ) { prefixVertex = [ customDefines, '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, customDefines, '\n' ].filter( filterEmptyLine ).join( '\n' ); } else { prefixVertex = [ 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', '#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes, parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', '#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes, '#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection), parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '', parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', ( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '', ( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '', parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = parseIncludes( vertexShader, parameters ); vertexShader = replaceLightNums( vertexShader, parameters ); fragmentShader = parseIncludes( fragmentShader, parameters ); fragmentShader = replaceLightNums( fragmentShader, parameters ); if ( ! material.isShaderMaterial ) { vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); } var vertexGlsl = prefixVertex + vertexShader; var fragmentGlsl = prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( material.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, material.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); var programLog = gl.getProgramInfoLog( program ); var vertexLog = gl.getShaderInfoLog( glVertexShader ); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ); var runnable = true; var haveDiagnostics = true; // console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) ); if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, material: material, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } // clean up gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations var cachedUniforms; this.getUniforms = function() { if ( cachedUniforms === undefined ) { cachedUniforms = new WebGLUniforms( gl, program, renderer ); } return cachedUniforms; }; // set up caching for attribute locations var cachedAttributes; this.getAttributes = function() { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function() { gl.deleteProgram( program ); this.program = undefined; }; // DEPRECATED Object.defineProperties( this, { uniforms: { get: function() { console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' ); return this.getUniforms(); } }, attributes: { get: function() { console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' ); return this.getAttributes(); } } } ); // this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLPrograms( renderer, capabilities ) { var programs = []; var shaderIDs = { MeshDepthMaterial: 'depth', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points' }; var parameterNames = [ "precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding", "lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights', "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking" ]; function allocateBones( object ) { if ( capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = capabilities.maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = nVertexMatrices; if ( object !== undefined && (object && object.isSkinnedMesh) ) { maxBones = Math.min( object.skeleton.bones.length, maxBones ); if ( maxBones < object.skeleton.bones.length ) { console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' ); } } return maxBones; } } function getTextureEncodingFromMap( map, gammaOverrideLinear ) { var encoding; if ( ! map ) { encoding = LinearEncoding; } else if ( (map && map.isTexture) ) { encoding = map.encoding; } else if ( (map && map.isWebGLRenderTarget) ) { console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ); encoding = map.texture.encoding; } // add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point. if ( encoding === LinearEncoding && gammaOverrideLinear ) { encoding = GammaEncoding; } return encoding; } this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) { var shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = allocateBones( object ); var precision = renderer.getPrecision(); if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } var currentRenderTarget = renderer.getCurrentRenderTarget(); var parameters = { shaderID: shaderID, precision: precision, supportsVertexTextures: capabilities.vertexTextures, outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ), map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ), envMap: !! material.envMap, envMapMode: material.envMap && material.envMap.mapping, envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ), envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, combine: material.combine, vertexColors: material.vertexColors, fog: !! fog, useFog: material.fog, fogExp: (fog && fog.isFogExp2), flatShading: material.shading === FlatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer, skinning: material.skinning, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numHemiLights: lights.hemi.length, numClippingPlanes: nClipPlanes, numClipIntersection: nClipIntersection, shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: renderer.toneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false }; return parameters; }; this.getProgramCode = function ( material, parameters ) { var array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( material.fragmentShader ); array.push( material.vertexShader ); } if ( material.defines !== undefined ) { for ( var name in material.defines ) { array.push( name ); array.push( material.defines[ name ] ); } } for ( var i = 0; i < parameterNames.length; i ++ ) { array.push( parameters[ parameterNames[ i ] ] ); } return array.join(); }; this.acquireProgram = function ( material, parameters, code ) { var program; // Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) { var programInfo = programs[ p ]; if ( programInfo.code === code ) { program = programInfo; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, code, material, parameters ); programs.push( program ); } return program; }; this.releaseProgram = function( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } }; // Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLGeometries( gl, properties, info ) { var geometries = {}; function onGeometryDispose( event ) { var geometry = event.target; var buffergeometry = geometries[ geometry.id ]; if ( buffergeometry.index !== null ) { deleteAttribute( buffergeometry.index ); } deleteAttributes( buffergeometry.attributes ); geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; // TODO var property = properties.get( geometry ); if ( property.wireframe ) { deleteAttribute( property.wireframe ); } properties.delete( geometry ); var bufferproperty = properties.get( buffergeometry ); if ( bufferproperty.wireframe ) { deleteAttribute( bufferproperty.wireframe ); } properties.delete( buffergeometry ); // info.memory.geometries --; } function getAttributeBuffer( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function deleteAttribute( attribute ) { var buffer = getAttributeBuffer( attribute ); if ( buffer !== undefined ) { gl.deleteBuffer( buffer ); removeAttributeBuffer( attribute ); } } function deleteAttributes( attributes ) { for ( var name in attributes ) { deleteAttribute( attributes[ name ] ); } } function removeAttributeBuffer( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { properties.delete( attribute.data ); } else { properties.delete( attribute ); } } return { get: function ( object ) { var geometry = object.geometry; if ( geometries[ geometry.id ] !== undefined ) { return geometries[ geometry.id ]; } geometry.addEventListener( 'dispose', onGeometryDispose ); var buffergeometry; if ( geometry.isBufferGeometry ) { buffergeometry = geometry; } else if ( geometry.isGeometry ) { if ( geometry._bufferGeometry === undefined ) { geometry._bufferGeometry = new BufferGeometry().setFromObject( object ); } buffergeometry = geometry._bufferGeometry; } geometries[ geometry.id ] = buffergeometry; info.memory.geometries ++; return buffergeometry; } }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLObjects( gl, properties, info ) { var geometries = new WebGLGeometries( gl, properties, info ); // function update( object ) { // TODO: Avoid updating twice (when using shadowMap). Maybe add frame counter. var geometry = geometries.get( object ); if ( object.geometry.isGeometry ) { geometry.updateFromObject( object ); } var index = geometry.index; var attributes = geometry.attributes; if ( index !== null ) { updateAttribute( index, gl.ELEMENT_ARRAY_BUFFER ); } for ( var name in attributes ) { updateAttribute( attributes[ name ], gl.ARRAY_BUFFER ); } // morph targets var morphAttributes = geometry.morphAttributes; for ( var name in morphAttributes ) { var array = morphAttributes[ name ]; for ( var i = 0, l = array.length; i < l; i ++ ) { updateAttribute( array[ i ], gl.ARRAY_BUFFER ); } } return geometry; } function updateAttribute( attribute, bufferType ) { var data = ( attribute.isInterleavedBufferAttribute ) ? attribute.data : attribute; var attributeProperties = properties.get( data ); if ( attributeProperties.__webglBuffer === undefined ) { createBuffer( attributeProperties, data, bufferType ); } else if ( attributeProperties.version !== data.version ) { updateBuffer( attributeProperties, data, bufferType ); } } function createBuffer( attributeProperties, data, bufferType ) { attributeProperties.__webglBuffer = gl.createBuffer(); gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); var usage = data.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW; gl.bufferData( bufferType, data.array, usage ); attributeProperties.version = data.version; } function updateBuffer( attributeProperties, data, bufferType ) { gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); if ( data.dynamic === false ) { gl.bufferData( bufferType, data.array, gl.STATIC_DRAW ); } else if ( data.updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, data.array ); } else if ( data.updateRange.count === 0 ) { console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' ); } else { gl.bufferSubData( bufferType, data.updateRange.offset * data.array.BYTES_PER_ELEMENT, data.array.subarray( data.updateRange.offset, data.updateRange.offset + data.updateRange.count ) ); data.updateRange.count = 0; // reset range } attributeProperties.version = data.version; } function getAttributeBuffer( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function getWireframeAttribute( geometry ) { var property = properties.get( geometry ); if ( property.wireframe !== undefined ) { return property.wireframe; } var indices = []; var index = geometry.index; var attributes = geometry.attributes; var position = attributes.position; // console.time( 'wireframe' ); if ( index !== null ) { var edges = {}; var array = index.array; for ( var i = 0, l = array.length; i < l; i += 3 ) { var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else { var array = attributes.position.array; for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { var a = i + 0; var b = i + 1; var c = i + 2; indices.push( a, b, b, c, c, a ); } } // console.timeEnd( 'wireframe' ); var TypeArray = position.count > 65535 ? Uint32Array : Uint16Array; var attribute = new BufferAttribute( new TypeArray( indices ), 1 ); updateAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER ); property.wireframe = attribute; return attribute; } return { getAttributeBuffer: getAttributeBuffer, getWireframeAttribute: getWireframeAttribute, update: update }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, info ) { var _infoMemory = info.memory; var _isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext ); // function clampToMaxSize( image, maxSize ) { if ( image.width > maxSize || image.height > maxSize ) { // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var scale = maxSize / Math.max( image.width, image.height ); var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = Math.floor( image.width * scale ); canvas.height = Math.floor( image.height * scale ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function isPowerOfTwo( image ) { return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height ); } function makePowerOfTwo( image ) { if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) { var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = _Math.nearestPowerOfTwo( image.width ); canvas.height = _Math.nearestPowerOfTwo( image.height ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function textureNeedsPowerOfTwo( texture ) { if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) return true; if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) return true; return false; } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; } // function onTextureDispose( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); _infoMemory.textures --; } function onRenderTargetDispose( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); _infoMemory.textures --; } // function deallocateTexture( texture ) { var textureProperties = properties.get( texture ); if ( texture.image && textureProperties.__image__webglTextureCube ) { // cube texture _gl.deleteTexture( textureProperties.__image__webglTextureCube ); } else { // 2D texture if ( textureProperties.__webglInit === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); } // remove all webgl properties properties.delete( texture ); } function deallocateRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); if ( ! renderTarget ) return; if ( textureProperties.__webglTexture !== undefined ) { _gl.deleteTexture( textureProperties.__webglTexture ); } if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( (renderTarget && renderTarget.isWebGLRenderTargetCube) ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } properties.delete( renderTarget.texture ); properties.delete( renderTarget ); } // function setTexture2D( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { var image = texture.image; if ( image === undefined ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); } function setTextureCube( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.image.length === 6 ) { if ( texture.version > 0 && textureProperties.__version !== texture.version ) { if ( ! textureProperties.__image__webglTextureCube ) { texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__image__webglTextureCube = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var isCompressed = (texture && texture.isCompressedTexture); var isDataTexture = (texture.image[ 0 ] && texture.image[ 0 ].isDataTexture); var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } var image = cubeImage[ 0 ], isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage ); for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed ) { if ( isDataTexture ) { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } } else { var mipmap, mipmaps = cubeImage[ i ].mipmaps; for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) { mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()" ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } if ( texture.generateMipmaps && isPowerOfTwoImage ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } else { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); } } } function setTextureCubeDynamic( texture, slot ) { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture ); } function setTextureParameters( textureType, texture, isPowerOfTwoImage ) { var extension; if ( isPowerOfTwoImage ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture ); } } extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension ) { if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return; if ( texture.type === HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return; if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function uploadTexture( textureProperties, texture, slot ) { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); var image = clampToMaxSize( texture.image, capabilities.maxTextureSize ); if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) { image = makePowerOfTwo( image ); } var isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage ); var mipmap, mipmaps = texture.mipmaps; if ( (texture && texture.isDepthTexture) ) { // populate depth texture with dummy data var internalFormat = _gl.DEPTH_COMPONENT; if ( texture.type === FloatType ) { if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0'); internalFormat = _gl.DEPTH_COMPONENT32F; } else if ( _isWebGL2 ) { // WebGL 2.0 requires signed internalformat for glTexImage2D internalFormat = _gl.DEPTH_COMPONENT16; } // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.format === DepthStencilFormat ) { internalFormat = _gl.DEPTH_STENCIL; } state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null ); } else if ( (texture && texture.isDataTexture) ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } else if ( (texture && texture.isCompressedTexture) ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image ); } } if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D ); textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) { var glFormat = paramThreeToGL( renderTarget.texture.format ); var glType = paramThreeToGL( renderTarget.texture.type ); state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { // FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { var isCube = ( (renderTarget && renderTarget.isWebGLRenderTargetCube) ); if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!'); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( !( (renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture) ) ) { throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture'); } // upload an empty depth texture with framebuffer size if ( !properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; if ( renderTarget.depthTexture.format === DepthFormat ) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } else { throw new Error('Unknown depthTexture format') } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var isCube = ( (renderTarget && renderTarget.isWebGLRenderTargetCube) ); if ( renderTarget.depthTexture ) { if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets'); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( var i = 0; i < 6; i ++ ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget ); } } else { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget ); } } _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; var isCube = ( (renderTarget && renderTarget.isWebGLRenderTargetCube) ); var isTargetPowerOfTwo = isPowerOfTwo( renderTarget ); // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( var i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); } if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D ); if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.bindTexture( _gl.TEXTURE_2D, null ); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { var texture = renderTarget.texture; if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { var target = (renderTarget && renderTarget.isWebGLRenderTargetCube) ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; var webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); _gl.generateMipmap( target ); state.bindTexture( target, null ); } } this.setTexture2D = setTexture2D; this.setTextureCube = setTextureCube; this.setTextureCubeDynamic = setTextureCubeDynamic; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; } /** * @author fordacious / fordacious.github.io */ function WebGLProperties() { var properties = {}; return { get: function ( object ) { var uuid = object.uuid; var map = properties[ uuid ]; if ( map === undefined ) { map = {}; properties[ uuid ] = map; } return map; }, delete: function ( object ) { delete properties[ object.uuid ]; }, clear: function () { properties = {}; } }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLState( gl, extensions, paramThreeToGL ) { function ColorBuffer() { var locked = false; var color = new Vector4(); var currentColorMask = null; var currentColorClear = new Vector4(); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a ) { color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( 0, 0, 0, 1 ); } }; } function DepthBuffer() { var locked = false; var currentDepthMask = null; var currentDepthFunc = null; var currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( gl.DEPTH_TEST ); } else { disable( gl.DEPTH_TEST ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( gl.NEVER ); break; case AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case LessDepth: gl.depthFunc( gl.LESS ); break; case LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case EqualDepth: gl.depthFunc( gl.EQUAL ); break; case GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case GreaterDepth: gl.depthFunc( gl.GREATER ); break; case NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } } else { gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { var locked = false; var currentStencilMask = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilFuncMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( stencilTest ) { enable( gl.STENCIL_TEST ); } else { disable( gl.STENCIL_TEST ); } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // var colorBuffer = new ColorBuffer(); var depthBuffer = new DepthBuffer(); var stencilBuffer = new StencilBuffer(); var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var newAttributes = new Uint8Array( maxVertexAttributes ); var enabledAttributes = new Uint8Array( maxVertexAttributes ); var attributeDivisors = new Uint8Array( maxVertexAttributes ); var capabilities = {}; var compressedTextureFormats = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentPremultipledAlpha = false; var currentFlipSided = null; var currentCullFace = null; var currentLineWidth = null; var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null; var currentScissorTest = null; var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var currentTextureSlot = null; var currentBoundTextures = {}; var currentScissor = new Vector4(); var currentViewport = new Vector4(); function createTexture( type, target, count ) { var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. var texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); for ( var i = 0; i < count; i ++ ) { gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } return texture; } var emptyTextures = {}; emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ); // function init() { clearColor( 0, 0, 0, 1 ); clearDepth( 1 ); clearStencil( 0 ); enable( gl.DEPTH_TEST ); setDepthFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( gl.CULL_FACE ); enable( gl.BLEND ); setBlending( NormalBlending ); } function initAttributes() { for ( var i = 0, l = newAttributes.length; i < l; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== 0 ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); extension.vertexAttribDivisorANGLE( attribute, 0 ); attributeDivisors[ attribute ] = 0; } } function enableAttributeAndDivisor( attribute, meshPerAttribute, extension ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function enable( id ) { if ( capabilities[ id ] !== true ) { gl.enable( id ); capabilities[ id ] = true; } } function disable( id ) { if ( capabilities[ id ] !== false ) { gl.disable( id ); capabilities[ id ] = false; } } function getCompressedTextureFormats() { if ( compressedTextureFormats === null ) { compressedTextureFormats = []; if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) || extensions.get( 'WEBGL_compressed_texture_s3tc' ) || extensions.get( 'WEBGL_compressed_texture_etc1' ) ) { var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS ); for ( var i = 0; i < formats.length; i ++ ) { compressedTextureFormats.push( formats[ i ] ); } } } return compressedTextureFormats; } function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending !== NoBlending ) { enable( gl.BLEND ); } else { disable( gl.BLEND ); } if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( blending === AdditiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); } } else if ( blending === SubtractiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR ); } } else if ( blending === MultiplyBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); } } else { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } } currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } if ( blending === CustomBlending ) { blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } } else { currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; } } // TODO Deprecate function setColorWrite( colorWrite ) { colorBuffer.setMask( colorWrite ); } function setDepthTest( depthTest ) { depthBuffer.setTest( depthTest ); } function setDepthWrite( depthWrite ) { depthBuffer.setMask( depthWrite ); } function setDepthFunc( depthFunc ) { depthBuffer.setFunc( depthFunc ); } function setStencilTest( stencilTest ) { stencilBuffer.setTest( stencilTest ); } function setStencilWrite( stencilWrite ) { stencilBuffer.setMask( stencilWrite ); } function setStencilFunc( stencilFunc, stencilRef, stencilMask ) { stencilBuffer.setFunc( stencilFunc, stencilRef, stencilMask ); } function setStencilOp( stencilFail, stencilZFail, stencilZPass ) { stencilBuffer.setOp( stencilFail, stencilZFail, stencilZPass ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( gl.CULL_FACE ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( gl.BACK ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( gl.FRONT ); } else { gl.cullFace( gl.FRONT_AND_BACK ); } } } else { disable( gl.CULL_FACE ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( gl.POLYGON_OFFSET_FILL ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( gl.POLYGON_OFFSET_FILL ); } } function getScissorTest() { return currentScissorTest; } function setScissorTest( scissorTest ) { currentScissorTest = scissorTest; if ( scissorTest ) { enable( gl.SCISSOR_TEST ); } else { disable( gl.SCISSOR_TEST ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture ) { if ( currentTextureSlot === null ) { activeTexture(); } var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } } // TODO Deprecate function clearColor( r, g, b, a ) { colorBuffer.setClear( r, g, b, a ); } function clearDepth( depth ) { depthBuffer.setClear( depth ); } function clearStencil( stencil ) { stencilBuffer.setClear( stencil ); } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } // function reset() { for ( var i = 0; i < enabledAttributes.length; i ++ ) { if ( enabledAttributes[ i ] === 1 ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } capabilities = {}; compressedTextureFormats = null; currentTextureSlot = null; currentBoundTextures = {}; currentBlending = null; currentFlipSided = null; currentCullFace = null; colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, init: init, initAttributes: initAttributes, enableAttribute: enableAttribute, enableAttributeAndDivisor: enableAttributeAndDivisor, disableUnusedAttributes: disableUnusedAttributes, enable: enable, disable: disable, getCompressedTextureFormats: getCompressedTextureFormats, setBlending: setBlending, setColorWrite: setColorWrite, setDepthTest: setDepthTest, setDepthWrite: setDepthWrite, setDepthFunc: setDepthFunc, setStencilTest: setStencilTest, setStencilWrite: setStencilWrite, setStencilFunc: setStencilFunc, setStencilOp: setStencilOp, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, getScissorTest: getScissorTest, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, clearColor: clearColor, clearDepth: clearDepth, clearStencil: clearStencil, scissor: scissor, viewport: viewport, reset: reset }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLCapabilities( gl, extensions, parameters ) { var maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension !== null ) { maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } var precision = parameters.precision !== undefined ? parameters.precision : 'highp'; var maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' ); var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); var vertexTextures = maxVertexTextures > 0; var floatFragmentTextures = !! extensions.get( 'OES_texture_float' ); var floatVertexTextures = vertexTextures && floatFragmentTextures; return { getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLExtensions( gl ) { var extensions = {}; return { get: function ( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } var extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; case 'WEBGL_compressed_texture_etc1': extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' ); break; default: extension = gl.getExtension( name ); } if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } extensions[ name ] = extension; return extension; } }; } /** * @author tschw */ function WebGLClipping() { var scope = this, globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false, plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function( planes, enableLocalClipping, camera ) { var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function() { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function() { renderingShadows = false; resetGlobalState(); }; this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) { if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { var nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4, dstArray = cache.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, fromCache ); for ( var i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } cache.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { var nPlanes = planes !== null ? planes.length : 0, dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { var flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ). applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; return dstArray; } } /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ * @author tschw */ function WebGLRenderer( parameters ) { console.log( 'THREE.WebGLRenderer', REVISION ); parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false; var lights = []; var opaqueObjects = []; var opaqueObjectsLastIndex = - 1; var transparentObjects = []; var transparentObjectsLastIndex = - 1; var morphInfluences = new Float32Array( 8 ); var sprites = []; var lensFlares = []; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.gammaInput = false; this.gammaOutput = false; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = LinearToneMapping; this.toneMappingExposure = 1.0; this.toneMappingWhitePoint = 1.0; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // internal properties var _this = this, // internal state cache _currentProgram = null, _currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = - 1, _currentGeometryProgram = '', _currentCamera = null, _currentScissor = new Vector4(), _currentScissorTest = null, _currentViewport = new Vector4(), // _usedTextureUnits = 0, // _clearColor = new Color( 0x000000 ), _clearAlpha = 0, _width = _canvas.width, _height = _canvas.height, _pixelRatio = 1, _scissor = new Vector4( 0, 0, _width, _height ), _scissorTest = false, _viewport = new Vector4( 0, 0, _width, _height ), // frustum _frustum = new Frustum(), // clipping _clipping = new WebGLClipping(), _clippingEnabled = false, _localClippingEnabled = false, _sphere = new Sphere(), // camera matrices cache _projScreenMatrix = new Matrix4(), _vector3 = new Vector3(), // light arrays cache _lights = { hash: '', ambient: [ 0, 0, 0 ], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], shadows: [] }, // info _infoRender = { calls: 0, vertices: 0, faces: 0, points: 0 }; this.info = { render: _infoRender, memory: { geometries: 0, textures: 0 }, programs: null }; // initialize var _gl; try { var attributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer }; _gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes ); if ( _gl === null ) { if ( _canvas.getContext( 'webgl' ) !== null ) { throw 'Error creating WebGL context with your selected attributes.'; } else { throw 'Error creating WebGL context.'; } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error ); } var extensions = new WebGLExtensions( _gl ); extensions.get( 'WEBGL_depth_texture' ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_float_linear' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'ANGLE_instanced_arrays' ); if ( extensions.get( 'OES_element_index_uint' ) ) { BufferGeometry.MaxIndex = 4294967296; } var capabilities = new WebGLCapabilities( _gl, extensions, parameters ); var state = new WebGLState( _gl, extensions, paramThreeToGL ); var properties = new WebGLProperties(); var textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, this.info ); var objects = new WebGLObjects( _gl, properties, this.info ); var programCache = new WebGLPrograms( this, capabilities ); var lightCache = new WebGLLights(); this.info.programs = programCache.programs; var bufferRenderer = new WebGLBufferRenderer( _gl, extensions, _infoRender ); var indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, _infoRender ); // var backgroundCamera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); var backgroundCamera2 = new PerspectiveCamera(); var backgroundPlaneMesh = new Mesh( new PlaneBufferGeometry( 2, 2 ), new MeshBasicMaterial( { depthTest: false, depthWrite: false, fog: false } ) ); var backgroundBoxShader = ShaderLib[ 'cube' ]; var backgroundBoxMesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), new ShaderMaterial( { uniforms: backgroundBoxShader.uniforms, vertexShader: backgroundBoxShader.vertexShader, fragmentShader: backgroundBoxShader.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); // function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } function glClearColor( r, g, b, a ) { if ( _premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } state.clearColor( r, g, b, a ); } function setDefaultGLState() { state.init(); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) ); glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); } function resetGLState() { _currentProgram = null; _currentCamera = null; _currentGeometryProgram = ''; _currentMaterialId = - 1; state.reset(); } setDefaultGLState(); this.context = _gl; this.capabilities = capabilities; this.extensions = extensions; this.properties = properties; this.state = state; // shadow map var shadowMap = new WebGLShadowMap( this, _lights, objects, capabilities ); this.shadowMap = shadowMap; // Plugins var spritePlugin = new SpritePlugin( this, sprites ); var lensFlarePlugin = new LensFlarePlugin( this, lensFlares ); // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { extensions.get( 'WEBGL_lose_context' ).loseContext(); }; this.getMaxAnisotropy = function () { return capabilities.getMaxAnisotropy(); }; this.getPrecision = function () { return capabilities.precision; }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _viewport.z, _viewport.w, false ); }; this.getSize = function () { return { width: _width, height: _height }; }; this.setSize = function ( width, height, updateStyle ) { _width = width; _height = height; _canvas.width = width * _pixelRatio; _canvas.height = height * _pixelRatio; if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { state.viewport( _viewport.set( x, y, width, height ) ); }; this.setScissor = function ( x, y, width, height ) { state.scissor( _scissor.set( x, y, width, height ) ); }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; // Clearing this.getClearColor = function () { return _clearColor; }; this.setClearColor = function ( color, alpha ) { _clearColor.set( color ); _clearAlpha = alpha !== undefined ? alpha : 1; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.getClearAlpha = function () { return _clearAlpha; }; this.setClearAlpha = function ( alpha ) { _clearAlpha = alpha; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Reset this.resetGLState = resetGLState; this.dispose = function() { transparentObjects = []; transparentObjectsLastIndex = -1; opaqueObjects = []; opaqueObjectsLastIndex = -1; _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); }; // Events function onContextLost( event ) { event.preventDefault(); resetGLState(); setDefaultGLState(); properties.clear(); } function onMaterialDispose( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReference( material ); properties.delete( material ); } function releaseMaterialProgramReference( material ) { var programInfo = properties.get( material ).program; material.program = undefined; if ( programInfo !== undefined ) { programCache.releaseProgram( programInfo ); } } // Buffer rendering this.renderBufferImmediate = function ( object, program, material ) { state.initAttributes(); var buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer(); var attributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal ); if ( ! material.isMeshPhongMaterial && ! material.isMeshStandardMaterial && material.shading === FlatShading ) { for ( var i = 0, l = object.count * 3; i < l; i += 9 ) { var array = object.normalArray; var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3; var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3; var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3; array[ i + 0 ] = nx; array[ i + 1 ] = ny; array[ i + 2 ] = nz; array[ i + 3 ] = nx; array[ i + 4 ] = ny; array[ i + 5 ] = nz; array[ i + 6 ] = nx; array[ i + 7 ] = ny; array[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.normal ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.uv ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.color ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } state.disableUnusedAttributes(); _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) { setMaterial( material ); var program = setProgram( camera, fog, material, object ); var updateBuffers = false; var geometryProgram = geometry.id + '_' + program.id + '_' + material.wireframe; if ( geometryProgram !== _currentGeometryProgram ) { _currentGeometryProgram = geometryProgram; updateBuffers = true; } // morph targets var morphTargetInfluences = object.morphTargetInfluences; if ( morphTargetInfluences !== undefined ) { var activeInfluences = []; for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) { var influence = morphTargetInfluences[ i ]; activeInfluences.push( [ influence, i ] ); } activeInfluences.sort( absNumericalSort ); if ( activeInfluences.length > 8 ) { activeInfluences.length = 8; } var morphAttributes = geometry.morphAttributes; for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) { var influence = activeInfluences[ i ]; morphInfluences[ i ] = influence[ 0 ]; if ( influence[ 0 ] !== 0 ) { var index = influence[ 1 ]; if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] ); if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] ); } else { if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i ); if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i ); } } for ( var i = activeInfluences.length, il = morphInfluences.length; i < il; i ++ ) { morphInfluences[ i ] = 0.0; } program.getUniforms().setValue( _gl, 'morphTargetInfluences', morphInfluences ); updateBuffers = true; } // var index = geometry.index; var position = geometry.attributes.position; var rangeFactor = 1; if ( material.wireframe === true ) { index = objects.getWireframeAttribute( geometry ); rangeFactor = 2; } var renderer; if ( index !== null ) { renderer = indexedBufferRenderer; renderer.setIndex( index ); } else { renderer = bufferRenderer; } if ( updateBuffers ) { setupVertexAttributes( material, program, geometry ); if ( index !== null ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, objects.getAttributeBuffer( index ) ); } } // var dataCount = 0; if ( index !== null ) { dataCount = index.count; } else if ( position !== undefined ) { dataCount = position.count; } var rangeStart = geometry.drawRange.start * rangeFactor; var rangeCount = geometry.drawRange.count * rangeFactor; var groupStart = group !== null ? group.start * rangeFactor : 0; var groupCount = group !== null ? group.count * rangeFactor : Infinity; var drawStart = Math.max( rangeStart, groupStart ); var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); if ( drawCount === 0 ) return; // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { switch ( object.drawMode ) { case TrianglesDrawMode: renderer.setMode( _gl.TRIANGLES ); break; case TriangleStripDrawMode: renderer.setMode( _gl.TRIANGLE_STRIP ); break; case TriangleFanDrawMode: renderer.setMode( _gl.TRIANGLE_FAN ); break; } } } else if ( object.isLine ) { var lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( _gl.LINES ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object.isPoints ) { renderer.setMode( _gl.POINTS ); } if ( geometry && geometry.isInstancedBufferGeometry ) { if ( geometry.maxInstancedCount > 0 ) { renderer.renderInstances( geometry, drawStart, drawCount ); } } else { renderer.render( drawStart, drawCount ); } }; function setupVertexAttributes( material, program, geometry, startIndex ) { var extension; if ( geometry && geometry.isInstancedBufferGeometry ) { extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } if ( startIndex === undefined ) startIndex = 0; state.initAttributes(); var geometryAttributes = geometry.attributes; var programAttributes = program.getAttributes(); var materialDefaultAttributeValues = material.defaultAttributeValues; for ( var name in programAttributes ) { var programAttribute = programAttributes[ name ]; if ( programAttribute >= 0 ) { var geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute !== undefined ) { var type = _gl.FLOAT; var array = geometryAttribute.array; var normalized = geometryAttribute.normalized; if ( array instanceof Float32Array ) { type = _gl.FLOAT; } else if ( array instanceof Float64Array ) { console.warn( "Unsupported data buffer format: Float64Array" ); } else if ( array instanceof Uint16Array ) { type = _gl.UNSIGNED_SHORT; } else if ( array instanceof Int16Array ) { type = _gl.SHORT; } else if ( array instanceof Uint32Array ) { type = _gl.UNSIGNED_INT; } else if ( array instanceof Int32Array ) { type = _gl.INT; } else if ( array instanceof Int8Array ) { type = _gl.BYTE; } else if ( array instanceof Uint8Array ) { type = _gl.UNSIGNED_BYTE; } var size = geometryAttribute.itemSize; var buffer = objects.getAttributeBuffer( geometryAttribute ); if ( geometryAttribute.isInterleavedBufferAttribute ) { var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset; if ( data && data.isInstancedInterleavedBuffer ) { state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = data.meshPerAttribute * data.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * data.array.BYTES_PER_ELEMENT, ( startIndex * stride + offset ) * data.array.BYTES_PER_ELEMENT ); } else { if ( geometryAttribute.isInstancedBufferAttribute ) { state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * geometryAttribute.array.BYTES_PER_ELEMENT ); } } else if ( materialDefaultAttributeValues !== undefined ) { var value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: _gl.vertexAttrib2fv( programAttribute, value ); break; case 3: _gl.vertexAttrib3fv( programAttribute, value ); break; case 4: _gl.vertexAttrib4fv( programAttribute, value ); break; default: _gl.vertexAttrib1fv( programAttribute, value ); } } } } } state.disableUnusedAttributes(); } // Sorting function absNumericalSort( a, b ) { return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] ); } function painterSortStable( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } else if ( a.material.program && b.material.program && a.material.program !== b.material.program ) { return a.material.program.id - b.material.program.id; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } // reset caching for this frame _currentGeometryProgram = ''; _currentMaterialId = - 1; _currentCamera = null; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); lights.length = 0; opaqueObjectsLastIndex = - 1; transparentObjectsLastIndex = - 1; sprites.length = 0; lensFlares.length = 0; _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); projectObject( scene, camera ); opaqueObjects.length = opaqueObjectsLastIndex + 1; transparentObjects.length = transparentObjectsLastIndex + 1; if ( _this.sortObjects === true ) { opaqueObjects.sort( painterSortStable ); transparentObjects.sort( reversePainterSortStable ); } // if ( _clippingEnabled ) _clipping.beginShadows(); setupShadows( lights ); shadowMap.render( scene, camera ); setupLights( lights, camera ); if ( _clippingEnabled ) _clipping.endShadows(); // _infoRender.calls = 0; _infoRender.vertices = 0; _infoRender.faces = 0; _infoRender.points = 0; if ( renderTarget === undefined ) { renderTarget = null; } this.setRenderTarget( renderTarget ); // var background = scene.background; if ( background === null ) { glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); } else if ( background && background.isColor ) { glClearColor( background.r, background.g, background.b, 1 ); forceClear = true; } if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } if ( background && background.isCubeTexture ) { backgroundCamera2.projectionMatrix.copy( camera.projectionMatrix ); backgroundCamera2.matrixWorld.extractRotation( camera.matrixWorld ); backgroundCamera2.matrixWorldInverse.getInverse( backgroundCamera2.matrixWorld ); backgroundBoxMesh.material.uniforms[ "tCube" ].value = background; backgroundBoxMesh.modelViewMatrix.multiplyMatrices( backgroundCamera2.matrixWorldInverse, backgroundBoxMesh.matrixWorld ); objects.update( backgroundBoxMesh ); _this.renderBufferDirect( backgroundCamera2, null, backgroundBoxMesh.geometry, backgroundBoxMesh.material, backgroundBoxMesh, null ); } else if ( background && background.isTexture ) { backgroundPlaneMesh.material.map = background; objects.update( backgroundPlaneMesh ); _this.renderBufferDirect( backgroundCamera, null, backgroundPlaneMesh.geometry, backgroundPlaneMesh.material, backgroundPlaneMesh, null ); } // if ( scene.overrideMaterial ) { var overrideMaterial = scene.overrideMaterial; renderObjects( opaqueObjects, scene, camera, overrideMaterial ); renderObjects( transparentObjects, scene, camera, overrideMaterial ); } else { // opaque pass (front-to-back order) state.setBlending( NoBlending ); renderObjects( opaqueObjects, scene, camera ); // transparent pass (back-to-front order) renderObjects( transparentObjects, scene, camera ); } // custom render plugins (post pass) spritePlugin.render( scene, camera ); lensFlarePlugin.render( scene, camera, _currentViewport ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget ) { textures.updateRenderTargetMipmap( renderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render state.setDepthTest( true ); state.setDepthWrite( true ); state.setColorWrite( true ); // _gl.finish(); }; function pushRenderItem( object, geometry, material, z, group ) { var array, index; // allocate the next position in the appropriate array if ( material.transparent ) { array = transparentObjects; index = ++ transparentObjectsLastIndex; } else { array = opaqueObjects; index = ++ opaqueObjectsLastIndex; } // recycle existing render item or grow the array var renderItem = array[ index ]; if ( renderItem !== undefined ) { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.z = _vector3.z; renderItem.group = group; } else { renderItem = { id: object.id, object: object, geometry: geometry, material: material, z: _vector3.z, group: group }; // assert( index === array.length ); array.push( renderItem ); } } // TODO Duplicated code (Frustum) function isObjectViewable( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere.copy( geometry.boundingSphere ). applyMatrix4( object.matrixWorld ); return isSphereViewable( _sphere ); } function isSpriteViewable( sprite ) { _sphere.center.set( 0, 0, 0 ); _sphere.radius = 0.7071067811865476; _sphere.applyMatrix4( sprite.matrixWorld ); return isSphereViewable( _sphere ); } function isSphereViewable( sphere ) { if ( ! _frustum.intersectsSphere( sphere ) ) return false; var numPlanes = _clipping.numPlanes; if ( numPlanes === 0 ) return true; var planes = _this.clippingPlanes, center = sphere.center, negRad = - sphere.radius, i = 0; do { // out when deeper than radius in the negative halfspace if ( planes[ i ].distanceToPoint( center ) < negRad ) return false; } while ( ++ i !== numPlanes ); return true; } function projectObject( object, camera ) { if ( object.visible === false ) return; var visible = ( object.layers.mask & camera.layers.mask ) !== 0; if ( visible ) { if ( object.isLight ) { lights.push( object ); } else if ( object.isSprite ) { if ( object.frustumCulled === false || isSpriteViewable( object ) === true ) { sprites.push( object ); } } else if ( object.isLensFlare ) { lensFlares.push( object ); } else if ( object.isImmediateRenderObject ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } pushRenderItem( object, null, object.material, _vector3.z, null ); } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { object.skeleton.update(); } if ( object.frustumCulled === false || isObjectViewable( object ) === true ) { var material = object.material; if ( material.visible === true ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } var geometry = objects.update( object ); if ( material.isMultiMaterial ) { var groups = geometry.groups; var materials = material.materials; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { pushRenderItem( object, geometry, groupMaterial, _vector3.z, group ); } } } else { pushRenderItem( object, geometry, material, _vector3.z, null ); } } } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera ); } } function renderObjects( renderList, scene, camera, overrideMaterial ) { for ( var i = 0, l = renderList.length; i < l; i ++ ) { var renderItem = renderList[ i ]; var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial; var group = renderItem.group; object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); object.onBeforeRender( _this, scene, camera, geometry, material, group ); if ( object.isImmediateRenderObject ) { setMaterial( material ); var program = setProgram( camera, scene.fog, material, object ); _currentGeometryProgram = ''; object.render( function ( object ) { _this.renderBufferImmediate( object, program, material ); } ); } else { _this.renderBufferDirect( camera, scene.fog, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); } } function initMaterial( material, fog, object ) { var materialProperties = properties.get( material ); var parameters = programCache.getParameters( material, _lights, fog, _clipping.numPlanes, _clipping.numIntersection, object ); var code = programCache.getProgramCode( material, parameters ); var program = materialProperties.program; var programChange = true; if ( program === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); } else if ( program.code !== code ) { // changed glsl or parameters releaseMaterialProgramReference( material ); } else if ( parameters.shaderID !== undefined ) { // same glsl and uniform list return; } else { // only rebuild uniform list programChange = false; } if ( programChange ) { if ( parameters.shaderID ) { var shader = ShaderLib[ parameters.shaderID ]; materialProperties.__webglShader = { name: material.type, uniforms: UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader }; } else { materialProperties.__webglShader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader }; } material.__webglShader = materialProperties.__webglShader; program = programCache.acquireProgram( material, parameters, code ); materialProperties.program = program; material.program = program; } var attributes = program.getAttributes(); if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; for ( var i = 0; i < _this.maxMorphTargets; i ++ ) { if ( attributes[ 'morphTarget' + i ] >= 0 ) { material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; for ( var i = 0; i < _this.maxMorphNormals; i ++ ) { if ( attributes[ 'morphNormal' + i ] >= 0 ) { material.numSupportedMorphNormals ++; } } } var uniforms = materialProperties.__webglShader.uniforms; if ( ! material.isShaderMaterial && ! material.isRawShaderMaterial || material.clipping === true ) { materialProperties.numClippingPlanes = _clipping.numPlanes; materialProperties.numIntersection = _clipping.numIntersection; uniforms.clippingPlanes = _clipping.uniform; } materialProperties.fog = fog; // store the light setup it was created for materialProperties.lightsHash = _lights.hash; if ( material.lights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = _lights.ambient; uniforms.directionalLights.value = _lights.directional; uniforms.spotLights.value = _lights.spot; uniforms.pointLights.value = _lights.point; uniforms.hemisphereLights.value = _lights.hemi; uniforms.directionalShadowMap.value = _lights.directionalShadowMap; uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix; uniforms.spotShadowMap.value = _lights.spotShadowMap; uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix; uniforms.pointShadowMap.value = _lights.pointShadowMap; uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix; } var progUniforms = materialProperties.program.getUniforms(), uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); materialProperties.uniformsList = uniformsList; } function setMaterial( material ) { material.side === DoubleSide ? state.disable( _gl.CULL_FACE ) : state.enable( _gl.CULL_FACE ); state.setFlipSided( material.side === BackSide ); material.transparent === true ? state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ) : state.setBlending( NoBlending ); state.setDepthFunc( material.depthFunc ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); state.setColorWrite( material.colorWrite ); state.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } function setProgram( camera, fog, material, object ) { _usedTextureUnits = 0; var materialProperties = properties.get( material ); if ( _clippingEnabled ) { if ( _localClippingEnabled || camera !== _currentCamera ) { var useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) _clipping.setState( material.clippingPlanes, material.clipIntersection, material.clipShadows, camera, materialProperties, useCache ); } } if ( material.needsUpdate === false ) { if ( materialProperties.program === undefined ) { material.needsUpdate = true; } else if ( material.fog && materialProperties.fog !== fog ) { material.needsUpdate = true; } else if ( material.lights && materialProperties.lightsHash !== _lights.hash ) { material.needsUpdate = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== _clipping.numPlanes || materialProperties.numIntersection !== _clipping.numIntersection ) ) { material.needsUpdate = true; } } if ( material.needsUpdate ) { initMaterial( material, fog, object ); material.needsUpdate = false; } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.__webglShader.uniforms; if ( program.id !== _currentProgram ) { _gl.useProgram( program.program ); _currentProgram = program.id; refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || camera !== _currentCamera ) { p_uniforms.set( _gl, camera, 'projectionMatrix' ); if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( camera !== _currentCamera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.envMap ) { var uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } } if ( material.isMeshPhongMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.skinning ) { p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); } p_uniforms.set( _gl, _this, 'toneMappingExposure' ); p_uniforms.set( _gl, _this, 'toneMappingWhitePoint' ); } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if ( material.skinning ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); var skeleton = object.skeleton; if ( skeleton ) { if ( capabilities.floatVertexTextures && skeleton.useVertexTexture ) { p_uniforms.set( _gl, skeleton, 'boneTexture' ); p_uniforms.set( _gl, skeleton, 'boneTextureWidth' ); p_uniforms.set( _gl, skeleton, 'boneTextureHeight' ); } else { p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' ); } } } if ( refreshMaterial ) { if ( material.lights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material.isMeshBasicMaterial || material.isMeshLambertMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isMeshDepthMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material.isLineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material.isLineDashedMaterial ) { refreshUniformsLine( m_uniforms, material ); refreshUniformsDash( m_uniforms, material ); } else if ( material.isPointsMaterial ) { refreshUniformsPoints( m_uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( m_uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsStandard( m_uniforms, material ); } else if ( material.isMeshDepthMaterial ) { if ( material.displacementMap ) { m_uniforms.displacementMap.value = material.displacementMap; m_uniforms.displacementScale.value = material.displacementScale; m_uniforms.displacementBias.value = material.displacementBias; } } else if ( material.isMeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this ); } // common matrices p_uniforms.set( _gl, object, 'modelViewMatrix' ); p_uniforms.set( _gl, object, 'normalMatrix' ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); return program; } // Uniforms (refresh uniforms objects) function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; uniforms.diffuse.value = material.color; if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset = uvScaleMap.offset; var repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } uniforms.envMap.value = material.envMap; // don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * _pixelRatio; uniforms.scale.value = _height * 0.5; uniforms.map.value = material.map; if ( material.map !== null ) { var offset = material.map.offset; var repeat = material.map.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } function refreshUniformsFog( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshUniformsLambert( uniforms, material ) { if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value = material.specular; uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material ) { uniforms.clearCoat.value = material.clearCoat; uniforms.clearCoatRoughness.value = material.clearCoatRoughness; refreshUniformsStandard( uniforms, material ); } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } // Lighting function setupShadows( lights ) { var lightShadowsLength = 0; for ( var i = 0, l = lights.length; i < l; i ++ ) { var light = lights[ i ]; if ( light.castShadow ) { _lights.shadows[ lightShadowsLength ++ ] = light; } } _lights.shadows.length = lightShadowsLength; } function setupLights( lights, camera ) { var l, ll, light, r = 0, g = 0, b = 0, color, intensity, distance, shadowMap, viewMatrix = camera.matrixWorldInverse, directionalLength = 0, pointLength = 0, spotLength = 0, hemiLength = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; color = light.color; intensity = light.intensity; distance = light.distance; shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light.isDirectionalLight ) { var uniforms = lightCache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; } _lights.directionalShadowMap[ directionalLength ] = shadowMap; _lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; _lights.directional[ directionalLength ++ ] = uniforms; } else if ( light.isSpotLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; } _lights.spotShadowMap[ spotLength ] = shadowMap; _lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix; _lights.spot[ spotLength ++ ] = uniforms; } else if ( light.isPointLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; } _lights.pointShadowMap[ pointLength ] = shadowMap; if ( _lights.pointShadowMatrix[ pointLength ] === undefined ) { _lights.pointShadowMatrix[ pointLength ] = new Matrix4(); } // for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position _vector3.setFromMatrixPosition( light.matrixWorld ).negate(); _lights.pointShadowMatrix[ pointLength ].identity().setPosition( _vector3 ); _lights.point[ pointLength ++ ] = uniforms; } else if ( light.isHemisphereLight ) { var uniforms = lightCache.get( light ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize(); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); _lights.hemi[ hemiLength ++ ] = uniforms; } } _lights.ambient[ 0 ] = r; _lights.ambient[ 1 ] = g; _lights.ambient[ 2 ] = b; _lights.directional.length = directionalLength; _lights.spot.length = spotLength; _lights.point.length = pointLength; _lights.hemi.length = hemiLength; _lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + hemiLength + ',' + _lights.shadows.length; } // GL state setting this.setFaceCulling = function ( cullFace, frontFaceDirection ) { state.setCullFace( cullFace ); state.setFlipSided( frontFaceDirection === FrontFaceDirectionCW ); }; // Textures function allocTextureUnit() { var textureUnit = _usedTextureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } _usedTextureUnits += 1; return textureUnit; } this.allocTextureUnit = allocTextureUnit; // this.setTexture2D = setTexture2D; this.setTexture2D = ( function() { var warned = false; // backwards compatibility: peel texture.texture return function setTexture2D( texture, slot ) { if ( texture && texture.isWebGLRenderTarget ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." ); warned = true; } texture = texture.texture; } textures.setTexture2D( texture, slot ); }; }() ); this.setTexture = ( function() { var warned = false; return function setTexture( texture, slot ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." ); warned = true; } textures.setTexture2D( texture, slot ); }; }() ); this.setTextureCube = ( function() { var warned = false; return function setTextureCube( texture, slot ) { // backwards compatibility: peel texture.texture if ( texture && texture.isWebGLRenderTargetCube ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." ); warned = true; } texture = texture.texture; } // currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture // TODO: unify these code paths if ( ( texture && texture.isCubeTexture ) || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ // this function alone should take care of cube textures textures.setTextureCube( texture, slot ); } else { // assumed: texture property of THREE.WebGLRenderTargetCube textures.setTextureCubeDynamic( texture, slot ); } }; }() ); this.getCurrentRenderTarget = function() { return _currentRenderTarget; }; this.setRenderTarget = function ( renderTarget ) { _currentRenderTarget = renderTarget; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube ); var framebuffer; if ( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); if ( isCube ) { framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTargetProperties.__webglFramebuffer; } _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; _currentViewport.copy( renderTarget.viewport ); } else { framebuffer = null; _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ); _currentScissorTest = _scissorTest; _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ); } if ( _currentFramebuffer !== framebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _currentFramebuffer = framebuffer; } state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); state.viewport( _currentViewport ); if ( isCube ) { var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel ); } }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) { if ( ( renderTarget && renderTarget.isWebGLRenderTarget ) === false ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } var framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( framebuffer ) { var restore = false; if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); restore = true; } try { var texture = renderTarget.texture; var textureFormat = texture.format; var textureType = texture.type; if ( textureFormat !== RGBAFormat && paramThreeToGL( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( textureType !== UnsignedByteType && paramThreeToGL( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! ( textureType === HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, paramThreeToGL( textureFormat ), paramThreeToGL( textureType ), buffer ); } } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { if ( restore ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer ); } } } }; // Map three.js constants to WebGL constants function paramThreeToGL( p ) { var extension; if ( p === RepeatWrapping ) return _gl.REPEAT; if ( p === ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === NearestFilter ) return _gl.NEAREST; if ( p === NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === LinearFilter ) return _gl.LINEAR; if ( p === LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === ByteType ) return _gl.BYTE; if ( p === ShortType ) return _gl.SHORT; if ( p === UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === IntType ) return _gl.INT; if ( p === UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === FloatType ) return _gl.FLOAT; if ( p === HalfFloatType ) { extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) return extension.HALF_FLOAT_OES; } if ( p === AlphaFormat ) return _gl.ALPHA; if ( p === RGBFormat ) return _gl.RGB; if ( p === RGBAFormat ) return _gl.RGBA; if ( p === LuminanceFormat ) return _gl.LUMINANCE; if ( p === LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === DepthFormat ) return _gl.DEPTH_COMPONENT; if ( p === DepthStencilFormat ) return _gl.DEPTH_STENCIL; if ( p === AddEquation ) return _gl.FUNC_ADD; if ( p === SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === ZeroFactor ) return _gl.ZERO; if ( p === OneFactor ) return _gl.ONE; if ( p === SrcColorFactor ) return _gl.SRC_COLOR; if ( p === OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === DstColorFactor ) return _gl.DST_COLOR; if ( p === OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } } if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } } if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL; } if ( p === MinEquation || p === MaxEquation ) { extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { if ( p === MinEquation ) return extension.MIN_EXT; if ( p === MaxEquation ) return extension.MAX_EXT; } } if ( p === UnsignedInt248Type ) { extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL; } return 0; } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function FogExp2 ( color, density ) { this.name = ''; this.color = new Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; } FogExp2.prototype.isFogExp2 = true; FogExp2.prototype.clone = function () { return new FogExp2( this.color.getHex(), this.density ); }; FogExp2.prototype.toJSON = function ( meta ) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density }; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Fog ( color, near, far ) { this.name = ''; this.color = new Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; } Fog.prototype.isFog = true; Fog.prototype.clone = function () { return new Fog( this.color.getHex(), this.near, this.far ); }; Fog.prototype.toJSON = function ( meta ) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far }; }; /** * @author mrdoob / http://mrdoob.com/ */ function Scene () { Object3D.call( this ); this.type = 'Scene'; this.background = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer } Scene.prototype = Object.create( Object3D.prototype ); Scene.prototype.constructor = Scene; Scene.prototype.copy = function ( source, recursive ) { Object3D.prototype.copy.call( this, source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; }; Scene.prototype.toJSON = function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); if ( this.background !== null ) data.object.background = this.background.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); return data; }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function LensFlare( texture, size, distance, blending, color ) { Object3D.call( this ); this.lensFlares = []; this.positionScreen = new Vector3(); this.customUpdateCallback = undefined; if ( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } } LensFlare.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: LensFlare, isLensFlare: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.positionScreen.copy( source.positionScreen ); this.customUpdateCallback = source.customUpdateCallback; for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) { this.lensFlares.push( source.lensFlares[ i ] ); } return this; }, add: function ( texture, size, distance, blending, color, opacity ) { if ( size === undefined ) size = - 1; if ( distance === undefined ) distance = 0; if ( opacity === undefined ) opacity = 1; if ( color === undefined ) color = new Color( 0xffffff ); if ( blending === undefined ) blending = NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back scale: 1, // scale rotation: 0, // rotation opacity: opacity, // opacity color: color, // color blending: blending // blending } ); }, /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ updateLensFlares: function () { var f, fl = this.lensFlares.length; var flare; var vecX = - this.positionScreen.x * 2; var vecY = - this.positionScreen.y * 2; for ( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } } } ); /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2() * } */ function SpriteMaterial( parameters ) { Material.call( this ); this.type = 'SpriteMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.rotation = 0; this.fog = false; this.lights = false; this.setValues( parameters ); } SpriteMaterial.prototype = Object.create( Material.prototype ); SpriteMaterial.prototype.constructor = SpriteMaterial; SpriteMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.rotation = source.rotation; return this; }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function Sprite( material ) { Object3D.call( this ); this.type = 'Sprite'; this.material = ( material !== undefined ) ? material : new SpriteMaterial(); } Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Sprite, isSprite: true, raycast: ( function () { var matrixPosition = new Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distanceSq = raycaster.ray.distanceSqToPoint( matrixPosition ); var guessSizeSq = this.scale.x * this.scale.y / 4; if ( distanceSq > guessSizeSq ) { return; } intersects.push( { distance: Math.sqrt( distanceSq ), point: this.position, face: null, object: this } ); }; }() ), clone: function () { return new this.constructor( this.material ).copy( this ); } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function LOD() { Object3D.call( this ); this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] } } ); } LOD.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: LOD, copy: function ( source ) { Object3D.prototype.copy.call( this, source, false ); var levels = source.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } return this; }, addLevel: function ( object, distance ) { if ( distance === undefined ) distance = 0; distance = Math.abs( distance ); var levels = this.levels; for ( var l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); }, getObjectForDistance: function ( distance ) { var levels = this.levels; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; }, raycast: ( function () { var matrixPosition = new Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( matrixPosition ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); }; }() ), update: function () { var v1 = new Vector3(); var v2 = new Vector3(); return function update( camera ) { var levels = this.levels; if ( levels.length > 1 ) { v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld ); var distance = v1.distanceTo( v2 ); levels[ 0 ].object.visible = true; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } }; }(), toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.levels = []; var levels = this.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; } } ); /** * @author alteredq / http://alteredqualia.com/ */ function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { data: data, width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } DataTexture.prototype = Object.create( Texture.prototype ); DataTexture.prototype.constructor = DataTexture; DataTexture.prototype.isDataTexture = true; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ function Skeleton( bones, boneInverses, useVertexTexture ) { this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true; this.identityMatrix = new Matrix4(); // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); // create a bone texture or an array of floats if ( this.useVertexTexture ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = _Math.nextPowerOfTwo( Math.ceil( size ) ); size = Math.max( size, 4 ); this.boneTextureWidth = size; this.boneTextureHeight = size; this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel this.boneTexture = new DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, RGBAFormat, FloatType ); } else { this.boneMatrices = new Float32Array( 16 * this.bones.length ); } // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton bonInverses is the wrong length.' ); this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { this.boneInverses.push( new Matrix4() ); } } } } Object.assign( Skeleton.prototype, { calculateInverses: function () { this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { var inverse = new Matrix4(); if ( this.bones[ b ] ) { inverse.getInverse( this.bones[ b ].matrixWorld ); } this.boneInverses.push( inverse ); } }, pose: function () { var bone; // recover the bind-time world matrices for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ b ] ); } } // compute the local matrices, positions, rotations and scales for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { if ( (bone.parent && bone.parent.isBone) ) { bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } }, update: ( function () { var offsetMatrix = new Matrix4(); return function update() { // flatten bone matrices to array for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { // compute the offset between the current and the original transform var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix; offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] ); offsetMatrix.toArray( this.boneMatrices, b * 16 ); } if ( this.useVertexTexture ) { this.boneTexture.needsUpdate = true; } }; } )(), clone: function () { return new Skeleton( this.bones, this.boneInverses, this.useVertexTexture ); } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function Bone( skin ) { Object3D.call( this ); this.type = 'Bone'; this.skin = skin; } Bone.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Bone, isBone: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.skin = source.skin; return this; } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function SkinnedMesh( geometry, material, useVertexTexture ) { Mesh.call( this, geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = "attached"; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); // init bones // TODO: remove bone creation as there is no reason (other than // convenience) for THREE.SkinnedMesh to do this. var bones = []; if ( this.geometry && this.geometry.bones !== undefined ) { var bone, gbone; for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; bone = new Bone( this ); bones.push( bone ); bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl ); } for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; if ( gbone.parent !== - 1 && gbone.parent !== null && bones[ gbone.parent ] !== undefined ) { bones[ gbone.parent ].add( bones[ b ] ); } else { this.add( bones[ b ] ); } } } this.normalizeSkinWeights(); this.updateMatrixWorld( true ); this.bind( new Skeleton( bones, undefined, useVertexTexture ), this.matrixWorld ); } SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { constructor: SkinnedMesh, isSkinnedMesh: true, bind: function( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }, pose: function () { this.skeleton.pose(); }, normalizeSkinWeights: function () { if ( (this.geometry && this.geometry.isGeometry) ) { for ( var i = 0; i < this.geometry.skinWeights.length; i ++ ) { var sw = this.geometry.skinWeights[ i ]; var scale = 1.0 / sw.lengthManhattan(); if ( scale !== Infinity ) { sw.multiplyScalar( scale ); } else { sw.set( 1, 0, 0, 0 ); // do something reasonable } } } else if ( (this.geometry && this.geometry.isBufferGeometry) ) { var vec = new Vector4(); var skinWeight = this.geometry.attributes.skinWeight; for ( var i = 0; i < skinWeight.count; i ++ ) { vec.x = skinWeight.getX( i ); vec.y = skinWeight.getY( i ); vec.z = skinWeight.getZ( i ); vec.w = skinWeight.getW( i ); var scale = 1.0 / vec.lengthManhattan(); if ( scale !== Infinity ) { vec.multiplyScalar( scale ); } else { vec.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w ); } } }, updateMatrixWorld: function( force ) { Mesh.prototype.updateMatrixWorld.call( this, true ); if ( this.bindMode === "attached" ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === "detached" ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh unrecognized bindMode: ' + this.bindMode ); } }, clone: function() { return new this.constructor( this.geometry, this.material, this.skeleton.useVertexTexture ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ function LineBasicMaterial( parameters ) { Material.call( this ); this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.lights = false; this.setValues( parameters ); } LineBasicMaterial.prototype = Object.create( Material.prototype ); LineBasicMaterial.prototype.constructor = LineBasicMaterial; LineBasicMaterial.prototype.isLineBasicMaterial = true; LineBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; return this; }; /** * @author mrdoob / http://mrdoob.com/ */ function Line( geometry, material, mode ) { if ( mode === 1 ) { console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' ); return new LineSegments( geometry, material ); } Object3D.call( this ); this.type = 'Line'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } ); } Line.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Line, isLine: true, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); return function raycast( raycaster, intersects ) { var precision = raycaster.linePrecision; var precisionSq = precision * precision; var geometry = this.geometry; var matrixWorld = this.matrixWorld; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var vStart = new Vector3(); var vEnd = new Vector3(); var interSegment = new Vector3(); var interRay = new Vector3(); var step = (this && this.isLineSegments) ? 2 : 1; if ( (geometry && geometry.isBufferGeometry) ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length - 1; i < l; i += step ) { var a = indices[ i ]; var b = indices[ i + 1 ]; vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) { vStart.fromArray( positions, 3 * i ); vEnd.fromArray( positions, 3 * i + 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } else if ( (geometry && geometry.isGeometry) ) { var vertices = geometry.vertices; var nbVertices = vertices.length; for ( var i = 0; i < nbVertices - 1; i += step ) { var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function LineSegments( geometry, material ) { Line.call( this, geometry, material ); this.type = 'LineSegments'; } LineSegments.prototype = Object.assign( Object.create( Line.prototype ), { constructor: LineSegments, isLineSegments: true } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * sizeAttenuation: * } */ function PointsMaterial( parameters ) { Material.call( this ); this.type = 'PointsMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.size = 1; this.sizeAttenuation = true; this.lights = false; this.setValues( parameters ); } PointsMaterial.prototype = Object.create( Material.prototype ); PointsMaterial.prototype.constructor = PointsMaterial; PointsMaterial.prototype.isPointsMaterial = true; PointsMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; return this; }; /** * @author alteredq / http://alteredqualia.com/ */ function Points( geometry, material ) { Object3D.call( this ); this.type = 'Points'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } ); } Points.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Points, isPoints: true, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); return function raycast( raycaster, intersects ) { var object = this; var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var position = new Vector3(); function testPoint( point, index ) { var rayPointDistanceSq = ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { var intersectPoint = ray.closestPointToPoint( point ); intersectPoint.applyMatrix4( matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint.clone(), index: index, face: null, object: object } ); } } if ( (geometry && geometry.isBufferGeometry) ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, il = indices.length; i < il; i ++ ) { var a = indices[ i ]; position.fromArray( positions, a * 3 ); testPoint( position, a ); } } else { for ( var i = 0, l = positions.length / 3; i < l; i ++ ) { position.fromArray( positions, i * 3 ); testPoint( position, i ); } } } else { var vertices = geometry.vertices; for ( var i = 0, l = vertices.length; i < l; i ++ ) { testPoint( vertices[ i ], i ); } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function Group() { Object3D.call( this ); this.type = 'Group'; } Group.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Group } ); /** * @author mrdoob / http://mrdoob.com/ */ function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.generateMipmaps = false; var scope = this; function update() { requestAnimationFrame( update ); if ( video.readyState >= video.HAVE_CURRENT_DATA ) { scope.needsUpdate = true; } } update(); } VideoTexture.prototype = Object.create( Texture.prototype ); VideoTexture.prototype.constructor = VideoTexture; /** * @author alteredq / http://alteredqualia.com/ */ function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } CompressedTexture.prototype = Object.create( Texture.prototype ); CompressedTexture.prototype.constructor = CompressedTexture; CompressedTexture.prototype.isCompressedTexture = true; /** * @author mrdoob / http://mrdoob.com/ */ function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; } CanvasTexture.prototype = Object.create( Texture.prototype ); CanvasTexture.prototype.constructor = CanvasTexture; /** * @author Matt DesLauriers / @mattdesl * @author atix / arthursilber.de */ function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat; if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ) } Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.type = type !== undefined ? type : UnsignedShortType; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; } DepthTexture.prototype = Object.create( Texture.prototype ); DepthTexture.prototype.constructor = DepthTexture; DepthTexture.prototype.isDepthTexture = true; /** * @author mrdoob / http://mrdoob.com/ */ function WireframeGeometry( geometry ) { BufferGeometry.call( this ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; if ( (geometry && geometry.isGeometry) ) { var vertices = geometry.vertices; var faces = geometry.faces; var numEdges = 0; // allocate maximal size var edges = new Uint32Array( 6 * faces.length ); for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var vertex = vertices[ edges [ 2 * i + j ] ]; var index = 6 * i + 3 * j; coords[ index + 0 ] = vertex.x; coords[ index + 1 ] = vertex.y; coords[ index + 2 ] = vertex.z; } } this.addAttribute( 'position', new BufferAttribute( coords, 3 ) ); } else if ( (geometry && geometry.isBufferGeometry) ) { if ( geometry.index !== null ) { // Indexed BufferGeometry var indices = geometry.index.array; var vertices = geometry.attributes.position; var groups = geometry.groups; var numEdges = 0; if ( groups.length === 0 ) { geometry.addGroup( 0, indices.length ); } // allocate maximal size var edges = new Uint32Array( 2 * indices.length ); for ( var o = 0, ol = groups.length; o < ol; ++ o ) { var group = groups[ o ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = indices[ i + j ]; edge[ 1 ] = indices[ i + ( j + 1 ) % 3 ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var index = 6 * i + 3 * j; var index2 = edges[ 2 * i + j ]; coords[ index + 0 ] = vertices.getX( index2 ); coords[ index + 1 ] = vertices.getY( index2 ); coords[ index + 2 ] = vertices.getZ( index2 ); } } this.addAttribute( 'position', new BufferAttribute( coords, 3 ) ); } else { // non-indexed BufferGeometry var vertices = geometry.attributes.position.array; var numEdges = vertices.length / 3; var numTris = numEdges / 3; var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numTris; i < l; i ++ ) { for ( var j = 0; j < 3; j ++ ) { var index = 18 * i + 6 * j; var index1 = 9 * i + 3 * j; coords[ index + 0 ] = vertices[ index1 ]; coords[ index + 1 ] = vertices[ index1 + 1 ]; coords[ index + 2 ] = vertices[ index1 + 2 ]; var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 ); coords[ index + 3 ] = vertices[ index2 ]; coords[ index + 4 ] = vertices[ index2 + 1 ]; coords[ index + 5 ] = vertices[ index2 + 2 ]; } } this.addAttribute( 'position', new BufferAttribute( coords, 3 ) ); } } } WireframeGeometry.prototype = Object.create( BufferGeometry.prototype ); WireframeGeometry.prototype.constructor = WireframeGeometry; /** * @author Mugen87 / https://github.com/Mugen87 * * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 */ function ParametricBufferGeometry( func, slices, stacks ) { BufferGeometry.call( this ); this.type = 'ParametricBufferGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; // generate vertices and uvs var vertices = []; var uvs = []; var i, j, p; var u, v; var sliceCount = slices + 1; for ( i = 0; i <= stacks; i ++ ) { v = i / stacks; for ( j = 0; j <= slices; j ++ ) { u = j / slices; p = func( u, v ); vertices.push( p.x, p.y, p.z ); uvs.push( u, v ); } } // generate indices var indices = []; var a, b, c, d; for ( i = 0; i < stacks; i ++ ) { for ( j = 0; j < slices; j ++ ) { a = i * sliceCount + j; b = i * sliceCount + j + 1; c = ( i + 1 ) * sliceCount + j + 1; d = ( i + 1 ) * sliceCount + j; // faces one and two indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( ( indices.length > 65535 ? Uint32Attribute : Uint16Attribute )( indices, 1 ) ); this.addAttribute( 'position', Float32Attribute( vertices, 3 ) ); this.addAttribute( 'uv', Float32Attribute( uvs, 2 ) ); // generate normals this.computeVertexNormals(); } ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry; /** * @author zz85 / https://github.com/zz85 * * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 */ function ParametricGeometry( func, slices, stacks ) { Geometry.call( this ); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) ); this.mergeVertices(); } ParametricGeometry.prototype = Object.create( Geometry.prototype ); ParametricGeometry.prototype.constructor = ParametricGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function PolyhedronBufferGeometry( vertices, indices, radius, detail ) { BufferGeometry.call( this ); this.type = 'PolyhedronBufferGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; radius = radius || 1; detail = detail || 0; // default buffer data var vertexBuffer = []; var uvBuffer = []; // the subdivision creates the vertex buffer data subdivide( detail ); // all vertices should lie on a conceptual sphere with a given radius appplyRadius( radius ); // finally, create the uv data generateUVs(); // build non-indexed geometry this.addAttribute( 'position', Float32Attribute( vertexBuffer, 3 ) ); this.addAttribute( 'normal', Float32Attribute( vertexBuffer.slice(), 3 ) ); this.addAttribute( 'uv', Float32Attribute( uvBuffer, 2 ) ); this.normalizeNormals(); this.boundingSphere = new Sphere( new Vector3(), radius ); // helper functions function subdivide( detail ) { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value for ( var i = 0; i < indices.length; i += 3 ) { // get the vertices of the face getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c ); // perform subdivision subdivideFace( a, b, c, detail ); } } function subdivideFace( a, b, c, detail ) { var cols = Math.pow( 2, detail ); // we use this multidimensional array as a data structure for creating the subdivision var v = []; var i, j; // construct all of the vertices for this subdivision for ( i = 0 ; i <= cols; i ++ ) { v[ i ] = []; var aj = a.clone().lerp( c, i / cols ); var bj = b.clone().lerp( c, i / cols ); var rows = cols - i; for ( j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); } } } // construct all of the faces for ( i = 0; i < cols ; i ++ ) { for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { var k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); pushVertex( v[ i ][ k ] ); } else { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); } } } } function appplyRadius( radius ) { var vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; vertex.normalize().multiplyScalar( radius ); vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z; } } function generateUVs() { var vertex = new Vector3(); for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; var u = azimuth( vertex ) / 2 / Math.PI + 0.5; var v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v ); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for ( var i = 0; i < uvBuffer.length; i += 6 ) { // uv data of a single face var x0 = uvBuffer[ i + 0 ]; var x1 = uvBuffer[ i + 2 ]; var x2 = uvBuffer[ i + 4 ]; var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 ); // 0.9 is somewhat arbitrary if ( max > 0.9 && min < 0.1 ) { if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1; } } } function pushVertex( vertex ) { vertexBuffer.push( vertex.x, vertex.y, vertex.z ); } function getVertexByIndex( index, vertex ) { var stride = index * 3; vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ]; } function correctUVs() { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); var centroid = new Vector3(); var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2(); for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); var azi = azimuth( centroid ); correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi ); } } function correctUV( uv, stride, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { uvBuffer[ stride ] = uv.x - 1; } if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } } PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function TetrahedronBufferGeometry( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'TetrahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley */ function TetrahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new THREE.TetrahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } TetrahedronGeometry.prototype = Object.create( Geometry.prototype ); TetrahedronGeometry.prototype.constructor = TetrahedronGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function OctahedronBufferGeometry( radius,detail ) { var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'OctahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley */ function OctahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new THREE.OctahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } OctahedronGeometry.prototype = Object.create( Geometry.prototype ); OctahedronGeometry.prototype.constructor = OctahedronGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function IcosahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'IcosahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley */ function IcosahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new THREE.IcosahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } IcosahedronGeometry.prototype = Object.create( Geometry.prototype ); IcosahedronGeometry.prototype.constructor = IcosahedronGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function DodecahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t; var vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'DodecahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry; /** * @author Abe Pazos / https://hamoid.com */ function DodecahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new THREE.DodecahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } DodecahedronGeometry.prototype = Object.create( Geometry.prototype ); DodecahedronGeometry.prototype.constructor = DodecahedronGeometry; /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley */ function PolyhedronGeometry( vertices, indices, radius, detail ) { Geometry.call( this ); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) ); this.mergeVertices(); } PolyhedronGeometry.prototype = Object.create( Geometry.prototype ); PolyhedronGeometry.prototype.constructor = PolyhedronGeometry; /** * @author Mugen87 / https://github.com/Mugen87 * * Creates a tube which extrudes along a 3d spline. * */ function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) { BufferGeometry.call( this ); this.type = 'TubeBufferGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; tubularSegments = tubularSegments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; var frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables var vertex = new Vector3(); var normal = new Vector3(); var uv = new Vector2(); var i, j; // buffer var vertices = []; var normals = []; var uvs = []; var indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( ( indices.length > 65535 ? Uint32Attribute : Uint16Attribute )( indices, 1 ) ); this.addAttribute( 'position', Float32Attribute( vertices, 3 ) ); this.addAttribute( 'normal', Float32Attribute( normals, 3 ) ); this.addAttribute( 'uv', Float32Attribute( uvs, 2 ) ); // functions function generateBufferData() { for ( i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path var P = path.getPointAt( i / tubularSegments ); // retrieve corresponding normal and binormal var N = frames.normals[ i ]; var B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( j = 0; j <= radialSegments; j ++ ) { var v = j / radialSegments * Math.PI * 2; var sin = Math.sin( v ); var cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( i = 0; i <= tubularSegments; i ++ ) { for ( j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TubeBufferGeometry.prototype.constructor = TubeBufferGeometry; /** * @author oosmoxiecode / https://github.com/oosmoxiecode * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * * Creates a tube which extrudes along a 3d spline. */ function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) { Geometry.call( this ); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' ); var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ); // expose internals this.tangents = bufferGeometry.tangents; this.normals = bufferGeometry.normals; this.binormals = bufferGeometry.binormals; // create geometry this.fromBufferGeometry( bufferGeometry ); this.mergeVertices(); } TubeGeometry.prototype = Object.create( Geometry.prototype ); TubeGeometry.prototype.constructor = TubeGeometry; /** * @author Mugen87 / https://github.com/Mugen87 * * see: http://www.blackpawn.com/texts/pqtorus/ */ function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) { BufferGeometry.call( this ); this.type = 'TorusKnotBufferGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; radius = radius || 100; tube = tube || 40; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3; // used to calculate buffer length var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) ); var indexCount = radialSegments * tubularSegments * 2 * 3; // buffers var indices = new BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var i, j, index = 0, indexOffset = 0; var vertex = new Vector3(); var normal = new Vector3(); var uv = new Vector2(); var P1 = new Vector3(); var P2 = new Vector3(); var B = new Vector3(); var T = new Vector3(); var N = new Vector3(); // generate vertices, normals and uvs for ( i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); // vertex vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.setXYZ( index, normal.x, normal.y, normal.z ); // uv uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } } // generate indices for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { // indices var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; // face two indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry; /** * @author oosmoxiecode */ function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) { Geometry.call( this ); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; if( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); this.mergeVertices(); } TorusKnotGeometry.prototype = Object.create( Geometry.prototype ); TorusKnotGeometry.prototype.constructor = TorusKnotGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) { BufferGeometry.call( this ); this.type = 'TorusBufferGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 100; tube = tube || 40; radialSegments = Math.floor( radialSegments ) || 8; tubularSegments = Math.floor( tubularSegments ) || 6; arc = arc || Math.PI * 2; // used to calculate buffer length var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) ); var indexCount = radialSegments * tubularSegments * 2 * 3; // buffers var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ); var vertices = new Float32Array( vertexCount * 3 ); var normals = new Float32Array( vertexCount * 3 ); var uvs = new Float32Array( vertexCount * 2 ); // offset variables var vertexBufferOffset = 0; var uvBufferOffset = 0; var indexBufferOffset = 0; // helper variables var center = new Vector3(); var vertex = new Vector3(); var normal = new Vector3(); var j, i; // generate vertices, normals and uvs for ( j = 0; j <= radialSegments; j ++ ) { for ( i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices[ vertexBufferOffset ] = vertex.x; vertices[ vertexBufferOffset + 1 ] = vertex.y; vertices[ vertexBufferOffset + 2 ] = vertex.z; // this vector is used to calculate the normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); // normal normal.subVectors( vertex, center ).normalize(); normals[ vertexBufferOffset ] = normal.x; normals[ vertexBufferOffset + 1 ] = normal.y; normals[ vertexBufferOffset + 2 ] = normal.z; // uv uvs[ uvBufferOffset ] = i / tubularSegments; uvs[ uvBufferOffset + 1 ] = j / radialSegments; // update offsets vertexBufferOffset += 3; uvBufferOffset += 2; } } // generate indices for ( j = 1; j <= radialSegments; j ++ ) { for ( i = 1; i <= tubularSegments; i ++ ) { // indices var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; // face one indices[ indexBufferOffset ] = a; indices[ indexBufferOffset + 1 ] = b; indices[ indexBufferOffset + 2 ] = d; // face two indices[ indexBufferOffset + 3 ] = b; indices[ indexBufferOffset + 4 ] = c; indices[ indexBufferOffset + 5 ] = d; // update offset indexBufferOffset += 6; } } // build geometry this.setIndex( new BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ) ); } TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusBufferGeometry.prototype.constructor = TorusBufferGeometry; /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888 */ function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) { Geometry.call( this ); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); } TorusGeometry.prototype = Object.create( Geometry.prototype ); TorusGeometry.prototype.constructor = TorusGeometry; /** * @author zz85 / http://www.lab4games.net/zz85/blog */ var ShapeUtils = { // calculate area of the contour polygon area: function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }, triangulate: ( function () { /** * This code is a quick port of code written in C++ which was submitted to * flipcode.com by John W. Ratcliff // July 22, 2000 * See original code and more information here: * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml * * ported to actionscript by Zevan Rosser * www.actionsnippet.com * * ported to javascript by Joshua Koo * http://www.lab4games.net/zz85/blog * */ function snip( contour, u, v, w, n, verts ) { var p; var ax, ay, bx, by; var cx, cy, px, py; ax = contour[ verts[ u ] ].x; ay = contour[ verts[ u ] ].y; bx = contour[ verts[ v ] ].x; by = contour[ verts[ v ] ].y; cx = contour[ verts[ w ] ].x; cy = contour[ verts[ w ] ].y; if ( ( bx - ax ) * ( cy - ay ) - ( by - ay ) * ( cx - ax ) <= 0 ) return false; var aX, aY, bX, bY, cX, cY; var apx, apy, bpx, bpy, cpx, cpy; var cCROSSap, bCROSScp, aCROSSbp; aX = cx - bx; aY = cy - by; bX = ax - cx; bY = ay - cy; cX = bx - ax; cY = by - ay; for ( p = 0; p < n; p ++ ) { px = contour[ verts[ p ] ].x; py = contour[ verts[ p ] ].y; if ( ( ( px === ax ) && ( py === ay ) ) || ( ( px === bx ) && ( py === by ) ) || ( ( px === cx ) && ( py === cy ) ) ) continue; apx = px - ax; apy = py - ay; bpx = px - bx; bpy = py - by; cpx = px - cx; cpy = py - cy; // see if p is inside triangle abc aCROSSbp = aX * bpy - aY * bpx; cCROSSap = cX * apy - cY * apx; bCROSScp = bX * cpy - bY * cpx; if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false; } return true; } // takes in an contour array and returns return function triangulate( contour, indices ) { var n = contour.length; if ( n < 3 ) return null; var result = [], verts = [], vertIndices = []; /* we want a counter-clockwise polygon in verts */ var u, v, w; if ( ShapeUtils.area( contour ) > 0.0 ) { for ( v = 0; v < n; v ++ ) verts[ v ] = v; } else { for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v; } var nv = n; /* remove nv - 2 vertices, creating 1 triangle every time */ var count = 2 * nv; /* error detection */ for ( v = nv - 1; nv > 2; ) { /* if we loop, it is probably a non-simple polygon */ if ( ( count -- ) <= 0 ) { //** Triangulate: ERROR - probable bad polygon! //throw ( "Warning, unable to triangulate polygon!" ); //return null; // Sometimes warning is fine, especially polygons are triangulated in reverse. console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' ); if ( indices ) return vertIndices; return result; } /* three consecutive vertices in current polygon, */ u = v; if ( nv <= u ) u = 0; /* previous */ v = u + 1; if ( nv <= v ) v = 0; /* new v */ w = v + 1; if ( nv <= w ) w = 0; /* next */ if ( snip( contour, u, v, w, nv, verts ) ) { var a, b, c, s, t; /* true names of the vertices */ a = verts[ u ]; b = verts[ v ]; c = verts[ w ]; /* output Triangle */ result.push( [ contour[ a ], contour[ b ], contour[ c ] ] ); vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] ); /* remove v from the remaining polygon */ for ( s = v, t = v + 1; t < nv; s ++, t ++ ) { verts[ s ] = verts[ t ]; } nv --; /* reset error detection counter */ count = 2 * nv; } } if ( indices ) return vertIndices; return result; } } )(), triangulateShape: function ( contour, holes ) { function removeDupEndPts(points) { var l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } removeDupEndPts( contour ); holes.forEach( removeDupEndPts ); function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) { // inOtherPt needs to be collinear to the inSegment if ( inSegPt1.x !== inSegPt2.x ) { if ( inSegPt1.x < inSegPt2.x ) { return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) ); } else { return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) ); } } else { if ( inSegPt1.y < inSegPt2.y ) { return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) ); } else { return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) ); } } } function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) { var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y; var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y; var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x; var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y; var limit = seg1dy * seg2dx - seg1dx * seg2dy; var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy; if ( Math.abs( limit ) > Number.EPSILON ) { // not parallel var perpSeg2; if ( limit > 0 ) { if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return []; } else { if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return []; } // i.e. to reduce rounding errors // intersection at endpoint of segment#1? if ( perpSeg2 === 0 ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt1 ]; } if ( perpSeg2 === limit ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt2 ]; } // intersection at endpoint of segment#2? if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ]; if ( perpSeg1 === limit ) return [ inSeg2Pt2 ]; // return real intersection point var factorSeg1 = perpSeg2 / limit; return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ]; } else { // parallel or collinear if ( ( perpSeg1 !== 0 ) || ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return []; // they are collinear or degenerate var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point? var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point? // both segments are points if ( seg1Pt && seg2Pt ) { if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) || ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points return [ inSeg1Pt1 ]; // they are the same point } // segment#1 is a single point if ( seg1Pt ) { if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2 return [ inSeg1Pt1 ]; } // segment#2 is a single point if ( seg2Pt ) { if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1 return [ inSeg2Pt1 ]; } // they are collinear segments, which might overlap var seg1min, seg1max, seg1minVal, seg1maxVal; var seg2min, seg2max, seg2minVal, seg2maxVal; if ( seg1dx !== 0 ) { // the segments are NOT on a vertical line if ( inSeg1Pt1.x < inSeg1Pt2.x ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x; } if ( inSeg2Pt1.x < inSeg2Pt2.x ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x; } } else { // the segments are on a vertical line if ( inSeg1Pt1.y < inSeg1Pt2.y ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y; } if ( inSeg2Pt1.y < inSeg2Pt2.y ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y; } } if ( seg1minVal <= seg2minVal ) { if ( seg1maxVal < seg2minVal ) return []; if ( seg1maxVal === seg2minVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg2min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ]; return [ seg2min, seg2max ]; } else { if ( seg1minVal > seg2maxVal ) return []; if ( seg1minVal === seg2maxVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg1min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ]; return [ seg1min, seg2max ]; } } } function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) { // The order of legs is important // translation of all points, so that Vertex is at (0,0) var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y; var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y; var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y; // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg. var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX; var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX; if ( Math.abs( from2toAngle ) > Number.EPSILON ) { // angle != 180 deg. var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX; // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle ); if ( from2toAngle > 0 ) { // main angle < 180 deg. return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) ); } else { // main angle > 180 deg. return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) ); } } else { // angle == 180 deg. // console.log( "from2to: 180 deg., from2other: " + from2otherAngle ); return ( from2otherAngle > 0 ); } } function removeHoles( contour, holes ) { var shape = contour.concat(); // work on this shape var hole; function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) { // Check if hole point lies within angle around shape point var lastShapeIdx = shape.length - 1; var prevShapeIdx = inShapeIdx - 1; if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx; var nextShapeIdx = inShapeIdx + 1; if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0; var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y ); return false; } // Check if shape point lies within angle around hole point var lastHoleIdx = hole.length - 1; var prevHoleIdx = inHoleIdx - 1; if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx; var nextHoleIdx = inHoleIdx + 1; if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0; insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y ); return false; } return true; } function intersectsShapeEdge( inShapePt, inHolePt ) { // checks for intersections with shape edges var sIdx, nextIdx, intersection; for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) { nextIdx = sIdx + 1; nextIdx %= shape.length; intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } return false; } var indepHoles = []; function intersectsHoleEdge( inShapePt, inHolePt ) { // checks for intersections with hole edges var ihIdx, chkHole, hIdx, nextIdx, intersection; for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) { chkHole = holes[ indepHoles[ ihIdx ]]; for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) { nextIdx = hIdx + 1; nextIdx %= chkHole.length; intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } } return false; } var holeIndex, shapeIndex, shapePt, holePt, holeIdx, cutKey, failedCuts = [], tmpShape1, tmpShape2, tmpHole1, tmpHole2; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { indepHoles.push( h ); } var minShapeIndex = 0; var counter = indepHoles.length * 2; while ( indepHoles.length > 0 ) { counter --; if ( counter < 0 ) { console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" ); break; } // search for shape-vertex and hole-vertex, // which can be connected without intersections for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) { shapePt = shape[ shapeIndex ]; holeIndex = - 1; // search for hole which can be reached without intersections for ( var h = 0; h < indepHoles.length; h ++ ) { holeIdx = indepHoles[ h ]; // prevent multiple checks cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx; if ( failedCuts[ cutKey ] !== undefined ) continue; hole = holes[ holeIdx ]; for ( var h2 = 0; h2 < hole.length; h2 ++ ) { holePt = hole[ h2 ]; if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue; if ( intersectsShapeEdge( shapePt, holePt ) ) continue; if ( intersectsHoleEdge( shapePt, holePt ) ) continue; holeIndex = h2; indepHoles.splice( h, 1 ); tmpShape1 = shape.slice( 0, shapeIndex + 1 ); tmpShape2 = shape.slice( shapeIndex ); tmpHole1 = hole.slice( holeIndex ); tmpHole2 = hole.slice( 0, holeIndex + 1 ); shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 ); minShapeIndex = shapeIndex; // Debug only, to show the selected cuts // glob_CutLines.push( [ shapePt, holePt ] ); break; } if ( holeIndex >= 0 ) break; // hole-vertex found failedCuts[ cutKey ] = true; // remember failure } if ( holeIndex >= 0 ) break; // hole-vertex found } } return shape; /* shape with no holes */ } var i, il, f, face, key, index, allPointsMap = {}; // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first. var allpoints = contour.concat(); for ( var h = 0, hl = holes.length; h < hl; h ++ ) { Array.prototype.push.apply( allpoints, holes[ h ] ); } //console.log( "allpoints",allpoints, allpoints.length ); // prepare all points map for ( i = 0, il = allpoints.length; i < il; i ++ ) { key = allpoints[ i ].x + ":" + allpoints[ i ].y; if ( allPointsMap[ key ] !== undefined ) { console.warn( "THREE.ShapeUtils: Duplicate point", key, i ); } allPointsMap[ key ] = i; } // remove holes by cutting paths to holes and adding them to the shape var shapeWithoutHoles = removeHoles( contour, holes ); var triangles = ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape //console.log( "triangles",triangles, triangles.length ); // check all face vertices against all points map for ( i = 0, il = triangles.length; i < il; i ++ ) { face = triangles[ i ]; for ( f = 0; f < 3; f ++ ) { key = face[ f ].x + ":" + face[ f ].y; index = allPointsMap[ key ]; if ( index !== undefined ) { face[ f ] = index; } } } return triangles.concat(); }, isClockWise: function ( pts ) { return ShapeUtils.area( pts ) < 0; }, // Bezier Curves formulas obtained from // http://en.wikipedia.org/wiki/B%C3%A9zier_curve // Quad Bezier Functions b2: ( function () { function b2p0( t, p ) { var k = 1 - t; return k * k * p; } function b2p1( t, p ) { return 2 * ( 1 - t ) * t * p; } function b2p2( t, p ) { return t * t * p; } return function b2( t, p0, p1, p2 ) { return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 ); }; } )(), // Cubic Bezier Functions b3: ( function () { function b3p0( t, p ) { var k = 1 - t; return k * k * k * p; } function b3p1( t, p ) { var k = 1 - t; return 3 * k * k * t * p; } function b3p2( t, p ) { var k = 1 - t; return 3 * k * t * t * p; } function b3p3( t, p ) { return t * t * t * p; } return function b3( t, p0, p1, p2, p3 ) { return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 ); }; } )() }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined) * frames: // containing arrays of tangents, normals, binormals * * uvGenerator: // object that provides UV generator functions * * } **/ function ExtrudeGeometry( shapes, options ) { if ( typeof( shapes ) === "undefined" ) { shapes = []; return; } Geometry.call( this ); this.type = 'ExtrudeGeometry'; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); } ExtrudeGeometry.prototype = Object.create( Geometry.prototype ); ExtrudeGeometry.prototype.constructor = ExtrudeGeometry; ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } }; ExtrudeGeometry.prototype.addShape = function ( shape, options ) { var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initialization var ahole, h, hl; // looping of holes var scope = this; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)! } var faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * Math.cos( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * Math.cos ( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { if ( bevelEnabled ) { var layer = 0; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } } // Create faces for the z-sides of the shape function buildSideFaces() { var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( -- i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { scope.vertices.push( new Vector3( x, y, z ) ); } function f3( a, b, c ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; scope.faces.push( new Face3( a, b, c, null, null, 0 ) ); var uvs = uvgen.generateTopUV( scope, a, b, c ); scope.faceVertexUvs[ 0 ].push( uvs ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; d += shapesOffset; scope.faces.push( new Face3( a, b, d, null, null, 1 ) ); scope.faces.push( new Face3( b, c, d, null, null, 1 ) ); var uvs = uvgen.generateSideWallUV( scope, a, b, c, d ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] ); } }; ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function ( geometry, indexA, indexB, indexC ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; return [ new Vector2( a.x, a.y ), new Vector2( b.x, b.y ), new Vector2( c.x, c.y ) ]; }, generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; var d = vertices[ indexD ]; if ( Math.abs( a.y - b.y ) < 0.01 ) { return [ new Vector2( a.x, 1 - a.z ), new Vector2( b.x, 1 - b.z ), new Vector2( c.x, 1 - c.z ), new Vector2( d.x, 1 - d.z ) ]; } else { return [ new Vector2( a.y, 1 - a.z ), new Vector2( b.y, 1 - b.z ), new Vector2( c.y, 1 - c.z ), new Vector2( d.y, 1 - d.z ) ]; } } }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: // how far from text outline is bevel * } */ function TextGeometry( text, parameters ) { parameters = parameters || {}; var font = parameters.font; if ( (font && font.isFont) === false ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new Geometry(); } var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments ); // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; ExtrudeGeometry.call( this, shapes, parameters ); this.type = 'TextGeometry'; } TextGeometry.prototype = Object.create( ExtrudeGeometry.prototype ); TextGeometry.prototype.constructor = TextGeometry; /** * @author benaadams / https://twitter.com/ben_a_adams * based on THREE.SphereGeometry */ function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'SphereBufferGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var thetaEnd = thetaStart + thetaLength; var vertexCount = ( ( widthSegments + 1 ) * ( heightSegments + 1 ) ); var positions = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); var index = 0, vertices = [], normal = new Vector3(); for ( var y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var v = y / heightSegments; for ( var x = 0; x <= widthSegments; x ++ ) { var u = x / widthSegments; var px = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); var py = radius * Math.cos( thetaStart + v * thetaLength ); var pz = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); normal.set( px, py, pz ).normalize(); positions.setXYZ( index, px, py, pz ); normals.setXYZ( index, normal.x, normal.y, normal.z ); uvs.setXY( index, u, 1 - v ); verticesRow.push( index ); index ++; } vertices.push( verticesRow ); } var indices = []; for ( var y = 0; y < heightSegments; y ++ ) { for ( var x = 0; x < widthSegments; x ++ ) { var v1 = vertices[ y ][ x + 1 ]; var v2 = vertices[ y ][ x ]; var v3 = vertices[ y + 1 ][ x ]; var v4 = vertices[ y + 1 ][ x + 1 ]; if ( y !== 0 || thetaStart > 0 ) indices.push( v1, v2, v4 ); if ( y !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( v2, v3, v4 ); } } this.setIndex( new ( positions.count > 65535 ? Uint32Attribute : Uint16Attribute )( indices, 1 ) ); this.addAttribute( 'position', positions ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); this.boundingSphere = new Sphere( new Vector3(), radius ); } SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); SphereBufferGeometry.prototype.constructor = SphereBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ */ function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); } SphereGeometry.prototype = Object.create( Geometry.prototype ); SphereGeometry.prototype.constructor = SphereGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'RingBufferGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; innerRadius = innerRadius || 20; outerRadius = outerRadius || 50; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1; // these are used to calculate buffer length var vertexCount = ( thetaSegments + 1 ) * ( phiSegments + 1 ); var indexCount = thetaSegments * phiSegments * 2 * 3; // buffers var indices = new BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // some helper variables var index = 0, indexOffset = 0, segment; var radius = innerRadius; var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); var vertex = new Vector3(); var uv = new Vector2(); var j, i; // generate vertices, normals and uvs // values are generate from the inside of the ring to the outside for ( j = 0; j <= phiSegments; j ++ ) { for ( i = 0; i <= thetaSegments; i ++ ) { segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normals.setXYZ( index, 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.setXY( index, uv.x, uv.y ); // increase index index++; } // increase the radius for next row of vertices radius += radiusStep; } // generate indices for ( j = 0; j < phiSegments; j ++ ) { var thetaSegmentLevel = j * ( thetaSegments + 1 ); for ( i = 0; i < thetaSegments; i ++ ) { segment = i + thetaSegmentLevel; // indices var a = segment; var b = segment + thetaSegments + 1; var c = segment + thetaSegments + 2; var d = segment + 1; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; // face two indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); } RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); RingBufferGeometry.prototype.constructor = RingBufferGeometry; /** * @author Kaleb Murphy */ function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); } RingGeometry.prototype = Object.create( Geometry.prototype ); RingGeometry.prototype.constructor = RingGeometry; /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ function PlaneGeometry( width, height, widthSegments, heightSegments ) { Geometry.call( this ); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); } PlaneGeometry.prototype = Object.create( Geometry.prototype ); PlaneGeometry.prototype.constructor = PlaneGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2PI) range of the lathed section // 2PI is a closed lathe, less than 2PI is a portion. function LatheBufferGeometry( points, segments, phiStart, phiLength ) { BufferGeometry.call( this ); this.type = 'LatheBufferGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ) || 12; phiStart = phiStart || 0; phiLength = phiLength || Math.PI * 2; // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 ); // these are used to calculate buffer length var vertexCount = ( segments + 1 ) * points.length; var indexCount = segments * points.length * 2 * 3; // buffers var indices = new BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var index = 0, indexOffset = 0, base; var inverseSegments = 1.0 / segments; var vertex = new Vector3(); var uv = new Vector2(); var i, j; // generate vertices and uvs for ( i = 0; i <= segments; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var sin = Math.sin( phi ); var cos = Math.cos( phi ); for ( j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } } // generate indices for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < ( points.length - 1 ); j ++ ) { base = j + i * points.length; // indices var a = base; var b = base + points.length; var c = base + points.length + 1; var d = base + 1; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; // face two indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'uv', uvs ); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if( phiLength === Math.PI * 2 ) { var normals = this.attributes.normal.array; var n1 = new Vector3(); var n2 = new Vector3(); var n = new Vector3(); // this is the buffer offset for the last line of vertices base = segments * points.length * 3; for( i = 0, j = 0; i < points.length; i ++, j += 3 ) { // select the normal of the vertex in the first line n1.x = normals[ j + 0 ]; n1.y = normals[ j + 1 ]; n1.z = normals[ j + 2 ]; // select the normal of the vertex in the last line n2.x = normals[ base + j + 0 ]; n2.y = normals[ base + j + 1 ]; n2.z = normals[ base + j + 2 ]; // average normals n.addVectors( n1, n2 ).normalize(); // assign the new values to both normals normals[ j + 0 ] = normals[ base + j + 0 ] = n.x; normals[ j + 1 ] = normals[ base + j + 1 ] = n.y; normals[ j + 2 ] = normals[ base + j + 2 ] = n.z; } // next row } } LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); LatheBufferGeometry.prototype.constructor = LatheBufferGeometry; /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2PI) range of the lathed section // 2PI is a closed lathe, less than 2PI is a portion. function LatheGeometry( points, segments, phiStart, phiLength ) { Geometry.call( this ); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) ); this.mergeVertices(); } LatheGeometry.prototype = Object.create( Geometry.prototype ); LatheGeometry.prototype.constructor = LatheGeometry; /** * @author jonobr1 / http://jonobr1.com * * Creates a one-sided polygonal geometry from a path shape. Similar to * ExtrudeGeometry. * * parameters = { * * curveSegments: , // number of points on the curves. NOT USED AT THE MOMENT. * * material: // material index for front and back faces * uvGenerator: // object that provides UV generator functions * * } **/ function ShapeGeometry( shapes, options ) { Geometry.call( this ); this.type = 'ShapeGeometry'; if ( Array.isArray( shapes ) === false ) shapes = [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); } ShapeGeometry.prototype = Object.create( Geometry.prototype ); ShapeGeometry.prototype.constructor = ShapeGeometry; /** * Add an array of shapes to THREE.ShapeGeometry. */ ShapeGeometry.prototype.addShapeList = function ( shapes, options ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { this.addShape( shapes[ i ], options ); } return this; }; /** * Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry. */ ShapeGeometry.prototype.addShape = function ( shape, options ) { if ( options === undefined ) options = {}; var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var material = options.material; var uvgen = options.UVGenerator === undefined ? ExtrudeGeometry.WorldUVGenerator : options.UVGenerator; // var i, l, hole; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe... for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; if ( ShapeUtils.isClockWise( hole ) ) { holes[ i ] = hole.reverse(); } } reverse = false; } var faces = ShapeUtils.triangulateShape( vertices, holes ); // Vertices for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; vertices = vertices.concat( hole ); } // var vert, vlen = vertices.length; var face, flen = faces.length; for ( i = 0; i < vlen; i ++ ) { vert = vertices[ i ]; this.vertices.push( new Vector3( vert.x, vert.y, 0 ) ); } for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; var a = face[ 0 ] + shapesOffset; var b = face[ 1 ] + shapesOffset; var c = face[ 2 ] + shapesOffset; this.faces.push( new Face3( a, b, c, null, null, material ) ); this.faceVertexUvs[ 0 ].push( uvgen.generateTopUV( this, a, b, c ) ); } }; /** * @author WestLangley / http://github.com/WestLangley */ function EdgesGeometry( geometry, thresholdAngle ) { BufferGeometry.call( this ); thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; var geometry2; if ( (geometry && geometry.isBufferGeometry) ) { geometry2 = new Geometry(); geometry2.fromBufferGeometry( geometry ); } else { geometry2 = geometry.clone(); } geometry2.mergeVertices(); geometry2.computeFaceNormals(); var vertices = geometry2.vertices; var faces = geometry2.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined }; } else { hash[ key ].face2 = i; } } } var coords = []; for ( var key in hash ) { var h = hash[ key ]; if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) <= thresholdDot ) { var vertex = vertices[ h.vert1 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); vertex = vertices[ h.vert2 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); } } this.addAttribute( 'position', new BufferAttribute( new Float32Array( coords ), 3 ) ); } EdgesGeometry.prototype = Object.create( BufferGeometry.prototype ); EdgesGeometry.prototype.constructor = EdgesGeometry; /** * @author Mugen87 / https://github.com/Mugen87 */ function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'CylinderBufferGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; var scope = this; radiusTop = radiusTop !== undefined ? radiusTop : 20; radiusBottom = radiusBottom !== undefined ? radiusBottom : 20; height = height !== undefined ? height : 100; radialSegments = Math.floor( radialSegments ) || 8; heightSegments = Math.floor( heightSegments ) || 1; openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0.0; thetaLength = thetaLength !== undefined ? thetaLength : 2.0 * Math.PI; // used to calculate buffer length var nbCap = 0; if ( openEnded === false ) { if ( radiusTop > 0 ) nbCap ++; if ( radiusBottom > 0 ) nbCap ++; } var vertexCount = calculateVertexCount(); var indexCount = calculateIndexCount(); // buffers var indices = new BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ), 1 ); var vertices = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var index = 0, indexOffset = 0, indexArray = [], halfHeight = height / 2; // group variables var groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false ); } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); // helper functions function calculateVertexCount() { var count = ( radialSegments + 1 ) * ( heightSegments + 1 ); if ( openEnded === false ) { count += ( ( radialSegments + 1 ) * nbCap ) + ( radialSegments * nbCap ); } return count; } function calculateIndexCount() { var count = radialSegments * heightSegments * 2 * 3; if ( openEnded === false ) { count += radialSegments * nbCap * 3; } return count; } function generateTorso() { var x, y; var normal = new Vector3(); var vertex = new Vector3(); var groupCount = 0; // this will be used to calculate the normal var slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( y = 0; y <= heightSegments; y ++ ) { var indexRow = []; var v = y / heightSegments; // calculate the radius of the current row var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var theta = u * thetaLength + thetaStart; var sinTheta = Math.sin( theta ); var cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.setXYZ( index, normal.x, normal.y, normal.z ); // uv uvs.setXY( index, u, 1 - v ); // save index of vertex in respective row indexRow.push( index ); // increase index index ++; } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( x = 0; x < radialSegments; x ++ ) { for ( y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices var i1 = indexArray[ y ][ x ]; var i2 = indexArray[ y + 1 ][ x ]; var i3 = indexArray[ y + 1 ][ x + 1 ]; var i4 = indexArray[ y ][ x + 1 ]; // face one indices.setX( indexOffset, i1 ); indexOffset ++; indices.setX( indexOffset, i2 ); indexOffset ++; indices.setX( indexOffset, i4 ); indexOffset ++; // face two indices.setX( indexOffset, i2 ); indexOffset ++; indices.setX( indexOffset, i3 ); indexOffset ++; indices.setX( indexOffset, i4 ); indexOffset ++; // update counters groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { var x, centerIndexStart, centerIndexEnd; var uv = new Vector2(); var vertex = new Vector3(); var groupCount = 0; var radius = ( top === true ) ? radiusTop : radiusBottom; var sign = ( top === true ) ? 1 : - 1; // save the index of the first center vertex centerIndexStart = index; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( x = 1; x <= radialSegments; x ++ ) { // vertex vertices.setXYZ( index, 0, halfHeight * sign, 0 ); // normal normals.setXYZ( index, 0, sign, 0 ); // uv uv.x = 0.5; uv.y = 0.5; uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } // save the index of the last center vertex centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var theta = u * thetaLength + thetaStart; var cosTheta = Math.cos( theta ); var sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normals.setXYZ( index, 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } // generate indices for ( x = 0; x < radialSegments; x ++ ) { var c = centerIndexStart + x; var i = centerIndexEnd + x; if ( top === true ) { // face top indices.setX( indexOffset, i ); indexOffset ++; indices.setX( indexOffset, i + 1 ); indexOffset ++; indices.setX( indexOffset, c ); indexOffset ++; } else { // face bottom indices.setX( indexOffset, i + 1 ); indexOffset ++; indices.setX( indexOffset, i ); indexOffset ++; indices.setX( indexOffset, c ); indexOffset ++; } // update counters groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ */ function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); this.mergeVertices(); } CylinderGeometry.prototype = Object.create( Geometry.prototype ); CylinderGeometry.prototype.constructor = CylinderGeometry; /** * @author abelnation / http://github.com/abelnation */ function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); ConeGeometry.prototype.constructor = ConeGeometry; /** * @author: abelnation / http://github.com/abelnation */ function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeBufferGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); ConeBufferGeometry.prototype.constructor = ConeBufferGeometry; /** * @author benaadams / https://twitter.com/ben_a_adams */ function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'CircleBufferGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; var vertices = segments + 2; var positions = new Float32Array( vertices * 3 ); var normals = new Float32Array( vertices * 3 ); var uvs = new Float32Array( vertices * 2 ); // center data is already zero, but need to set a few extras normals[ 2 ] = 1.0; uvs[ 0 ] = 0.5; uvs[ 1 ] = 0.5; for ( var s = 0, i = 3, ii = 2 ; s <= segments; s ++, i += 3, ii += 2 ) { var segment = thetaStart + s / segments * thetaLength; positions[ i ] = radius * Math.cos( segment ); positions[ i + 1 ] = radius * Math.sin( segment ); normals[ i + 2 ] = 1; // normal z uvs[ ii ] = ( positions[ i ] / radius + 1 ) / 2; uvs[ ii + 1 ] = ( positions[ i + 1 ] / radius + 1 ) / 2; } var indices = []; for ( var i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } this.setIndex( new BufferAttribute( new Uint16Array( indices ), 1 ) ); this.addAttribute( 'position', new BufferAttribute( positions, 3 ) ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ) ); this.boundingSphere = new Sphere( new Vector3(), radius ); } CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CircleBufferGeometry.prototype.constructor = CircleBufferGeometry; /** * @author hughes */ function CircleGeometry( radius, segments, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); } CircleGeometry.prototype = Object.create( Geometry.prototype ); CircleGeometry.prototype.constructor = CircleGeometry; /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as */ function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { Geometry.call( this ); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); this.mergeVertices(); } BoxGeometry.prototype = Object.create( Geometry.prototype ); BoxGeometry.prototype.constructor = BoxGeometry; var Geometries = Object.freeze({ WireframeGeometry: WireframeGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricBufferGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronBufferGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronBufferGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronBufferGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronBufferGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronBufferGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeBufferGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotBufferGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusBufferGeometry, TextGeometry: TextGeometry, SphereBufferGeometry: SphereBufferGeometry, SphereGeometry: SphereGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingBufferGeometry, PlaneBufferGeometry: PlaneBufferGeometry, PlaneGeometry: PlaneGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheBufferGeometry, ShapeGeometry: ShapeGeometry, ExtrudeGeometry: ExtrudeGeometry, EdgesGeometry: EdgesGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeBufferGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderBufferGeometry, CircleBufferGeometry: CircleBufferGeometry, CircleGeometry: CircleGeometry, BoxBufferGeometry: BoxBufferGeometry, BoxGeometry: BoxGeometry }); /** * @author mrdoob / http://mrdoob.com/ */ function ShadowMaterial() { ShaderMaterial.call( this, { uniforms: UniformsUtils.merge( [ UniformsLib[ "lights" ], { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk[ 'shadow_vert' ], fragmentShader: ShaderChunk[ 'shadow_frag' ] } ); this.lights = true; this.transparent = true; Object.defineProperties( this, { opacity: { enumerable: true, get: function () { return this.uniforms.opacity.value; }, set: function ( value ) { this.uniforms.opacity.value = value; } } } ); } ShadowMaterial.prototype = Object.create( ShaderMaterial.prototype ); ShadowMaterial.prototype.constructor = ShadowMaterial; ShadowMaterial.prototype.isShadowMaterial = true; /** * @author mrdoob / http://mrdoob.com/ */ function RawShaderMaterial( parameters ) { ShaderMaterial.call( this, parameters ); this.type = 'RawShaderMaterial'; } RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype ); RawShaderMaterial.prototype.constructor = RawShaderMaterial; RawShaderMaterial.prototype.isRawShaderMaterial = true; /** * @author mrdoob / http://mrdoob.com/ */ function MultiMaterial( materials ) { this.uuid = _Math.generateUUID(); this.type = 'MultiMaterial'; this.materials = materials instanceof Array ? materials : []; this.visible = true; } MultiMaterial.prototype = { constructor: MultiMaterial, isMultiMaterial: true, toJSON: function ( meta ) { var output = { metadata: { version: 4.2, type: 'material', generator: 'MaterialExporter' }, uuid: this.uuid, type: this.type, materials: [] }; var materials = this.materials; for ( var i = 0, l = materials.length; i < l; i ++ ) { var material = materials[ i ].toJSON( meta ); delete material.metadata; output.materials.push( material ); } output.visible = this.visible; return output; }, clone: function () { var material = new this.constructor(); for ( var i = 0; i < this.materials.length; i ++ ) { material.materials.push( this.materials[ i ].clone() ); } material.visible = this.visible; return material; } }; /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshStandardMaterial( parameters ) { Material.call( this ); this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color( 0xffffff ); // diffuse this.roughness = 0.5; this.metalness = 0.5; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshStandardMaterial.prototype = Object.create( Material.prototype ); MeshStandardMaterial.prototype.constructor = MeshStandardMaterial; MeshStandardMaterial.prototype.isMeshStandardMaterial = true; MeshStandardMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * reflectivity: * } */ function MeshPhysicalMaterial( parameters ) { MeshStandardMaterial.call( this ); this.defines = { 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.reflectivity = 0.5; // maps to F0 = 0.04 this.clearCoat = 0.0; this.clearCoatRoughness = 0.0; this.setValues( parameters ); } MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial; MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; MeshPhysicalMaterial.prototype.copy = function ( source ) { MeshStandardMaterial.prototype.copy.call( this, source ); this.defines = { 'PHYSICAL': '' }; this.reflectivity = source.reflectivity; this.clearCoat = source.clearCoat; this.clearCoatRoughness = source.clearCoatRoughness; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshPhongMaterial( parameters ) { Material.call( this ); this.type = 'MeshPhongMaterial'; this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshPhongMaterial.prototype = Object.create( Material.prototype ); MeshPhongMaterial.prototype.constructor = MeshPhongMaterial; MeshPhongMaterial.prototype.isMeshPhongMaterial = true; MeshPhongMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * opacity: , * * wireframe: , * wireframeLinewidth: * } */ function MeshNormalMaterial( parameters ) { Material.call( this, parameters ); this.type = 'MeshNormalMaterial'; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.lights = false; this.morphTargets = false; this.setValues( parameters ); } MeshNormalMaterial.prototype = Object.create( Material.prototype ); MeshNormalMaterial.prototype.constructor = MeshNormalMaterial; MeshNormalMaterial.prototype.isMeshNormalMaterial = true; MeshNormalMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshLambertMaterial( parameters ) { Material.call( this ); this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshLambertMaterial.prototype = Object.create( Material.prototype ); MeshLambertMaterial.prototype.constructor = MeshLambertMaterial; MeshLambertMaterial.prototype.isMeshLambertMaterial = true; MeshLambertMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ function LineDashedMaterial( parameters ) { Material.call( this ); this.type = 'LineDashedMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.lights = false; this.setValues( parameters ); } LineDashedMaterial.prototype = Object.create( Material.prototype ); LineDashedMaterial.prototype.constructor = LineDashedMaterial; LineDashedMaterial.prototype.isLineDashedMaterial = true; LineDashedMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; }; var Materials = Object.freeze({ ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MultiMaterial: MultiMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshBasicMaterial: MeshBasicMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }); /** * @author mrdoob / http://mrdoob.com/ */ var Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; /** * @author mrdoob / http://mrdoob.com/ */ function LoadingManager( onLoad, onProgress, onError ) { var scope = this; var isLoading = false, itemsLoaded = 0, itemsTotal = 0; this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; } var DefaultLoadingManager = new LoadingManager(); /** * @author mrdoob / http://mrdoob.com/ */ function XHRLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( XHRLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } // Check for data: URI var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; var dataUriRegexResult = url.match( dataUriRegex ); // Safari can not handle Data URIs through XMLHttpRequest so process manually if ( dataUriRegexResult ) { var mimeType = dataUriRegexResult[1]; var isBase64 = !!dataUriRegexResult[2]; var data = dataUriRegexResult[3]; data = window.decodeURIComponent(data); if( isBase64 ) { data = window.atob(data); } try { var response; var responseType = ( this.responseType || '' ).toLowerCase(); switch ( responseType ) { case 'arraybuffer': case 'blob': response = new ArrayBuffer( data.length ); var view = new Uint8Array( response ); for ( var i = 0; i < data.length; i ++ ) { view[ i ] = data.charCodeAt( i ); } if ( responseType === 'blob' ) { response = new Blob( [ response ], { "type" : mimeType } ); } break; case 'document': var parser = new DOMParser(); response = parser.parseFromString( data, mimeType ); break; case 'json': response = JSON.parse( data ); break; default: // 'text' or other response = data; break; } // Wait for next browser tick window.setTimeout( function() { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); }, 0); } catch ( error ) { // Wait for next browser tick window.setTimeout( function() { if ( onError ) onError( error ); scope.manager.itemError( url ); }, 0); } } else { var request = new XMLHttpRequest(); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { var response = event.target.response; Cache.add( url, response ); if ( this.status === 200 ) { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else if ( this.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. console.warn( 'THREE.XHRLoader: HTTP Status 0 received.' ); if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else { if ( onError ) onError( event ); scope.manager.itemError( url ); } }, false ); if ( onProgress !== undefined ) { request.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } request.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemError( url ); }, false ); if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials; if ( request.overrideMimeType ) request.overrideMimeType( 'text/plain' ); request.send( null ); } scope.manager.itemStart( url ); return request; }, setPath: function ( value ) { this.path = value; return this; }, setResponseType: function ( value ) { this.responseType = value; return this; }, setWithCredentials: function ( value ) { this.withCredentials = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */ function CompressedTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; // override in sub classes this._parser = null; } Object.assign( CompressedTextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var images = []; var texture = new CompressedTexture(); texture.image = images; var loader = new XHRLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { var texDatas = scope._parser( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { var loaded = 0; for ( var i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { var texDatas = scope._parser( buffer, true ); if ( texDatas.isCubemap ) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( var f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps : [] }; for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */ var DataTextureLoader = BinaryTextureLoader; function BinaryTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; // override in sub classes this._parser = null; } Object.assign( BinaryTextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texture = new DataTexture(); var loader = new XHRLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var texData = scope._parser( buffer ); if ( ! texData ) return; if ( undefined !== texData.image ) { texture.image = texData.image; } else if ( undefined !== texData.data ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter; texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter; texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1; if ( undefined !== texData.format ) { texture.format = texData.format; } if ( undefined !== texData.type ) { texture.type = texData.type; } if ( undefined !== texData.mipmaps ) { texture.mipmaps = texData.mipmaps; } if ( 1 === texData.mipmapCount ) { texture.minFilter = LinearFilter; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function ImageLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( ImageLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' ); image.onload = function () { image.onload = null; URL.revokeObjectURL( image.src ); if ( onLoad ) onLoad( image ); scope.manager.itemEnd( url ); }; image.onerror = onError; if ( url.indexOf( 'data:' ) === 0 ) { image.src = url; } else { var loader = new XHRLoader(); loader.setPath( this.path ); loader.setResponseType( 'blob' ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( blob ) { image.src = URL.createObjectURL( blob ); }, onProgress, onError ); } scope.manager.itemStart( url ); return image; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setWithCredentials: function ( value ) { this.withCredentials = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function CubeTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( CubeTextureLoader.prototype, { load: function ( urls, onLoad, onProgress, onError ) { var texture = new CubeTexture(); var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( var i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function TextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( TextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var texture = new Texture(); var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setWithCredentials( this.withCredentials ); loader.setPath( this.path ); loader.load( url, function ( image ) { // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0; texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setWithCredentials: function ( value ) { this.withCredentials = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Light( color, intensity ) { Object3D.call( this ); this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity !== undefined ? intensity : 1; this.receiveShadow = undefined; } Light.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Light, isLight: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); return data; } } ); /** * @author alteredq / http://alteredqualia.com/ */ function HemisphereLight( skyColor, groundColor, intensity ) { Light.call( this, skyColor, intensity ); this.type = 'HemisphereLight'; this.castShadow = undefined; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.groundColor = new Color( groundColor ); } HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: HemisphereLight, isHemisphereLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function LightShadow( camera ) { this.camera = camera; this.bias = 0; this.radius = 1; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.matrix = new Matrix4(); } Object.assign( LightShadow.prototype, { copy: function ( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; }, clone: function () { return new this.constructor().copy( this ); }, toJSON: function () { var object = {}; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function SpotLightShadow() { LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) ); } SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: SpotLightShadow, isSpotLightShadow: true, update: function ( light ) { var fov = _Math.RAD2DEG * 2 * light.angle; var aspect = this.mapSize.width / this.mapSize.height; var far = light.distance || 500; var camera = this.camera; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } } } ); /** * @author alteredq / http://alteredqualia.com/ */ function SpotLight( color, intensity, distance, angle, penumbra, decay ) { Light.call( this, color, intensity ); this.type = 'SpotLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / Math.PI; } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } SpotLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: SpotLight, isSpotLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function PointLight( color, intensity, distance, decay ) { Light.call( this, color, intensity ); this.type = 'PointLight'; Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * 4 * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / ( 4 * Math.PI ); } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); } PointLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: PointLight, isPointLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function DirectionalLightShadow( light ) { LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); } DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: DirectionalLightShadow } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function DirectionalLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'DirectionalLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: DirectionalLight, isDirectionalLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function AmbientLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'AmbientLight'; this.castShadow = undefined; } AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: AmbientLight, isAmbientLight: true, } ); /** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ var AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function( array, from, to ) { if ( AnimationUtils.isTypedArray( array ) ) { return new array.constructor( array.subarray( from, to ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function( values, stride, order ) { var nValues = values.length; var result = new values.constructor( nValues ); for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { var srcOffset = order[ i ] * stride; for ( var j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function( jsonKeys, times, values, valuePropertyName ) { var i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data var value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */ function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; } Interpolant.prototype = { constructor: Interpolant, evaluate: function( t ) { var pp = this.parameterPositions, i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { var right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( var giveUpAt = i1 + 2; ;) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? var t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( var giveUpAt = i1 - 2; ;) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { var mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function() { return this.settings || this.DefaultSettings_; }, copySampleValue_: function( index ) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; }, // Template methods for derived classes: interpolate_: function( i1, t0, t, t1 ) { throw new Error( "call to abstract method" ); // implementations shall return this.resultBuffer }, intervalChanged_: function( i1, t0, t1 ) { // empty } }; Object.assign( Interpolant.prototype, { beforeStart_: //( 0, t, t0 ), returns this.resultBuffer Interpolant.prototype.copySampleValue_, afterEnd_: //( N-1, tN-1, t ), returns this.resultBuffer Interpolant.prototype.copySampleValue_ } ); /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */ function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; } CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: CubicInterpolant, DefaultSettings_: { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }, intervalChanged_: function( i1, t0, t1 ) { var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; }, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp; // combine data linearly for ( var i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } ); /** * @author tschw */ function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: LinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } ); /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */ function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: DiscreteInterpolant, interpolate_: function( i1, t0, t, t1 ) { return this.copySampleValue_( i1 - 1 ); } } ); var KeyframeTrackPrototype; KeyframeTrackPrototype = { TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodDiscrete: function( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodLinear: function( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: function( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); }, setInterpolation: function( interpolation ) { var factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( message ); return; } this.createInterpolant = factoryMethod; }, getInterpolation: function() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } }, getValueSize: function() { return this.values.length / this.times.length; }, // move all keyframes either forwards or backwards in time shift: function( timeOffset ) { if( timeOffset !== 0.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function( timeScale ) { if( timeScale !== 1.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function( startTime, endTime ) { var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) ++ from; while ( to !== -1 && times[ to ] > endTime ) -- to; ++ to; // inclusive -> exclusive bound if( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) to = Math.max( to , 1 ), from = to - 1; var stride = this.getValueSize(); this.times = AnimationUtils.arraySlice( times, from, to ); this.values = AnimationUtils. arraySlice( this.values, from * stride, to * stride ); } return this; }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function() { var valid = true; var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( "invalid value size in track", this ); valid = false; } var times = this.times, values = this.values, nKeys = times.length; if( nKeys === 0 ) { console.error( "track is empty", this ); valid = false; } var prevTime = null; for( var i = 0; i !== nKeys; i ++ ) { var currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( "time is not a valid number", this, i, currTime ); valid = false; break; } if( prevTime !== null && prevTime > currTime ) { console.error( "out of order keys", this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( AnimationUtils.isTypedArray( values ) ) { for ( var i = 0, n = values.length; i !== n; ++ i ) { var value = values[ i ]; if ( isNaN( value ) ) { console.error( "value is not a valid number", this, i, value ); valid = false; break; } } } } return valid; }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function() { var times = this.times, values = this.values, stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, writeIndex = 1, lastIndex = times.length - 1; for( var i = 1; i < lastIndex; ++ i ) { var keep = false; var time = times[ i ]; var timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( var j = 0; j !== stride; ++ j ) { var value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else keep = true; } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; var readOffset = i * stride, writeOffset = writeIndex * stride; for ( var j = 0; j !== stride; ++ j ) values[ writeOffset + j ] = values[ readOffset + j ]; } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) values[ writeOffset + j ] = values[ readOffset + j ]; ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } return this; } }; function KeyframeTrackConstructor( name, times, values, interpolation ) { if( name === undefined ) throw new Error( "track name is undefined" ); if( times === undefined || times.length === 0 ) { throw new Error( "no keyframes in track named " + name ); } this.name = name; this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); this.validate(); this.optimize(); } /** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function VectorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); /** * Spherical linear unit quaternion interpolant. * * @author tschw */ function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: QuaternionLinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = i1 * stride, alpha = ( t - t0 ) / ( t1 - t0 ); for ( var end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } ); /** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function QuaternionKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodLinear: function( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: undefined // not yet implemented } ); /** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function NumberKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: NumberKeyframeTrack, ValueTypeName: 'number', // ValueBufferType is inherited // DefaultInterpolation is inherited } ); /** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function StringKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined } ); /** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function BooleanKeyframeTrack( name, times, values ) { KeyframeTrackConstructor.call( this, name, times, values ); } BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". } ); /** * * A Track of keyframe values that represent color. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function ColorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: ColorKeyframeTrack, ValueTypeName: 'color' // ValueBufferType is inherited // DefaultInterpolation is inherited // Note: Very basic implementation and nothing special yet. // However, this is the place for color space parameterization. } ); /** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function KeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.apply( this, arguments ); } KeyframeTrack.prototype = KeyframeTrackPrototype; KeyframeTrackPrototype.constructor = KeyframeTrack; // Static methods: Object.assign( KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): parse: function( json ) { if( json.type === undefined ) { throw new Error( "track type undefined, can not parse" ); } var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { var times = [], values = []; AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we asssume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } }, toJSON: function( track ) { var trackType = track.constructor; var json; // derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': AnimationUtils.convertArray( track.times, Array ), 'values': AnimationUtils.convertArray( track.values, Array ) }; var interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; }, _getTrackTypeForValueTypeName: function( typeName ) { switch( typeName.toLowerCase() ) { case "scalar": case "double": case "float": case "number": case "integer": return NumberKeyframeTrack; case "vector": case "vector2": case "vector3": case "vector4": return VectorKeyframeTrack; case "color": return ColorKeyframeTrack; case "quaternion": return QuaternionKeyframeTrack; case "bool": case "boolean": return BooleanKeyframeTrack; case "string": return StringKeyframeTrack; } throw new Error( "Unsupported typeName: " + typeName ); } } ); /** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ function AnimationClip( name, duration, tracks ) { this.name = name; this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : -1; this.uuid = _Math.generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } this.optimize(); } AnimationClip.prototype = { constructor: AnimationClip, resetDuration: function() { var tracks = this.tracks, duration = 0; for ( var i = 0, n = tracks.length; i !== n; ++ i ) { var track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; }, trim: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; }, optimize: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } }; // Static methods: Object.assign( AnimationClip, { parse: function( json ) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) ); } return new AnimationClip( json.name, json.duration, tracks ); }, toJSON: function( clip ) { var tracks = [], clipTracks = clip.tracks; var json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks }; for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; }, CreateFromMorphTargetSequence: function( name, morphTargetSequence, fps, noLoop ) { var numMorphTargets = morphTargetSequence.length; var tracks = []; for ( var i = 0; i < numMorphTargets; i ++ ) { var times = []; var values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); var order = AnimationUtils.getKeyframeOrder( times ); times = AnimationUtils.sortedArray( times, 1, order ); values = AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new AnimationClip( name, -1, tracks ); }, findByName: function( objectOrClipArray, name ) { var clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { var o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( var i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; }, CreateClipsFromMorphTargetSequences: function( morphTargets, fps, noLoop ) { var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { var name = parts[ 1 ]; var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } var clips = []; for ( var name in animationToMorphTargets ) { clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); } return clips; }, // parse the animation.hierarchy format parseAnimation: function( animation, bones ) { if ( ! animation ) { console.error( " no animation in JSONLoader data" ); return null; } var addNonemptyTrack = function( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { var times = []; var values = []; AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; var tracks = []; var clipName = animation.name || 'default'; // automatic length determination in AnimationClip. var duration = animation.length || -1; var fps = animation.fps || 30; var hierarchyTracks = animation.hierarchy || []; for ( var h = 0; h < hierarchyTracks.length; h ++ ) { var animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue; // process morph targets in a way exactly compatible // with AnimationHandler.init( animation ) if ( animationKeys[0].morphTargets ) { // figure out all morph targets used in this track var morphTargetNames = {}; for ( var k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[k].morphTargets ) { for ( var m = 0; m < animationKeys[k].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[k].morphTargets[m] ] = -1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) { var times = []; var values = []; for ( var m = 0; m !== animationKeys[k].morphTargets.length; ++ m ) { var animationKey = animationKeys[k]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation var boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } var clip = new AnimationClip( clipName, duration, tracks ); return clip; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function MaterialLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.textures = {}; } Object.assign( MaterialLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setTextures: function ( value ) { this.textures = value; }, parse: function ( json ) { var textures = this.textures; function getTexture( name ) { if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; } var material = new Materials[ json.type ](); if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.uniforms !== undefined ) material.uniforms = json.uniforms; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.fog !== undefined ) material.fog = json.fog; if ( json.shading !== undefined ) material.shading = json.shading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin; if ( json.skinning !== undefined ) material.skinning = json.skinning; if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets; // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = getTexture( json.map ); if ( json.alphaMap !== undefined ) { material.alphaMap = getTexture( json.alphaMap ); material.transparent = true; } if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); if ( json.normalScale !== undefined ) { var normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap ); if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity; if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; // MultiMaterial if ( json.materials !== undefined ) { for ( var i = 0, l = json.materials.length; i < l; i ++ ) { material.materials.push( this.parse( json.materials[ i ] ) ); } } return material; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function BufferGeometryLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( BufferGeometryLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, parse: function ( json ) { var geometry = new BufferGeometry(); var index = json.data.index; var TYPED_ARRAYS = { 'Int8Array': Int8Array, 'Uint8Array': Uint8Array, 'Uint8ClampedArray': Uint8ClampedArray, 'Int16Array': Int16Array, 'Uint16Array': Uint16Array, 'Int32Array': Int32Array, 'Uint32Array': Uint32Array, 'Float32Array': Float32Array, 'Float64Array': Float64Array }; if ( index !== undefined ) { var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); } var attributes = json.data.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) ); } var groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( var i = 0, n = groups.length; i !== n; ++ i ) { var group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } var boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { var center = new Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); } return geometry; } } ); /** * @author alteredq / http://alteredqualia.com/ */ function Loader() { this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; } Loader.prototype = { constructor: Loader, crossOrigin: undefined, extractUrlBase: function ( url ) { var parts = url.split( '/' ); if ( parts.length === 1 ) return './'; parts.pop(); return parts.join( '/' ) + '/'; }, initMaterials: function ( materials, texturePath, crossOrigin ) { var array = []; for ( var i = 0; i < materials.length; ++ i ) { array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin ); } return array; }, createMaterial: ( function () { var color, textureLoader, materialLoader; return function createMaterial( m, texturePath, crossOrigin ) { if ( color === undefined ) color = new Color(); if ( textureLoader === undefined ) textureLoader = new TextureLoader(); if ( materialLoader === undefined ) materialLoader = new MaterialLoader(); // convert from old material format var textures = {}; function loadTexture( path, repeat, offset, wrap, anisotropy ) { var fullPath = texturePath + path; var loader = Loader.Handlers.get( fullPath ); var texture; if ( loader !== null ) { texture = loader.load( fullPath ); } else { textureLoader.setCrossOrigin( crossOrigin ); texture = textureLoader.load( fullPath ); } if ( repeat !== undefined ) { texture.repeat.fromArray( repeat ); if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping; } if ( offset !== undefined ) { texture.offset.fromArray( offset ); } if ( wrap !== undefined ) { if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping; if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping; if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping; if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping; } if ( anisotropy !== undefined ) { texture.anisotropy = anisotropy; } var uuid = _Math.generateUUID(); textures[ uuid ] = texture; return uuid; } // var json = { uuid: _Math.generateUUID(), type: 'MeshLambertMaterial' }; for ( var name in m ) { var value = m[ name ]; switch ( name ) { case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break; case 'DbgName': json.name = value; break; case 'blending': json.blending = BlendingMode[ value ]; break; case 'colorAmbient': case 'mapAmbient': console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' ); break; case 'colorDiffuse': json.color = color.fromArray( value ).getHex(); break; case 'colorSpecular': json.specular = color.fromArray( value ).getHex(); break; case 'colorEmissive': json.emissive = color.fromArray( value ).getHex(); break; case 'specularCoef': json.shininess = value; break; case 'shading': if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial'; if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial'; if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial'; break; case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); break; case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break; case 'mapEmissive': json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy ); break; case 'mapEmissiveRepeat': case 'mapEmissiveOffset': case 'mapEmissiveWrap': case 'mapEmissiveAnisotropy': break; case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); break; case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break; case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ); break; case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break; case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); break; case 'mapBumpScale': json.bumpScale = value; break; case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break; case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); break; case 'mapNormalFactor': json.normalScale = [ value, value ]; break; case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break; case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); break; case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break; case 'mapMetalness': json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy ); break; case 'mapMetalnessRepeat': case 'mapMetalnessOffset': case 'mapMetalnessWrap': case 'mapMetalnessAnisotropy': break; case 'mapRoughness': json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy ); break; case 'mapRoughnessRepeat': case 'mapRoughnessOffset': case 'mapRoughnessWrap': case 'mapRoughnessAnisotropy': break; case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); break; case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break; case 'flipSided': json.side = BackSide; break; case 'doubleSided': json.side = DoubleSide; break; case 'transparency': console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' ); json.opacity = value; break; case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[ name ] = value; break; case 'vertexColors': if ( value === true ) json.vertexColors = VertexColors; if ( value === 'face' ) json.vertexColors = FaceColors; break; default: console.error( 'THREE.Loader.createMaterial: Unsupported', name, value ); break; } } if ( json.type === 'MeshBasicMaterial' ) delete json.emissive; if ( json.type !== 'MeshPhongMaterial' ) delete json.specular; if ( json.opacity < 1 ) json.transparent = true; materialLoader.setTextures( textures ); return materialLoader.parse( json ); }; } )() }; Loader.Handlers = { handlers: [], add: function ( regex, loader ) { this.handlers.push( regex, loader ); }, get: function ( file ) { var handlers = this.handlers; for ( var i = 0, l = handlers.length; i < l; i += 2 ) { var regex = handlers[ i ]; var loader = handlers[ i + 1 ]; if ( regex.test( file ) ) { return loader; } } return null; } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function JSONLoader( manager ) { if ( typeof manager === 'boolean' ) { console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' ); manager = undefined; } this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.withCredentials = false; } Object.assign( JSONLoader.prototype, { load: function( url, onLoad, onProgress, onError ) { var scope = this; var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url ); var loader = new XHRLoader( this.manager ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { var json = JSON.parse( text ); var metadata = json.metadata; if ( metadata !== undefined ) { var type = metadata.type; if ( type !== undefined ) { if ( type.toLowerCase() === 'object' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ); return; } if ( type.toLowerCase() === 'scene' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' ); return; } } } var object = scope.parse( json, texturePath ); onLoad( object.geometry, object.materials ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, parse: function ( json, texturePath ) { var geometry = new Geometry(), scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0; parseModel( scale ); parseSkin(); parseMorphing( scale ); parseAnimations(); geometry.computeFaceNormals(); geometry.computeBoundingSphere(); function parseModel( scale ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, nUvLayers = 0; if ( json.uvs !== undefined ) { // disregard empty arrays for ( i = 0; i < json.uvs.length; i ++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i ++ ) { geometry.faceVertexUvs[ i ] = []; } } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { faceA = new Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ]; faceB = new Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ]; offset += 4; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = []; for ( j = 0; j < 4; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new Vector2( u, v ); if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); faceB.normal.copy( faceA.normal ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 4; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; faceA.color.setHex( hex ); faceB.color.setHex( hex ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 4; i ++ ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) ); } } geometry.faces.push( faceA ); geometry.faces.push( faceB ); } else { face = new Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; for ( j = 0; j < 3; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new Vector2( u, v ); geometry.faceVertexUvs[ i ][ fi ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 3; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 3; i ++ ) { colorIndex = faces[ offset ++ ]; face.vertexColors.push( new Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } } } function parseSkin() { var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2; if ( json.skinWeights ) { for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) { var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0; geometry.skinWeights.push( new Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) { var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0; geometry.skinIndices.push( new Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ); } } function parseMorphing( scale ) { if ( json.morphTargets !== undefined ) { for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = json.morphTargets[ i ].vertices; for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined && json.morphColors.length > 0 ) { console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' ); var faces = geometry.faces; var morphColors = json.morphColors[ 0 ].colors; for ( var i = 0, l = faces.length; i < l; i ++ ) { faces[ i ].color.fromArray( morphColors, i * 3 ); } } } function parseAnimations() { var outputAnimations = []; // parse old style Bone/Hierarchy animations var animations = []; if ( json.animation !== undefined ) { animations.push( json.animation ); } if ( json.animations !== undefined ) { if ( json.animations.length ) { animations = animations.concat( json.animations ); } else { animations.push( json.animations ); } } for ( var i = 0; i < animations.length; i ++ ) { var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones ); if ( clip ) outputAnimations.push( clip ); } // parse implicit morph animations if ( geometry.morphTargets ) { // TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ); outputAnimations = outputAnimations.concat( morphAnimationClips ); } if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations; } if ( json.materials === undefined || json.materials.length === 0 ) { return { geometry: geometry }; } else { var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin ); return { geometry: geometry, materials: materials }; } } } ); /** * @author mrdoob / http://mrdoob.com/ */ function ObjectLoader ( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.texturePath = ''; } Object.assign( ObjectLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { if ( this.texturePath === '' ) { this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 ); } var scope = this; var loader = new XHRLoader( scope.manager ); loader.load( url, function ( text ) { scope.parse( JSON.parse( text ), onLoad ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json, onLoad ) { var geometries = this.parseGeometries( json.geometries ); var images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures ); var object = this.parseObject( json.object, geometries, materials ); if ( json.animations ) { object.animations = this.parseAnimations( json.animations ); } if ( json.images === undefined || json.images.length === 0 ) { if ( onLoad !== undefined ) onLoad( object ); } return object; }, parseGeometries: function ( json ) { var geometries = {}; if ( json !== undefined ) { var geometryLoader = new JSONLoader(); var bufferGeometryLoader = new BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry; var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new Geometries[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible geometry = new Geometries[ data.type ]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new Geometries[ data.type ]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'ConeGeometry': case 'ConeBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'DodecahedronGeometry': case 'IcosahedronGeometry': case 'OctahedronGeometry': case 'TetrahedronGeometry': geometry = new Geometries[ data.type ]( data.radius, data.detail ); break; case 'RingGeometry': case 'RingBufferGeometry': geometry = new Geometries[ data.type ]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); break; case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); break; case 'LatheGeometry': case 'LatheBufferGeometry': geometry = new Geometries[ data.type ]( data.points, data.segments, data.phiStart, data.phiLength ); break; case 'BufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': geometry = geometryLoader.parse( data.data, this.texturePath ).geometry; break; default: console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); continue; } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json, textures ) { var materials = {}; if ( json !== undefined ) { var loader = new MaterialLoader(); loader.setTextures( textures ); for ( var i = 0, l = json.length; i < l; i ++ ) { var material = loader.parse( json[ i ] ); materials[ material.uuid ] = material; } } return materials; }, parseAnimations: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var clip = AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; }, parseImages: function ( json, onLoad ) { var scope = this; var images = {}; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); }, undefined, function () { scope.manager.itemError( url ); } ); } if ( json !== undefined && json.length > 0 ) { var manager = new LoadingManager( onLoad ); var loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( var i = 0, l = json.length; i < l; i ++ ) { var image = json[ i ]; var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url; images[ image.uuid ] = loadImage( path ); } } return images; }, parseTextures: function ( json, images ) { function parseConstant( value, type ) { if ( typeof( value ) === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return type[ value ]; } var textures = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } var texture = new Texture( images[ data.image ] ); texture.needsUpdate = true; texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TextureMapping ); if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); if ( data.wrap !== undefined ) { texture.wrapS = parseConstant( data.wrap[ 0 ], TextureWrapping ); texture.wrapT = parseConstant( data.wrap[ 1 ], TextureWrapping ); } if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TextureFilter ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TextureFilter ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( data.flipY !== undefined ) texture.flipY = data.flipY; textures[ data.uuid ] = texture; } } return textures; }, parseObject: function () { var matrix = new Matrix4(); return function parseObject( data, geometries, materials ) { var object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } switch ( data.type ) { case 'Scene': object = new Scene(); if ( data.background !== undefined ) { if ( Number.isInteger( data.background ) ) { object.background = new Color( data.background ); } } if ( data.fog !== undefined ) { if ( data.fog.type === 'Fog' ) { object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); } else if ( data.fog.type === 'FogExp2' ) { object.fog = new FogExp2( data.fog.color, data.fog.density ); } } break; case 'PerspectiveCamera': object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); if ( data.focus !== undefined ) object.focus = data.focus; if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); break; case 'AmbientLight': object = new AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); break; case 'HemisphereLight': object = new HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'Mesh': var geometry = getGeometry( data.geometry ); var material = getMaterial( data.material ); if ( geometry.bones && geometry.bones.length > 0 ) { object = new SkinnedMesh( geometry, material ); } else { object = new Mesh( geometry, material ); } break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); break; case 'LineSegments': object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'PointCloud': case 'Points': object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new Sprite( getMaterial( data.material ) ); break; case 'Group': object = new Group(); break; default: object = new Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { matrix.fromArray( data.matrix ); matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.shadow ) { if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera ); } if ( data.visible !== undefined ) object.visible = data.visible; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.children !== undefined ) { for ( var child in data.children ) { object.add( this.parseObject( data.children[ child ], geometries, materials ) ); } } if ( data.type === 'LOD' ) { var levels = data.levels; for ( var l = 0; l < levels.length; l ++ ) { var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; }; }() } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of Curve methods * .getPoint(t), getTangent(t) * .getPointAt(u), getTangentAt(u) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following classes subclasses THREE.Curve: * * -- 2d classes -- * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.CubicBezierCurve * THREE.SplineCurve * THREE.ArcCurve * THREE.EllipseCurve * * -- 3d classes -- * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * THREE.CubicBezierCurve3 * THREE.SplineCurve3 * * A series of curves can be represented as a THREE.CurvePath * **/ /************************************************************** * Abstract Curve base class **************************************************************/ function Curve() {} Curve.prototype = { constructor: Curve, // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function ( t ) { console.warn( "THREE.Curve: Warning, getPoint() not implemented!" ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getPoint( t ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( ! divisions ) divisions = ( this.__arcLengthDivisions ) ? ( this.__arcLengthDivisions ) : 200; if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { //console.log( "cached", this.cacheArcLengths ); return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint ( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum:sum }; Sum is in the last element. }, updateArcLengths: function() { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } //var time = Date.now(); // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; //console.log('b' , i, low, high, Date.now()- time); if ( arcLengths[ i ] === targetArcLength ) { var t = i / ( il - 1 ); return t; } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub( pt1 ); return vec.normalize(); }, getTangentAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); }, computeFrenetFrames: function ( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf var normal = new Vector3(); var tangents = []; var normals = []; var binormals = []; var vec = new Vector3(); var mat = new Matrix4(); var i, u, theta; // compute the tangent vectors for each segment on the curve for ( i = 0; i <= segments; i ++ ) { u = i / segments; tangents[ i ] = this.getTangentAt( u ); tangents[ i ].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); var min = Number.MAX_VALUE; var tx = Math.abs( tangents[ 0 ].x ); var ty = Math.abs( tangents[ 0 ].y ); var tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } }; // TODO: Transformation for Curves? /************************************************************** * 3D Curves **************************************************************/ // A Factory method for creating new curve subclasses Curve.create = function ( constructor, getPointFunc ) { constructor.prototype = Object.create( Curve.prototype ); constructor.prototype.constructor = constructor; constructor.prototype.getPoint = getPointFunc; return constructor; }; /************************************************************** * Line **************************************************************/ function LineCurve( v1, v2 ) { this.v1 = v1; this.v2 = v2; } LineCurve.prototype = Object.create( Curve.prototype ); LineCurve.prototype.constructor = LineCurve; LineCurve.prototype.isLineCurve = true; LineCurve.prototype.getPoint = function ( t ) { if ( t === 1 ) { return this.v2.clone(); } var point = this.v2.clone().sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); return point; }; // Line curve is linear, so we can overwrite default getPointAt LineCurve.prototype.getPointAt = function ( u ) { return this.getPoint( u ); }; LineCurve.prototype.getTangent = function( t ) { var tangent = this.v2.clone().sub( this.v1 ); return tangent.normalize(); }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ function CurvePath() { this.curves = []; this.autoClose = false; // Automatically closes the path } CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), { constructor: CurvePath, add: function ( curve ) { this.curves.push( curve ); }, closePath: function () { // Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new LineCurve( endPoint, startPoint ) ); } }, // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint: function ( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { var diff = curveLengths[ i ] - d; var curve = this.curves[ i ]; var segmentLength = curve.getLength(); var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && !points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; }, /************************************************************** * Create Geometries Helpers **************************************************************/ /// Generate geometry from path points (for Line or Points objects) createPointsGeometry: function ( divisions ) { var pts = this.getPoints( divisions ); return this.createGeometry( pts ); }, // Generate geometry from equidistant sampling along the path createSpacedPointsGeometry: function ( divisions ) { var pts = this.getSpacedPoints( divisions ); return this.createGeometry( pts ); }, createGeometry: function ( points ) { var geometry = new Geometry(); for ( var i = 0, l = points.length; i < l; i ++ ) { var point = points[ i ]; geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); } return geometry; } } ); /************************************************************** * Ellipse curve **************************************************************/ function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation || 0; } EllipseCurve.prototype = Object.create( Curve.prototype ); EllipseCurve.prototype.constructor = EllipseCurve; EllipseCurve.prototype.isEllipseCurve = true; EllipseCurve.prototype.getPoint = function( t ) { var twoPi = Math.PI * 2; var deltaAngle = this.aEndAngle - this.aStartAngle; var samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } var angle = this.aStartAngle + t * deltaAngle; var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation ); var tx = x - this.aX; var ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return new Vector2( x, y ); }; /** * @author zz85 / http://www.lab4games.net/zz85/blog */ var CurveUtils = { tangentQuadraticBezier: function ( t, p0, p1, p2 ) { return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 ); }, // Puay Bing, thanks for helping with this derivative! tangentCubicBezier: function ( t, p0, p1, p2, p3 ) { return - 3 * p0 * ( 1 - t ) * ( 1 - t ) + 3 * p1 * ( 1 - t ) * ( 1 - t ) - 6 * t * p1 * ( 1 - t ) + 6 * t * p2 * ( 1 - t ) - 3 * t * t * p2 + 3 * t * t * p3; }, tangentSpline: function ( t, p0, p1, p2, p3 ) { // To check if my formulas are correct var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1 var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t var h01 = - 6 * t * t + 6 * t; // − 2t3 + 3t2 var h11 = 3 * t * t - 2 * t; // t3 − t2 return h00 + h10 + h01 + h11; }, // Catmull-Rom interpolate: function( p0, p1, p2, p3, t ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; /************************************************************** * Spline curve **************************************************************/ function SplineCurve( points /* array of Vector2 */ ) { this.points = ( points === undefined ) ? [] : points; } SplineCurve.prototype = Object.create( Curve.prototype ); SplineCurve.prototype.constructor = SplineCurve; SplineCurve.prototype.isSplineCurve = true; SplineCurve.prototype.getPoint = function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = CurveUtils.interpolate; return new Vector2( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ) ); }; /************************************************************** * Cubic Bezier curve **************************************************************/ function CubicBezierCurve( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } CubicBezierCurve.prototype = Object.create( Curve.prototype ); CubicBezierCurve.prototype.constructor = CubicBezierCurve; CubicBezierCurve.prototype.getPoint = function ( t ) { var b3 = ShapeUtils.b3; return new Vector2( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ); }; CubicBezierCurve.prototype.getTangent = function( t ) { var tangentCubicBezier = CurveUtils.tangentCubicBezier; return new Vector2( tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ).normalize(); }; /************************************************************** * Quadratic Bezier curve **************************************************************/ function QuadraticBezierCurve( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; } QuadraticBezierCurve.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve; QuadraticBezierCurve.prototype.getPoint = function ( t ) { var b2 = ShapeUtils.b2; return new Vector2( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ) ); }; QuadraticBezierCurve.prototype.getTangent = function( t ) { var tangentQuadraticBezier = CurveUtils.tangentQuadraticBezier; return new Vector2( tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ), tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y ) ).normalize(); }; var PathPrototype = Object.assign( Object.create( CurvePath.prototype ), { fromPoints: function ( vectors ) { this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y ); for ( var i = 1, l = vectors.length; i < l; i ++ ) { this.lineTo( vectors[ i ].x, vectors[ i ].y ); } }, moveTo: function ( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? }, lineTo: function ( x, y ) { var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { var curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { var curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); }, splineThru: function ( pts /*Array of Vector*/ ) { var npts = [ this.currentPoint.clone() ].concat( pts ); var curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); }, arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); }, absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); }, ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); }, absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join var firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); var lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); } } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. function Shape() { Path.apply( this, arguments ); this.holes = []; } Shape.prototype = Object.assign( Object.create( PathPrototype ), { constructor: Shape, getPointsHoles: function ( divisions ) { var holesPts = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; }, // Get points of shape and holes (keypoints based on segments parameter) extractAllPoints: function ( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }, extractPoints: function ( divisions ) { return this.extractAllPoints( divisions ); } } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * Creates free form 2d path using series of points, lines or curves. * **/ function Path( points ) { CurvePath.call( this ); this.currentPoint = new Vector2(); if ( points ) { this.fromPoints( points ); } } Path.prototype = PathPrototype; PathPrototype.constructor = Path; // minimal class for proxing functions to Path. Replaces old "extractSubpaths()" function ShapePath() { this.subPaths = []; this.currentPath = null; } ShapePath.prototype = { moveTo: function ( x, y ) { this.currentPath = new Path(); this.subPaths.push(this.currentPath); this.currentPath.moveTo( x, y ); }, lineTo: function ( x, y ) { this.currentPath.lineTo( x, y ); }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); }, splineThru: function ( pts ) { this.currentPath.splineThru( pts ); }, toShapes: function ( isCCW, noHoles ) { function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } var isClockWise = ShapeUtils.isClockWise; var subPaths = this.subPaths; if ( subPaths.length === 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); var solid, tmpPath, tmpShape, shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( var i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { var ambiguous = false; var toChange = []; for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { var sho = newShapeHoles[ sIdx ]; for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[ hIdx ]; var hole_unassigned = true; for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles; } } var tmpHoles; for ( var i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; } }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author mrdoob / http://mrdoob.com/ */ function Font( data ) { this.data = data; } Object.assign( Font.prototype, { isFont: true, generateShapes: function ( text, size, divisions ) { function createPaths( text ) { var chars = String( text ).split( '' ); var scale = size / data.resolution; var offset = 0; var paths = []; for ( var i = 0; i < chars.length; i ++ ) { var ret = createPath( chars[ i ], scale, offset ); offset += ret.offset; paths.push( ret.path ); } return paths; } function createPath( c, scale, offset ) { var glyph = data.glyphs[ c ] || data.glyphs[ '?' ]; if ( ! glyph ) return; var path = new ShapePath(); var pts = [], b2 = ShapeUtils.b2, b3 = ShapeUtils.b3; var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste; if ( glyph.o ) { var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); for ( var i = 0, l = outline.length; i < l; ) { var action = outline[ i ++ ]; switch ( action ) { case 'm': // moveTo x = outline[ i ++ ] * scale + offset; y = outline[ i ++ ] * scale; path.moveTo( x, y ); break; case 'l': // lineTo x = outline[ i ++ ] * scale + offset; y = outline[ i ++ ] * scale; path.lineTo( x, y ); break; case 'q': // quadraticCurveTo cpx = outline[ i ++ ] * scale + offset; cpy = outline[ i ++ ] * scale; cpx1 = outline[ i ++ ] * scale + offset; cpy1 = outline[ i ++ ] * scale; path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( var i2 = 1; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; b2( t, cpx0, cpx1, cpx ); b2( t, cpy0, cpy1, cpy ); } } break; case 'b': // bezierCurveTo cpx = outline[ i ++ ] * scale + offset; cpy = outline[ i ++ ] * scale; cpx1 = outline[ i ++ ] * scale + offset; cpy1 = outline[ i ++ ] * scale; cpx2 = outline[ i ++ ] * scale + offset; cpy2 = outline[ i ++ ] * scale; path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( var i2 = 1; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; b3( t, cpx0, cpx1, cpx2, cpx ); b3( t, cpy0, cpy1, cpy2, cpy ); } } break; } } } return { offset: glyph.ha * scale, path: path }; } // if ( size === undefined ) size = 100; if ( divisions === undefined ) divisions = 4; var data = this.data; var paths = createPaths( text ); var shapes = []; for ( var p = 0, pl = paths.length; p < pl; p ++ ) { Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); } return shapes; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function FontLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( FontLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new XHRLoader( this.manager ); loader.load( url, function ( text ) { var json; try { json = JSON.parse( text ); } catch ( e ) { console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); json = JSON.parse( text.substring( 65, text.length - 2 ) ); } var font = scope.parse( json ); if ( onLoad ) onLoad( font ); }, onProgress, onError ); }, parse: function ( json ) { return new Font( json ); } } ); var context; function getAudioContext() { if ( context === undefined ) { context = new ( window.AudioContext || window.webkitAudioContext )(); } return context; } /** * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function AudioLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( AudioLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var loader = new XHRLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var context = getAudioContext(); context.decodeAudioData( buffer, function ( audioBuffer ) { onLoad( audioBuffer ); } ); }, onProgress, onError ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function StereoCamera() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; } Object.assign( StereoCamera.prototype, { update: ( function () { var instance, focus, fov, aspect, near, far, zoom; var eyeRight = new Matrix4(); var eyeLeft = new Matrix4(); return function update( camera ) { var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far || zoom !== camera.zoom; if ( needsUpdate ) { instance = this; focus = camera.focus; fov = camera.fov; aspect = camera.aspect * this.aspect; near = camera.near; far = camera.far; zoom = camera.zoom; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone(); var eyeSep = this.eyeSep / 2; var eyeSepOnProjection = eyeSep * near / focus; var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom; var xmin, xmax; // translate xOffset eyeLeft.elements[ 12 ] = - eyeSep; eyeRight.elements[ 12 ] = eyeSep; // for left eye xmin = - ymax * aspect + eyeSepOnProjection; xmax = ymax * aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * aspect - eyeSepOnProjection; xmax = ymax * aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight ); }; } )() } ); /** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */ function CubeCamera( near, far, cubeResolution ) { Object3D.call( this ); this.type = 'CubeCamera'; var fov = 90, aspect = 1; var cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); this.add( cameraPX ); var cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); var cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); this.add( cameraPY ); var cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); var cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); var cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); var options = { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter }; this.renderTarget = new WebGLRenderTargetCube( cubeResolution, cubeResolution, options ); this.updateCubeMap = function ( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); var renderTarget = this.renderTarget; var generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderTarget.activeCubeFace = 0; renderer.render( scene, cameraPX, renderTarget ); renderTarget.activeCubeFace = 1; renderer.render( scene, cameraNX, renderTarget ); renderTarget.activeCubeFace = 2; renderer.render( scene, cameraPY, renderTarget ); renderTarget.activeCubeFace = 3; renderer.render( scene, cameraNY, renderTarget ); renderTarget.activeCubeFace = 4; renderer.render( scene, cameraPZ, renderTarget ); renderTarget.texture.generateMipmaps = generateMipmaps; renderTarget.activeCubeFace = 5; renderer.render( scene, cameraNZ, renderTarget ); renderer.setRenderTarget( null ); }; } CubeCamera.prototype = Object.create( Object3D.prototype ); CubeCamera.prototype.constructor = CubeCamera; /** * @author mrdoob / http://mrdoob.com/ */ function AudioListener() { Object3D.call( this ); this.type = 'AudioListener'; this.context = getAudioContext(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; } AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: AudioListener, getInput: function () { return this.gain; }, removeFilter: function ( ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } }, getFilter: function () { return this.filter; }, setFilter: function ( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); }, getMasterVolume: function () { return this.gain.gain.value; }, setMasterVolume: function ( value ) { this.gain.gain.value = value; }, updateMatrixWorld: ( function () { var position = new Vector3(); var quaternion = new Quaternion(); var scale = new Vector3(); var orientation = new Vector3(); return function updateMatrixWorld( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); var listener = this.context.listener; var up = this.up; this.matrixWorld.decompose( position, quaternion, scale ); orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion ); listener.setPosition( position.x, position.y, position.z ); listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z ); }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function Audio( listener ) { Object3D.call( this ); this.type = 'Audio'; this.context = listener.context; this.source = this.context.createBufferSource(); this.source.onended = this.onEnded.bind( this ); this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.startTime = 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.sourceType = 'empty'; this.filters = []; } Audio.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Audio, getOutput: function () { return this.gain; }, setNodeSource: function ( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; }, setBuffer: function ( audioBuffer ) { this.source.buffer = audioBuffer; this.sourceType = 'buffer'; if ( this.autoplay ) this.play(); return this; }, play: function () { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } var source = this.context.createBufferSource(); source.buffer = this.source.buffer; source.loop = this.source.loop; source.onended = this.source.onended; source.start( 0, this.startTime ); source.playbackRate.value = this.playbackRate; this.isPlaying = true; this.source = source; return this.connect(); }, pause: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = this.context.currentTime; this.isPlaying = false; return this; }, stop: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = 0; this.isPlaying = false; return this; }, connect: function () { if ( this.filters.length > 0 ) { this.source.connect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].connect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } return this; }, disconnect: function () { if ( this.filters.length > 0 ) { this.source.disconnect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].disconnect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } return this; }, getFilters: function () { return this.filters; }, setFilters: function ( value ) { if ( ! value ) value = []; if ( this.isPlaying === true ) { this.disconnect(); this.filters = value; this.connect(); } else { this.filters = value; } return this; }, getFilter: function () { return this.getFilters()[ 0 ]; }, setFilter: function ( filter ) { return this.setFilters( filter ? [ filter ] : [] ); }, setPlaybackRate: function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.value = this.playbackRate; } return this; }, getPlaybackRate: function () { return this.playbackRate; }, onEnded: function () { this.isPlaying = false; }, getLoop: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.source.loop; }, setLoop: function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.loop = value; }, getVolume: function () { return this.gain.gain.value; }, setVolume: function ( value ) { this.gain.gain.value = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function PositionalAudio( listener ) { Audio.call( this, listener ); this.panner = this.context.createPanner(); this.panner.connect( this.gain ); } PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), { constructor: PositionalAudio, getOutput: function () { return this.panner; }, getRefDistance: function () { return this.panner.refDistance; }, setRefDistance: function ( value ) { this.panner.refDistance = value; }, getRolloffFactor: function () { return this.panner.rolloffFactor; }, setRolloffFactor: function ( value ) { this.panner.rolloffFactor = value; }, getDistanceModel: function () { return this.panner.distanceModel; }, setDistanceModel: function ( value ) { this.panner.distanceModel = value; }, getMaxDistance: function () { return this.panner.maxDistance; }, setMaxDistance: function ( value ) { this.panner.maxDistance = value; }, updateMatrixWorld: ( function () { var position = new Vector3(); return function updateMatrixWorld( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); position.setFromMatrixPosition( this.matrixWorld ); this.panner.setPosition( position.x, position.y, position.z ); }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ */ function AudioAnalyser( audio, fftSize ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); } Object.assign( AudioAnalyser.prototype, { getFrequencyData: function () { this.analyser.getByteFrequencyData( this.data ); return this.data; }, getAverageFrequency: function () { var value = 0, data = this.getFrequencyData(); for ( var i = 0; i < data.length; i ++ ) { value += data[ i ]; } return value / data.length; } } ); /** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function PropertyMixer( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; var bufferType = Float64Array, mixFunction; switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; break; case 'string': case 'bool': bufferType = Array, mixFunction = this._select; break; default: mixFunction = this._lerp; } this.buffer = new bufferType( valueSize * 4 ); // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property this._mixBufferRegion = mixFunction; this.cumulativeWeight = 0; this.useCount = 0; this.referenceCount = 0; } PropertyMixer.prototype = { constructor: PropertyMixer, // accumulate data in the 'incoming' region into 'accu' accumulate: function( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride, currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( var i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; }, // apply the state of 'accu' to the binding when accus differ apply: function( accuIndex ) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, binding = this.binding; this.cumulativeWeight = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * 3; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } for ( var i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function() { var binding = this.binding; var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * 3; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } this.cumulativeWeight = 0; }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function() { var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); }, // mix functions _select: function( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( var i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } }, _slerp: function( buffer, dstOffset, srcOffset, t, stride ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); }, _lerp: function( buffer, dstOffset, srcOffset, t, stride ) { var s = 1 - t; for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } }; /** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function PropertyBinding( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; } PropertyBinding.prototype = { constructor: PropertyBinding, getValue: function getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); }, // create getter / setter pair for a property in the scene graph bind: function() { var targetObject = this.node, parsedPath = this.parsedPath, objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( " trying to update node for track: " + this.path + " but it wasn't found." ); return; } if ( objectName ) { var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( ' can not bind to material as node does not have a material', this ); return; } if ( ! targetObject.material.materials ) { console.error( ' can not bind to material.materials as node.material does not have a materials array', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( ' can not bind to bones as node does not have a skeleton', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( ' can not bind to objectName of node, undefined', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( " trying to bind to objectIndex of objectName, but is undefined:", this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property var nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { var nodeName = parsedPath.nodeName; console.error( " trying to update property for track: " + nodeName + '.' + propertyName + " but it wasn't found.", targetObject ); return; } // determine versioning scheme var versioning = this.Versioning.None; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; this.targetObject = targetObject; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; this.targetObject = targetObject; } // determine how the property gets bound var bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === "morphTargetInfluences" ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry', this ); return; } if ( ! targetObject.geometry.morphTargets ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this ); return; } for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) { if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) { propertyIndex = i; break; } } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( nodeProperty.length !== undefined ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; }, unbind: function() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } }; Object.assign( PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function() {}, _setValue_unavailable: function() {}, // initial state of these methods that calls 'bind' _getValue_unbound: PropertyBinding.prototype.getValue, _setValue_unbound: PropertyBinding.prototype.setValue, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct( buffer, offset ) { buffer[ offset ] = this.node[ this.propertyName ]; }, function getValue_array( buffer, offset ) { var source = this.resolvedProperty; for ( var i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } }, function getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; }, function getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; }, function setValue_direct_setNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // EntireArray function setValue_array( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } }, function setValue_array_setNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; }, function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // ArrayElement function setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; }, function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // HasToFromArray function setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); }, function setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; }, function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } ] ] } ); PropertyBinding.Composite = function( targetGroup, path, optionalParsedPath ) { var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); }; PropertyBinding.Composite.prototype = { constructor: PropertyBinding.Composite, getValue: function( array, offset ) { this.bind(); // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); }, setValue: function( array, offset ) { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } }, bind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } }, unbind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } }; PropertyBinding.create = function( root, path, parsedPath ) { if ( ! ( (root && root.isAnimationObjectGroup) ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } }; PropertyBinding.parseTrackName = function( trackName ) { // matches strings in the form of: // nodeName.property // nodeName.property[accessor] // nodeName.material.property[accessor] // uuid.property[accessor] // uuid.objectName[objectIndex].propertyName[propertyIndex] // parentName/nodeName.property // parentName/parentName/nodeName.property[index] // .bone[Armature.DEF_cog].position // scene:helium_balloon_model:helium_balloon_model.position // created and tested via https://regex101.com/#javascript var re = /^((?:\w+[\/:])*)(\w+)?(?:\.(\w+)(?:\[(.+)\])?)?\.(\w+)(?:\[(.+)\])?$/; var matches = re.exec( trackName ); if ( ! matches ) { throw new Error( "cannot parse trackName at all: " + trackName ); } var results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], // allowed to be null, specified root node. objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], propertyIndex: matches[ 6 ] // allowed to be null, specifies that the whole property is set. }; if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( "can not parse propertyName from trackName: " + trackName ); } return results; }; PropertyBinding.findNode = function( root, nodeName ) { if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { var searchSkeleton = function( skeleton ) { for( var i = 0; i < skeleton.bones.length; i ++ ) { var bone = skeleton.bones[ i ]; if ( bone.name === nodeName ) { return bone; } } return null; }; var bone = searchSkeleton( root.skeleton ); if ( bone ) { return bone; } } // search into node subtree. if ( root.children ) { var searchNodeSubtree = function( children ) { for( var i = 0; i < children.length; i ++ ) { var childNode = children[ i ]; if ( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } var result = searchNodeSubtree( childNode.children ); if ( result ) return result; } return null; }; var subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } } return null; }; /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */ function AnimationObjectGroup( var_args ) { this.uuid = _Math.generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite var indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( var i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays var scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } AnimationObjectGroup.prototype = { constructor: AnimationObjectGroup, isAnimationObjectGroup: true, add: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { var knownObject = objects[ index ]; // move existing object to the ACTIVE region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject) { console.error( "Different objects with the same UUID " + "detected. Clean the caches or recreate your " + "infrastructure when reloading scenes..." ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; }, remove: function( var_args ) { var objects = this._objects, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; }, // remove & forget uncache: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop var lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; indicesByUUID[ lastObject.uuid ] = index; objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ], bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { var object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); } return bindingsForPath; }, unsubscribe_: function( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } }; /** * * Action provided by AnimationMixer for scheduling clip playback on specific * objects. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw * */ function AnimationAction( mixer, clip, localRoot ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null; var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); var interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( var i = 0; i !== nTracks; ++ i ) { var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // false -> zero effective time scale this.enabled = true; // true -> zero effective weight this.clampWhenFinished = false; // keep feeding the last frame? this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end } AnimationAction.prototype = { constructor: AnimationAction, // State & Scheduling play: function() { this._mixer._activateAction( this ); return this; }, stop: function() { this._mixer._deactivateAction( this ); return this.reset(); }, reset: function() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1; // forget previous loops this._startTime = null; // forget scheduling return this.stopFading().stopWarping(); }, isRunning: function() { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); }, // return true when play has been called isScheduled: function() { return this._mixer._isActiveAction( this ); }, startAt: function( time ) { this._startTime = time; return this; }, setLoop: function( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; }, // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); }, // return the weight considering fading and .enabled getEffectiveWeight: function() { return this._effectiveWeight; }, fadeIn: function( duration ) { return this._scheduleFading( duration, 0, 1 ); }, fadeOut: function( duration ) { return this._scheduleFading( duration, 1, 0 ); }, crossFadeFrom: function( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if( warp ) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; }, crossFadeTo: function( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); }, stopFading: function() { var weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; }, // Time Scale Control // set the weight stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 :timeScale; return this.stopWarping(); }, // return the time scale considering warping and .paused getEffectiveTimeScale: function() { return this._effectiveTimeScale; }, setDuration: function( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); }, syncWith: function( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); }, halt: function( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); }, warp: function( startTimeScale, endTimeScale, duration ) { var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant, timeScale = this.timeScale; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._timeScaleInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; }, stopWarping: function() { var timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; }, // Object Accessors getMixer: function() { return this._mixer; }, getClip: function() { return this._clip; }, getRoot: function() { return this._localRoot || this._mixer._root; }, // Interna _update: function( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer var startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight( time ); if ( weight > 0 ) { var interpolants = this._interpolants; var propertyMixers = this._propertyBindings; for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } }, _updateWeight: function( time ) { var weight = 0; if ( this.enabled ) { weight = this.weight; var interpolant = this._weightInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; }, _updateTimeScale: function( time ) { var timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; }, _updateTime: function( deltaTime ) { var time = this.time + deltaTime; if ( deltaTime === 0 ) return time; var duration = this._clip.duration, loop = this.loop, loopCount = this._loopCount; if ( loop === LoopOnce ) { if ( loopCount === -1 ) { // just started this.loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else break handle_stop; if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 } ); } } else { // repetitive Repeat or PingPong var pingPong = ( loop === LoopPingPong ); if ( loopCount === -1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); var pending = this.repetitions - loopCount; if ( pending < 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 } ); } else { // keep running if ( pending === 0 ) { // entering the last round var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" this.time = time; return duration - time; } } this.time = time; return time; }, _setEndings: function( atStart, atEnd, pingPong ) { var settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } }, _scheduleFading: function( duration, weightNow, weightThen ) { var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._weightInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } }; /** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function AnimationMixer( root ) { this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } Object.assign( AnimationMixer.prototype, EventDispatcher.prototype, { // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject !== null ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ], prototypeAction = null; if ( actionsForClip !== undefined ) { var existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip; } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it var newAction = new AnimationAction( this, clipObject, optionalRoot ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; }, // get an existing action existingAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; }, // deactivates all previously scheduled actions stopAllAction: function() { var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings; this._nActiveActions = 0; this._nActiveBindings = 0; for ( var i = 0; i !== nActions; ++ i ) { actions[ i ].reset(); } for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].useCount = 0; } return this; }, // advance the time and update apply the animation update: function( deltaTime ) { deltaTime *= this.timeScale; var actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( var i = 0; i !== nActions; ++ i ) { var action = actions[ i ]; if ( action.enabled ) { action._update( time, deltaTime, timeDirection, accuIndex ); } } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings; for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; }, // return this mixer's root target object getRoot: function() { return this._root; }, // free all resources specific to a particular clip uncacheClip: function( clip ) { var actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions; for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { var action = actionsToRemove[ i ]; this._deactivateAction( action ); var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } }, // free all resources specific to a particular root target object uncacheRoot: function( root ) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( var clipUuid in actionsByClip ) { var actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( var trackName in bindingByName ) { var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } }, // remove a targeted clip from the cache uncacheAction: function( clip, optionalRoot ) { var action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } ); // Implementation details: Object.assign( AnimationMixer.prototype, { _bindAction: function( action, prototypeAction ) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( var i = 0; i !== nTracks; ++ i ) { var track = tracks[ i ], trackName = track.name, binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } }, _activateAction: function( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } var bindings = action._propertyBindings; // increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } }, _deactivateAction: function( action ) { if ( this._isActiveAction( action ) ) { var bindings = action._propertyBindings; // decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } }, // Memory manager _initMemoryManager: function() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; var scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; }, // Memory management for AnimationAction objects _isActiveAction: function( action ) { var index = action._cacheIndex; return index !== null && index < this._nActiveActions; }, _addInactiveAction: function( action, clipUuid, rootUuid ) { var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { var knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; }, _removeInactiveAction: function( action ) { var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; var clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( actions._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); }, _removeInactiveBindingsForAction: function( action ) { var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } }, _lendAction: function( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; }, _takeBackAction: function( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; }, // Memory management for PropertyMixer objects _addInactiveBinding: function( binding, rootUuid, trackName ) { var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], bindings = this._bindings; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); }, _removeInactiveBinding: function( binding ) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; remove_empty_map: { for ( var _ in bindingByName ) break remove_empty_map; delete bindingsByRoot[ rootUuid ]; } }, _lendBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; }, _takeBackBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function() { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++, interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; }, _takeBackControlInterpolant: function( interpolant ) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; }, _controlInterpolantsResultBuffer: new Float32Array( 1 ) } ); /** * @author mrdoob / http://mrdoob.com/ */ function Uniform( value ) { if ( typeof value === 'string' ) { console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); value = arguments[ 1 ]; } this.value = value; } /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferGeometry() { BufferGeometry.call( this ); this.type = 'InstancedBufferGeometry'; this.maxInstancedCount = undefined; } InstancedBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); InstancedBufferGeometry.prototype.constructor = InstancedBufferGeometry; InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true; InstancedBufferGeometry.prototype.addGroup = function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); }; InstancedBufferGeometry.prototype.copy = function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } return this; }; /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) { this.uuid = _Math.generateUUID(); this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } InterleavedBufferAttribute.prototype = { constructor: InterleavedBufferAttribute, isInterleavedBufferAttribute: true, get count() { return this.data.count; }, get array() { return this.data.array; }, setX: function ( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; }, setY: function ( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; }, setZ: function ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; }, setW: function ( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; }, getX: function ( index ) { return this.data.array[ index * this.data.stride + this.offset ]; }, getY: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; }, getZ: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; }, getW: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; }, setXY: function ( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } }; /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBuffer( array, stride ) { this.uuid = _Math.generateUUID(); this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; } InterleavedBuffer.prototype = { constructor: InterleavedBuffer, isInterleavedBuffer: true, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setArray: function ( array ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.count = array !== undefined ? array.length / this.stride : 0; this.array = array; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( var i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, clone: function () { return new this.constructor().copy( this ); } }; /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) { InterleavedBuffer.call( this, array, stride ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedInterleavedBuffer.prototype = Object.create( InterleavedBuffer.prototype ); InstancedInterleavedBuffer.prototype.constructor = InstancedInterleavedBuffer; InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true; InstancedInterleavedBuffer.prototype.copy = function ( source ) { InterleavedBuffer.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) { BufferAttribute.call( this, array, itemSize ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedBufferAttribute.prototype = Object.create( BufferAttribute.prototype ); InstancedBufferAttribute.prototype.constructor = InstancedBufferAttribute; InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true; InstancedBufferAttribute.prototype.copy = function ( source ) { BufferAttribute.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */ function Raycaster( origin, direction, near, far ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; Object.defineProperties( this.params, { PointCloud: { get: function () { console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points; } } } ); } function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.visible === false ) return; object.raycast( raycaster, intersects ); if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } // Raycaster.prototype = { constructor: Raycaster, linePrecision: 1, set: function ( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); }, setFromCamera: function ( coords, camera ) { if ( (camera && camera.isPerspectiveCamera) ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); } else if ( (camera && camera.isOrthographicCamera) ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); } else { console.error( 'THREE.Raycaster: Unsupported camera type.' ); } }, intersectObject: function ( object, recursive ) { var intersects = []; intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; }, intersectObjects: function ( objects, recursive ) { var intersects = []; if ( Array.isArray( objects ) === false ) { console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects; } for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } }; /** * @author alteredq / http://alteredqualia.com/ */ function Clock( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } Clock.prototype = { constructor: Clock, start: function () { this.startTime = ( performance || Date ).now(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; }, stop: function () { this.getElapsedTime(); this.running = false; }, getElapsedTime: function () { this.getDelta(); return this.elapsedTime; }, getDelta: function () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); } if ( this.running ) { var newTime = ( performance || Date ).now(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } }; /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Spline( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function ( a ) { this.points = []; for ( var i = 0; i < a.length; i ++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new Vector3(), tmpVec = new Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( ! nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint !== oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, realDistance, sampling, position, newpoints = [], tmpVec = new Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i ++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j ++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; } } /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley * * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The poles (phi) are at the positive and negative y axis. * The equator starts at positive z. */ function Spherical( radius, phi, theta ) { this.radius = ( radius !== undefined ) ? radius : 1.0; this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere return this; } Spherical.prototype = { constructor: Spherical, set: function ( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; }, // restrict phi to be betwee EPS and PI-EPS makeSafe: function() { var EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; }, setFromVector3: function( vec3 ) { this.radius = vec3.length(); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle } return this; }, }; /** * @author alteredq / http://alteredqualia.com/ */ function MorphBlendMesh( geometry, material ) { Mesh.call( this, geometry, material ); this.animationsMap = {}; this.animationsList = []; // prepare default animation // (all frames played together in 1 second) var numFrames = this.geometry.morphTargets.length; var name = "__default"; var startFrame = 0; var endFrame = numFrames - 1; var fps = numFrames / 1; this.createAnimation( name, startFrame, endFrame, fps ); this.setAnimationWeight( name, 1 ); } MorphBlendMesh.prototype = Object.create( Mesh.prototype ); MorphBlendMesh.prototype.constructor = MorphBlendMesh; MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) { var animation = { start: start, end: end, length: end - start + 1, fps: fps, duration: ( end - start ) / fps, lastFrame: 0, currentFrame: 0, active: false, time: 0, direction: 1, weight: 1, directionBackwards: false, mirroredLoop: false }; this.animationsMap[ name ] = animation; this.animationsList.push( animation ); }; MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) { var pattern = /([a-z]+)_?(\d+)/i; var firstAnimation, frameRanges = {}; var geometry = this.geometry; for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) { var morph = geometry.morphTargets[ i ]; var chunks = morph.name.match( pattern ); if ( chunks && chunks.length > 1 ) { var name = chunks[ 1 ]; if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity }; var range = frameRanges[ name ]; if ( i < range.start ) range.start = i; if ( i > range.end ) range.end = i; if ( ! firstAnimation ) firstAnimation = name; } } for ( var name in frameRanges ) { var range = frameRanges[ name ]; this.createAnimation( name, range.start, range.end, fps ); } this.firstAnimation = firstAnimation; }; MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = 1; animation.directionBackwards = false; } }; MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = - 1; animation.directionBackwards = true; } }; MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.fps = fps; animation.duration = ( animation.end - animation.start ) / animation.fps; } }; MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.duration = duration; animation.fps = ( animation.end - animation.start ) / animation.duration; } }; MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.weight = weight; } }; MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = time; } }; MorphBlendMesh.prototype.getAnimationTime = function ( name ) { var time = 0; var animation = this.animationsMap[ name ]; if ( animation ) { time = animation.time; } return time; }; MorphBlendMesh.prototype.getAnimationDuration = function ( name ) { var duration = - 1; var animation = this.animationsMap[ name ]; if ( animation ) { duration = animation.duration; } return duration; }; MorphBlendMesh.prototype.playAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = 0; animation.active = true; } else { console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" ); } }; MorphBlendMesh.prototype.stopAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.active = false; } }; MorphBlendMesh.prototype.update = function ( delta ) { for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) { var animation = this.animationsList[ i ]; if ( ! animation.active ) continue; var frameTime = animation.duration / animation.length; animation.time += animation.direction * delta; if ( animation.mirroredLoop ) { if ( animation.time > animation.duration || animation.time < 0 ) { animation.direction *= - 1; if ( animation.time > animation.duration ) { animation.time = animation.duration; animation.directionBackwards = true; } if ( animation.time < 0 ) { animation.time = 0; animation.directionBackwards = false; } } } else { animation.time = animation.time % animation.duration; if ( animation.time < 0 ) animation.time += animation.duration; } var keyframe = animation.start + _Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 ); var weight = animation.weight; if ( keyframe !== animation.currentFrame ) { this.morphTargetInfluences[ animation.lastFrame ] = 0; this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight; this.morphTargetInfluences[ keyframe ] = 0; animation.lastFrame = animation.currentFrame; animation.currentFrame = keyframe; } var mix = ( animation.time % frameTime ) / frameTime; if ( animation.directionBackwards ) mix = 1 - mix; if ( animation.currentFrame !== animation.lastFrame ) { this.morphTargetInfluences[ animation.currentFrame ] = mix * weight; this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight; } else { this.morphTargetInfluences[ animation.currentFrame ] = weight; } } }; /** * @author alteredq / http://alteredqualia.com/ */ function ImmediateRenderObject( material ) { Object3D.call( this ); this.material = material; this.render = function ( renderCallback ) {}; } ImmediateRenderObject.prototype = Object.create( Object3D.prototype ); ImmediateRenderObject.prototype.constructor = ImmediateRenderObject; ImmediateRenderObject.prototype.isImmediateRenderObject = true; /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function VertexNormalsHelper( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xff0000; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( (objGeometry && objGeometry.isGeometry) ) { nNormals = objGeometry.faces.length * 3; } else if ( (objGeometry && objGeometry.isBufferGeometry) ) { nNormals = objGeometry.attributes.normal.count; } // var geometry = new BufferGeometry(); var positions = new Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); } VertexNormalsHelper.prototype = Object.create( LineSegments.prototype ); VertexNormalsHelper.prototype.constructor = VertexNormalsHelper; VertexNormalsHelper.prototype.update = ( function () { var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3(); return function update() { var keys = [ 'a', 'b', 'c' ]; this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; if ( (objGeometry && objGeometry.isGeometry) ) { var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { var vertex = vertices[ face[ keys[ j ] ] ]; var normal = face.vertexNormals[ j ]; v1.copy( vertex ).applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } } else if ( (objGeometry && objGeometry.isBufferGeometry) ) { var objPos = objGeometry.attributes.position; var objNorm = objGeometry.attributes.normal; var idx = 0; // for simplicity, ignore index and drawcalls, and render every normal for ( var j = 0, jl = objPos.count; j < jl; j ++ ) { v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld ); v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) ); v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } position.needsUpdate = true; return this; }; }() ); /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function SpotLightHelper( light ) { Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; var geometry = new BufferGeometry(); var positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, - 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, - 1, 1 ]; for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { var p1 = ( i / l ) * Math.PI * 2; var p2 = ( j / l ) * Math.PI * 2; positions.push( Math.cos( p1 ), Math.sin( p1 ), 1, Math.cos( p2 ), Math.sin( p2 ), 1 ); } geometry.addAttribute( 'position', new Float32Attribute( positions, 3 ) ); var material = new LineBasicMaterial( { fog: false } ); this.cone = new LineSegments( geometry, material ); this.add( this.cone ); this.update(); } SpotLightHelper.prototype = Object.create( Object3D.prototype ); SpotLightHelper.prototype.constructor = SpotLightHelper; SpotLightHelper.prototype.dispose = function () { this.cone.geometry.dispose(); this.cone.material.dispose(); }; SpotLightHelper.prototype.update = function () { var vector = new Vector3(); var vector2 = new Vector3(); return function update() { var coneLength = this.light.distance ? this.light.distance : 1000; var coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); vector.setFromMatrixPosition( this.light.matrixWorld ); vector2.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( vector2.sub( vector ) ); this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); }; }(); /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com */ function SkeletonHelper( object ) { this.bones = this.getBoneList( object ); var geometry = new Geometry(); for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( (bone.parent && bone.parent.isBone) ) { geometry.vertices.push( new Vector3() ); geometry.vertices.push( new Vector3() ); geometry.colors.push( new Color( 0, 0, 1 ) ); geometry.colors.push( new Color( 0, 1, 0 ) ); } } geometry.dynamic = true; var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } ); LineSegments.call( this, geometry, material ); this.root = object; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; this.update(); } SkeletonHelper.prototype = Object.create( LineSegments.prototype ); SkeletonHelper.prototype.constructor = SkeletonHelper; SkeletonHelper.prototype.getBoneList = function( object ) { var boneList = []; if ( (object && object.isBone) ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) ); } return boneList; }; SkeletonHelper.prototype.update = function () { var geometry = this.geometry; var matrixWorldInv = new Matrix4().getInverse( this.root.matrixWorld ); var boneMatrix = new Matrix4(); var j = 0; for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( (bone.parent && bone.parent.isBone) ) { boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); geometry.vertices[ j ].setFromMatrixPosition( boneMatrix ); boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix ); j += 2; } } geometry.verticesNeedUpdate = true; geometry.computeBoundingSphere(); }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function PointLightHelper( light, sphereSize ) { this.light = light; this.light.updateMatrixWorld(); var geometry = new SphereBufferGeometry( sphereSize, 4, 2 ); var material = new MeshBasicMaterial( { wireframe: true, fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); Mesh.call( this, geometry, material ); this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; /* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); var d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } PointLightHelper.prototype = Object.create( Mesh.prototype ); PointLightHelper.prototype.constructor = PointLightHelper; PointLightHelper.prototype.dispose = function () { this.geometry.dispose(); this.material.dispose(); }; PointLightHelper.prototype.update = function () { this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); /* var d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function HemisphereLightHelper( light, sphereSize ) { Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.colors = [ new Color(), new Color() ]; var geometry = new SphereGeometry( sphereSize, 4, 2 ); geometry.rotateX( - Math.PI / 2 ); for ( var i = 0, il = 8; i < il; i ++ ) { geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ]; } var material = new MeshBasicMaterial( { vertexColors: FaceColors, wireframe: true } ); this.lightSphere = new Mesh( geometry, material ); this.add( this.lightSphere ); this.update(); } HemisphereLightHelper.prototype = Object.create( Object3D.prototype ); HemisphereLightHelper.prototype.constructor = HemisphereLightHelper; HemisphereLightHelper.prototype.dispose = function () { this.lightSphere.geometry.dispose(); this.lightSphere.material.dispose(); }; HemisphereLightHelper.prototype.update = function () { var vector = new Vector3(); return function update() { this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity ); this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity ); this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() ); this.lightSphere.geometry.colorsNeedUpdate = true; }; }(); /** * @author mrdoob / http://mrdoob.com/ */ function GridHelper( size, divisions, color1, color2 ) { divisions = divisions || 1; color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); color2 = new Color( color2 !== undefined ? color2 : 0x888888 ); var center = divisions / 2; var step = ( size * 2 ) / divisions; var vertices = [], colors = []; for ( var i = 0, j = 0, k = - size; i <= divisions; i ++, k += step ) { vertices.push( - size, 0, k, size, 0, k ); vertices.push( k, 0, - size, k, 0, size ); var color = i === center ? color1 : color2; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; } var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32Attribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32Attribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: VertexColors } ); LineSegments.call( this, geometry, material ); } GridHelper.prototype = Object.create( LineSegments.prototype ); GridHelper.prototype.constructor = GridHelper; GridHelper.prototype.setColors = function () { console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' ); }; /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function FaceNormalsHelper( object, size, hex, linewidth ) { // FaceNormalsHelper only supports THREE.Geometry this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xffff00; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( (objGeometry && objGeometry.isGeometry) ) { nNormals = objGeometry.faces.length; } else { console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' ); } // var geometry = new BufferGeometry(); var positions = new Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); } FaceNormalsHelper.prototype = Object.create( LineSegments.prototype ); FaceNormalsHelper.prototype.constructor = FaceNormalsHelper; FaceNormalsHelper.prototype.update = ( function () { var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3(); return function update() { this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; var normal = face.normal; v1.copy( vertices[ face.a ] ) .add( vertices[ face.b ] ) .add( vertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } position.needsUpdate = true; return this; }; }() ); /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function DirectionalLightHelper( light, size ) { Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; if ( size === undefined ) size = 1; var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32Attribute( [ - size, size, 0, size, size, 0, size, - size, 0, - size, - size, 0, - size, size, 0 ], 3 ) ); var material = new LineBasicMaterial( { fog: false } ); this.add( new Line( geometry, material ) ); geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32Attribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); this.add( new Line( geometry, material )); this.update(); } DirectionalLightHelper.prototype = Object.create( Object3D.prototype ); DirectionalLightHelper.prototype.constructor = DirectionalLightHelper; DirectionalLightHelper.prototype.dispose = function () { var lightPlane = this.children[ 0 ]; var targetLine = this.children[ 1 ]; lightPlane.geometry.dispose(); lightPlane.material.dispose(); targetLine.geometry.dispose(); targetLine.material.dispose(); }; DirectionalLightHelper.prototype.update = function () { var v1 = new Vector3(); var v2 = new Vector3(); var v3 = new Vector3(); return function update() { v1.setFromMatrixPosition( this.light.matrixWorld ); v2.setFromMatrixPosition( this.light.target.matrixWorld ); v3.subVectors( v2, v1 ); var lightPlane = this.children[ 0 ]; var targetLine = this.children[ 1 ]; lightPlane.lookAt( v3 ); lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); targetLine.lookAt( v3 ); targetLine.scale.z = v3.length(); }; }(); /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ function CameraHelper( camera ) { var geometry = new Geometry(); var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } ); var pointMap = {}; // colors var hexFrustum = 0xffaa00; var hexCone = 0xff0000; var hexUp = 0x00aaff; var hexTarget = 0xffffff; var hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { geometry.vertices.push( new Vector3() ); geometry.colors.push( new Color( hex ) ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( geometry.vertices.length - 1 ); } LineSegments.call( this, geometry, material ); this.camera = camera; if( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); } CameraHelper.prototype = Object.create( LineSegments.prototype ); CameraHelper.prototype.constructor = CameraHelper; CameraHelper.prototype.update = function () { var geometry, pointMap; var vector = new Vector3(); var camera = new Camera(); function setPoint( point, x, y, z ) { vector.set( x, y, z ).unproject( camera ); var points = pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { geometry.vertices[ points[ i ] ].copy( vector ); } } } return function update() { geometry = this.geometry; pointMap = this.pointMap; var w = 1, h = 1; // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy( this.camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, - 1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", - w, - h, - 1 ); setPoint( "n2", w, - h, - 1 ); setPoint( "n3", - w, h, - 1 ); setPoint( "n4", w, h, - 1 ); // far setPoint( "f1", - w, - h, 1 ); setPoint( "f2", w, - h, 1 ); setPoint( "f3", - w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, - 1 ); setPoint( "u2", - w * 0.7, h * 1.1, - 1 ); setPoint( "u3", 0, h * 2, - 1 ); // cross setPoint( "cf1", - w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, - h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", - w, 0, - 1 ); setPoint( "cn2", w, 0, - 1 ); setPoint( "cn3", 0, - h, - 1 ); setPoint( "cn4", 0, h, - 1 ); geometry.verticesNeedUpdate = true; }; }(); /** * @author WestLangley / http://github.com/WestLangley */ // a helper to show the world-axis-aligned bounding box for an object function BoundingBoxHelper( object, hex ) { var color = ( hex !== undefined ) ? hex : 0x888888; this.object = object; this.box = new Box3(); Mesh.call( this, new BoxGeometry( 1, 1, 1 ), new MeshBasicMaterial( { color: color, wireframe: true } ) ); } BoundingBoxHelper.prototype = Object.create( Mesh.prototype ); BoundingBoxHelper.prototype.constructor = BoundingBoxHelper; BoundingBoxHelper.prototype.update = function () { this.box.setFromObject( this.object ); this.box.getSize( this.scale ); this.box.getCenter( this.position ); }; /** * @author mrdoob / http://mrdoob.com/ */ function BoxHelper( object, color ) { if ( color === undefined ) color = 0xffff00; var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 ); var geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) ); if ( object !== undefined ) { this.update( object ); } } BoxHelper.prototype = Object.create( LineSegments.prototype ); BoxHelper.prototype.constructor = BoxHelper; BoxHelper.prototype.update = ( function () { var box = new Box3(); return function update( object ) { if ( (object && object.isBox3) ) { box.copy( object ); } else { box.setFromObject( object ); } if ( box.isEmpty() ) return; var min = box.min; var max = box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position; var array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); }; } )(); /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ var lineGeometry = new BufferGeometry(); lineGeometry.addAttribute( 'position', new Float32Attribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); var coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 ); coneGeometry.translate( 0, - 0.5, 0 ); function ArrowHelper( dir, origin, length, color, headLength, headWidth ) { // dir is assumed to be normalized Object3D.call( this ); if ( color === undefined ) color = 0xffff00; if ( length === undefined ) length = 1; if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.position.copy( origin ); this.line = new Line( lineGeometry, new LineBasicMaterial( { color: color } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new Mesh( coneGeometry, new MeshBasicMaterial( { color: color } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } ArrowHelper.prototype = Object.create( Object3D.prototype ); ArrowHelper.prototype.constructor = ArrowHelper; ArrowHelper.prototype.setDirection = ( function () { var axis = new Vector3(); var radians; return function setDirection( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { axis.set( dir.z, 0, - dir.x ).normalize(); radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( axis, radians ); } }; }() ); ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) { if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 ); this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); }; ArrowHelper.prototype.setColor = function ( color ) { this.line.material.color.copy( color ); this.cone.material.color.copy( color ); }; /** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */ function AxisHelper( size ) { size = size || 1; var vertices = new Float32Array( [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ] ); var colors = new Float32Array( [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ] ); var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: VertexColors } ); LineSegments.call( this, geometry, material ); } AxisHelper.prototype = Object.create( LineSegments.prototype ); AxisHelper.prototype.constructor = AxisHelper; /** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ var CatmullRomCurve3 = ( function() { var tmp = new Vector3(), px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() {} /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ CubicPoly.prototype.init = function( x0, x1, t0, t1 ) { this.c0 = x0; this.c1 = t0; this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; this.c3 = 2 * x0 - 2 * x1 + t0 + t1; }; CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; // initCubicPoly this.init( x1, x2, t1, t2 ); }; // standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4 CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) { this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }; CubicPoly.prototype.calc = function( t ) { var t2 = t * t; var t3 = t2 * t; return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3; }; // Subclass Three.js curve return Curve.create( function ( p /* array of Vector3 */ ) { this.points = p || []; this.closed = false; }, function ( t ) { var points = this.points, point, intPoint, weight, l; l = points.length; if ( l < 2 ) console.log( 'duh, you need at least 2 points' ); point = ( l - ( this.closed ? 0 : 1 ) ) * t; intPoint = Math.floor( point ); weight = point - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } var p0, p1, p2, p3; // 4 points if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } p1 = points[ intPoint % l ]; p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom var pow = this.type === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.type === 'catmullrom' ) { var tension = this.tension !== undefined ? this.tension : 0.5; px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension ); } var v = new Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return v; } ); } )(); /************************************************************** * Closed Spline 3D curve **************************************************************/ function ClosedSplineCurve3( points ) { console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Please use THREE.CatmullRomCurve3.' ); CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; this.closed = true; } ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype ); /************************************************************** * Spline 3D curve **************************************************************/ var SplineCurve3 = Curve.create( function ( points /* array of Vector3 */ ) { console.warn( 'THREE.SplineCurve3 will be deprecated. Please use THREE.CatmullRomCurve3' ); this.points = ( points === undefined ) ? [] : points; }, function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = CurveUtils.interpolate; return new Vector3( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ), interpolate( point0.z, point1.z, point2.z, point3.z, weight ) ); } ); /************************************************************** * Cubic Bezier 3D curve **************************************************************/ var CubicBezierCurve3 = Curve.create( function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }, function ( t ) { var b3 = ShapeUtils.b3; return new Vector3( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ), b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z ) ); } ); /************************************************************** * Quadratic Bezier 3D curve **************************************************************/ var QuadraticBezierCurve3 = Curve.create( function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }, function ( t ) { var b2 = ShapeUtils.b2; return new Vector3( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ), b2( t, this.v0.z, this.v1.z, this.v2.z ) ); } ); /************************************************************** * Line3D **************************************************************/ var LineCurve3 = Curve.create( function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }, function ( t ) { if ( t === 1 ) { return this.v2.clone(); } var vector = new Vector3(); vector.subVectors( this.v2, this.v1 ); // diff vector.multiplyScalar( t ); vector.add( this.v1 ); return vector; } ); /************************************************************** * Arc curve **************************************************************/ function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); } ArcCurve.prototype = Object.create( EllipseCurve.prototype ); ArcCurve.prototype.constructor = ArcCurve; /** * @author alteredq / http://alteredqualia.com/ */ var SceneUtils = { createMultiMaterialObject: function ( geometry, materials ) { var group = new Group(); for ( var i = 0, l = materials.length; i < l; i ++ ) { group.add( new Mesh( geometry, materials[ i ] ) ); } return group; }, detach: function ( child, parent, scene ) { child.applyMatrix( parent.matrixWorld ); parent.remove( child ); scene.add( child ); }, attach: function ( child, scene, parent ) { var matrixWorldInverse = new Matrix4(); matrixWorldInverse.getInverse( parent.matrixWorld ); child.applyMatrix( matrixWorldInverse ); scene.remove( child ); parent.add( child ); } }; /** * @author mrdoob / http://mrdoob.com/ */ function Face4 ( a, b, c, d, normal, color, materialIndex ) { console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); return new Face3( a, b, c, normal, color, materialIndex ); } var LineStrip = 0; var LinePieces = 1; function PointCloud ( geometry, material ) { console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function ParticleSystem ( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function PointCloudMaterial ( parameters ) { console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleBasicMaterial ( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleSystemMaterial ( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function Vertex ( x, y, z ) { console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); return new Vector3( x, y, z ); } // function EdgesHelper( object, hex ) { console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' ); return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } function WireframeHelper( object, hex ) { console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' ); return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } // Object.assign( Box2.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Object.assign( Box3.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Object.assign( Line3.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); } } ); Object.assign( Matrix3.prototype, { multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); }, multiplyVector3Array: function ( a ) { console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); } } ); Object.assign( Matrix4.prototype, { extractPosition: function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); }, setRotationFromQuaternion: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' ); return vector.applyProjection( this ); }, multiplyVector4: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector3Array: function ( a ) { console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); }, rotateAxis: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); }, crossVector: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, translate: function ( v ) { console.error( 'THREE.Matrix4: .translate() has been removed.' ); }, rotateX: function ( angle ) { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); }, rotateY: function ( angle ) { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); }, rotateZ: function ( angle ) { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); }, rotateByAxis: function ( axis, angle ) { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); } } ); Object.assign( Plane.prototype, { isIntersectionLine: function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); } } ); Object.assign( Quaternion.prototype, { multiplyVector3: function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); } } ); Object.assign( Ray.prototype, { isIntersectionBox: function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionPlane: function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } ); Object.assign( Shape.prototype, { extrude: function ( options ) { console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); return new ExtrudeGeometry( this, options ); }, makeGeometry: function ( options ) { console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); return new ShapeGeometry( this, options ); } } ); Object.assign( Vector3.prototype, { setEulerFromRotationMatrix: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }, setEulerFromQuaternion: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }, getPositionFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }, getScaleFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }, getColumnFromMatrix: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( matrix, index ); } } ); // Object.assign( Object3D.prototype, { getChildByName: function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); }, renderDepth: function ( value ) { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); }, translate: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); } } ); Object.defineProperties( Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function ( value ) { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); Object.defineProperties( LOD.prototype, { objects: { get: function () { console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels; } } } ); // PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) { console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " + "Use .setFocalLength and .filmGauge for a photographic setup." ); if ( filmGauge !== undefined ) this.filmGauge = filmGauge; this.setFocalLength( focalLength ); }; // Object.defineProperties( Light.prototype, { onlyShadow: { set: function ( value ) { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function ( value ) { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' ); return this.array.length; } } } ); Object.assign( BufferGeometry.prototype, { addIndex: function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); }, addDrawCall: function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); }, clearDrawCalls: function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); }, computeTangents: function () { console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); }, computeOffsets: function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); } } ); Object.defineProperties( BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } } } ); // Object.defineProperties( Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapRGB has been removed.' ); return new Color(); } } } ); Object.defineProperties( MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false; }, set: function ( value ) { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); } } } ); Object.defineProperties( ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // EventDispatcher.prototype = Object.assign( Object.create( { // Note: Extra base ensures these properties are not 'assign'ed. constructor: EventDispatcher, apply: function ( target ) { console.warn( "THREE.EventDispatcher: .apply is deprecated, " + "just inherit or Object.assign the prototype to mix-in." ); Object.assign( target, this ); } } ), EventDispatcher.prototype ); // Object.defineProperties( Uniform.prototype, { dynamic: { set: function ( value ) { console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' ); } }, onUpdate: { value: function () { console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); return this; } } } ); // Object.assign( WebGLRenderer.prototype, { supportsFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' ); }, supportsHalfFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' ); }, supportsStandardDerivatives: function () { console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' ); }, supportsCompressedTextureS3TC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); }, supportsCompressedTexturePVRTC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); }, supportsBlendMinMax: function () { console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' ); }, supportsVertexTextures: function () { return this.capabilities.vertexTextures; }, supportsInstancedArrays: function () { console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' ); }, enableScissorTest: function ( boolean ) { console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean ); }, initMaterial: function () { console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); }, addPrePlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); }, addPostPlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); }, updateShadowMap: function () { console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); } } ); Object.defineProperties( WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { return this.shadowMap.cullFace; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' ); this.shadowMap.cullFace = value; } } } ); Object.defineProperties( WebGLShadowMap.prototype, { cullFace: { get: function () { return this.renderReverseSided ? CullFaceFront : CullFaceBack; }, set: function ( cullFace ) { var value = ( cullFace !== CullFaceBack ); console.warn( "WebGLRenderer: .shadowMap.cullFace is deprecated. Set .shadowMap.renderReverseSided to " + value + "." ); this.renderReverseSided = value; } } } ); // Object.defineProperties( WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // Object.assign( Audio.prototype, { load: function ( file ) { console.warn( 'THREE.Audio: .load has been deprecated. Please use THREE.AudioLoader.' ); var scope = this; var audioLoader = new AudioLoader(); audioLoader.load( file, function ( buffer ) { scope.setBuffer( buffer ); } ); return this; } } ); Object.assign( AudioAnalyser.prototype, { getData: function ( file ) { console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); return this.getFrequencyData(); } } ); // var GeometryUtils = { merge: function ( geometry1, geometry2, materialIndexOffset ) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix; if ( geometry2.isMesh ) { geometry2.matrixAutoUpdate && geometry2.updateMatrix(); matrix = geometry2.matrix; geometry2 = geometry2.geometry; } geometry1.merge( geometry2, matrix, materialIndexOffset ); }, center: function ( geometry ) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center(); } }; var ImageUtils = { crossOrigin: undefined, loadTexture: function ( url, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); var loader = new TextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( url, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadTextureCube: function ( urls, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); var loader = new CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( urls, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadCompressedTexture: function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); }, loadCompressedTextureCube: function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); } }; // function Projector () { console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' ); this.projectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .projectVector() is now vector.project().' ); vector.project( camera ); }; this.unprojectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' ); vector.unproject( camera ); }; this.pickingRay = function ( vector, camera ) { console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' ); }; } // function CanvasRenderer () { console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' ); this.domElement = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); this.clear = function () {}; this.render = function () {}; this.setClearColor = function () {}; this.setSize = function () {}; } export { WebGLRenderTargetCube, WebGLRenderTarget, WebGLRenderer, ShaderLib, UniformsLib, UniformsUtils, ShaderChunk, FogExp2, Fog, Scene, LensFlare, Sprite, LOD, SkinnedMesh, Skeleton, Bone, Mesh, LineSegments, Line, Points, Group, VideoTexture, DataTexture, CompressedTexture, CubeTexture, CanvasTexture, DepthTexture, TextureIdCount, Texture, MaterialIdCount, CompressedTextureLoader, BinaryTextureLoader, DataTextureLoader, CubeTextureLoader, TextureLoader, ObjectLoader, MaterialLoader, BufferGeometryLoader, DefaultLoadingManager, LoadingManager, JSONLoader, ImageLoader, FontLoader, XHRLoader, Loader, Cache, AudioLoader, SpotLightShadow, SpotLight, PointLight, HemisphereLight, DirectionalLightShadow, DirectionalLight, AmbientLight, LightShadow, Light, StereoCamera, PerspectiveCamera, OrthographicCamera, CubeCamera, Camera, AudioListener, PositionalAudio, getAudioContext, AudioAnalyser, Audio, VectorKeyframeTrack, StringKeyframeTrack, QuaternionKeyframeTrack, NumberKeyframeTrack, ColorKeyframeTrack, BooleanKeyframeTrack, PropertyMixer, PropertyBinding, KeyframeTrack, AnimationUtils, AnimationObjectGroup, AnimationMixer, AnimationClip, Uniform, InstancedBufferGeometry, BufferGeometry, GeometryIdCount, Geometry, InterleavedBufferAttribute, InstancedInterleavedBuffer, InterleavedBuffer, InstancedBufferAttribute, DynamicBufferAttribute, Float64Attribute, Float32Attribute, Uint32Attribute, Int32Attribute, Uint16Attribute, Int16Attribute, Uint8ClampedAttribute, Uint8Attribute, Int8Attribute, BufferAttribute, Face3, Object3DIdCount, Object3D, Raycaster, Layers, EventDispatcher, Clock, QuaternionLinearInterpolant, LinearInterpolant, DiscreteInterpolant, CubicInterpolant, Interpolant, Triangle, Spline, _Math as Math, Spherical, Plane, Frustum, Sphere, Ray, Matrix4, Matrix3, Box3, Box2, Line3, Euler, Vector4, Vector3, Vector2, Quaternion, ColorKeywords, Color, MorphBlendMesh, ImmediateRenderObject, VertexNormalsHelper, SpotLightHelper, SkeletonHelper, PointLightHelper, HemisphereLightHelper, GridHelper, FaceNormalsHelper, DirectionalLightHelper, CameraHelper, BoundingBoxHelper, BoxHelper, ArrowHelper, AxisHelper, ClosedSplineCurve3, CatmullRomCurve3, SplineCurve3, CubicBezierCurve3, QuadraticBezierCurve3, LineCurve3, ArcCurve, EllipseCurve, SplineCurve, CubicBezierCurve, QuadraticBezierCurve, LineCurve, Shape, ShapePath, Path, Font, CurvePath, Curve, ShapeUtils, SceneUtils, CurveUtils, WireframeGeometry, ParametricGeometry, ParametricBufferGeometry, TetrahedronGeometry, TetrahedronBufferGeometry, OctahedronGeometry, OctahedronBufferGeometry, IcosahedronGeometry, IcosahedronBufferGeometry, DodecahedronGeometry, DodecahedronBufferGeometry, PolyhedronGeometry, PolyhedronBufferGeometry, TubeGeometry, TubeBufferGeometry, TorusKnotGeometry, TorusKnotBufferGeometry, TorusGeometry, TorusBufferGeometry, TextGeometry, SphereBufferGeometry, SphereGeometry, RingGeometry, RingBufferGeometry, PlaneBufferGeometry, PlaneGeometry, LatheGeometry, LatheBufferGeometry, ShapeGeometry, ExtrudeGeometry, EdgesGeometry, ConeGeometry, ConeBufferGeometry, CylinderGeometry, CylinderBufferGeometry, CircleBufferGeometry, CircleGeometry, BoxBufferGeometry, BoxGeometry, ShadowMaterial, SpriteMaterial, RawShaderMaterial, ShaderMaterial, PointsMaterial, MultiMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshPhongMaterial, MeshNormalMaterial, MeshLambertMaterial, MeshDepthMaterial, MeshBasicMaterial, LineDashedMaterial, LineBasicMaterial, Material, REVISION, MOUSE, CullFaceNone, CullFaceBack, CullFaceFront, CullFaceFrontBack, FrontFaceDirectionCW, FrontFaceDirectionCCW, BasicShadowMap, PCFShadowMap, PCFSoftShadowMap, FrontSide, BackSide, DoubleSide, FlatShading, SmoothShading, NoColors, FaceColors, VertexColors, NoBlending, NormalBlending, AdditiveBlending, SubtractiveBlending, MultiplyBlending, CustomBlending, BlendingMode, AddEquation, SubtractEquation, ReverseSubtractEquation, MinEquation, MaxEquation, ZeroFactor, OneFactor, SrcColorFactor, OneMinusSrcColorFactor, SrcAlphaFactor, OneMinusSrcAlphaFactor, DstAlphaFactor, OneMinusDstAlphaFactor, DstColorFactor, OneMinusDstColorFactor, SrcAlphaSaturateFactor, NeverDepth, AlwaysDepth, LessDepth, LessEqualDepth, EqualDepth, GreaterEqualDepth, GreaterDepth, NotEqualDepth, MultiplyOperation, MixOperation, AddOperation, NoToneMapping, LinearToneMapping, ReinhardToneMapping, Uncharted2ToneMapping, CineonToneMapping, UVMapping, CubeReflectionMapping, CubeRefractionMapping, EquirectangularReflectionMapping, EquirectangularRefractionMapping, SphericalReflectionMapping, CubeUVReflectionMapping, CubeUVRefractionMapping, TextureMapping, RepeatWrapping, ClampToEdgeWrapping, MirroredRepeatWrapping, TextureWrapping, NearestFilter, NearestMipMapNearestFilter, NearestMipMapLinearFilter, LinearFilter, LinearMipMapNearestFilter, LinearMipMapLinearFilter, TextureFilter, UnsignedByteType, ByteType, ShortType, UnsignedShortType, IntType, UnsignedIntType, FloatType, HalfFloatType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShort565Type, UnsignedInt248Type, AlphaFormat, RGBFormat, RGBAFormat, LuminanceFormat, LuminanceAlphaFormat, RGBEFormat, DepthFormat, DepthStencilFormat, RGB_S3TC_DXT1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_PVRTC_2BPPV1_Format, RGB_ETC1_Format, LoopOnce, LoopRepeat, LoopPingPong, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, ZeroCurvatureEnding, ZeroSlopeEnding, WrapAroundEnding, TrianglesDrawMode, TriangleStripDrawMode, TriangleFanDrawMode, LinearEncoding, sRGBEncoding, GammaEncoding, RGBEEncoding, LogLuvEncoding, RGBM7Encoding, RGBM16Encoding, RGBDEncoding, BasicDepthPacking, RGBADepthPacking, BoxGeometry as CubeGeometry, Face4, LineStrip, LinePieces, MultiMaterial as MeshFaceMaterial, PointCloud, Sprite as Particle, ParticleSystem, PointCloudMaterial, ParticleBasicMaterial, ParticleSystemMaterial, Vertex, EdgesHelper, WireframeHelper, GeometryUtils, ImageUtils, Projector, CanvasRenderer }; Object.defineProperty( exports, 'AudioContext', { get: function () { return exports.getAudioContext(); } });