/** * @author mrdoob / http://mrdoob.com/ * @author zz85 / http://joshuakoo.com/ */ THREE.SVGLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.SVGLoader.prototype = { constructor: THREE.SVGLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.FileLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( text ) ); }, onProgress, onError ); }, parse: function ( text ) { function parseNode( node, style ) { if ( node.nodeType !== 1 ) return; switch ( node.nodeName ) { case 'svg': break; case 'g': style = parseStyle( node, style ); break; case 'path': style = parseStyle( node, style ); if ( node.hasAttribute( 'd' ) && isVisible( style ) ) paths.push( parsePathNode( node, style ) ); break; case 'rect': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parseRectNode( node, style ) ); break; case 'polygon': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parsePolygonNode( node, style ) ); break; case 'polyline': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parsePolylineNode( node, style ) ); break; case 'circle': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parseCircleNode( node, style ) ); break; case 'ellipse': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parseEllipseNode( node, style ) ); break; case 'line': style = parseStyle( node, style ); if ( isVisible( style ) ) paths.push( parseLineNode( node, style ) ); break; default: console.log( node ); } var nodes = node.childNodes; for ( var i = 0; i < nodes.length; i ++ ) { parseNode( nodes[ i ], style ); } } function parsePathNode( node, style ) { var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var point = new THREE.Vector2(); var control = new THREE.Vector2(); var d = node.getAttribute( 'd' ); // console.log( d ); var commands = d.match( /[a-df-z][^a-df-z]*/ig ); for ( var i = 0, l = commands.length; i < l; i ++ ) { var command = commands[ i ]; var type = command.charAt( 0 ); var data = command.substr( 1 ).trim(); switch ( type ) { case 'M': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x = numbers[ j + 0 ]; point.y = numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.moveTo( point.x, point.y ); } break; case 'H': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.x = numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'V': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.y = numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'L': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x = numbers[ j + 0 ]; point.y = numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'C': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) { path.bezierCurveTo( numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], numbers[ j + 5 ] ); control.x = numbers[ j + 2 ]; control.y = numbers[ j + 3 ]; point.x = numbers[ j + 4 ]; point.y = numbers[ j + 5 ]; } break; case 'S': var numbers = parseFloats( data ); path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), numbers[ 0 ], numbers[ 1 ], numbers[ 2 ], numbers[ 3 ] ); control.x = numbers[ 0 ]; control.y = numbers[ 1 ]; point.x = numbers[ 2 ]; point.y = numbers[ 3 ]; break; case 'Q': var numbers = parseFloats( data ); path.quadraticCurveTo( numbers[ 0 ], numbers[ 1 ], numbers[ 2 ], numbers[ 3 ] ); control.x = numbers[ 0 ]; control.y = numbers[ 1 ]; point.x = numbers[ 2 ]; point.y = numbers[ 3 ]; break; case 'T': var numbers = parseFloats( data ); var rx = getReflection( point.x, control.x ); var ry = getReflection( point.y, control.y ); path.quadraticCurveTo( rx, ry, numbers[ 0 ], numbers[ 1 ] ); control.x = rx; control.y = ry; point.x = numbers[ 0 ]; point.y = numbers[ 1 ]; break; case 'A': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) { var start = point.clone(); point.x = numbers[ j + 5 ]; point.y = numbers[ j + 6 ]; control.x = point.x; control.y = point.y; parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point ); } break; // case 'm': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x += numbers[ j + 0 ]; point.y += numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.moveTo( point.x, point.y ); } break; case 'h': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.x += numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'v': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j ++ ) { point.y += numbers[ j ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'l': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) { point.x += numbers[ j + 0 ]; point.y += numbers[ j + 1 ]; control.x = point.x; control.y = point.y; path.lineTo( point.x, point.y ); } break; case 'c': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) { path.bezierCurveTo( point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ], point.x + numbers[ j + 4 ], point.y + numbers[ j + 5 ] ); control.x = point.x + numbers[ j + 2 ]; control.y = point.y + numbers[ j + 3 ]; point.x += numbers[ j + 4 ]; point.y += numbers[ j + 5 ]; } break; case 's': var numbers = parseFloats( data ); path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), point.x + numbers[ 0 ], point.y + numbers[ 1 ], point.x + numbers[ 2 ], point.y + numbers[ 3 ] ); control.x = point.x + numbers[ 0 ]; control.y = point.y + numbers[ 1 ]; point.x += numbers[ 2 ]; point.y += numbers[ 3 ]; break; case 'q': var numbers = parseFloats( data ); path.quadraticCurveTo( point.x + numbers[ 0 ], point.y + numbers[ 1 ], point.x + numbers[ 2 ], point.y + numbers[ 3 ] ); control.x = point.x + numbers[ 0 ]; control.y = point.y + numbers[ 1 ]; point.x += numbers[ 2 ]; point.y += numbers[ 3 ]; break; case 't': var numbers = parseFloats( data ); var rx = getReflection( point.x, control.x ); var ry = getReflection( point.y, control.y ); path.quadraticCurveTo( rx, ry, point.x + numbers[ 0 ], point.y + numbers[ 1 ] ); control.x = rx; control.y = ry; point.x = point.x + numbers[ 0 ]; point.y = point.y + numbers[ 1 ]; break; case 'a': var numbers = parseFloats( data ); for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) { var start = point.clone(); point.x += numbers[ j + 5 ]; point.y += numbers[ j + 6 ]; control.x = point.x; control.y = point.y; parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point ); } break; // case 'Z': case 'z': path.currentPath.autoClose = true; break; default: console.warn( command ); } // console.log( type, parseFloats( data ), parseFloats( data ).length ) } return path; } /** * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes * https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion * From * rx ry x-axis-rotation large-arc-flag sweep-flag x y * To * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation */ function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) { x_axis_rotation = x_axis_rotation * Math.PI / 180; // Ensure radii are positive rx = Math.abs( rx ); ry = Math.abs( ry ); // Compute (x1′, y1′) var dx2 = ( start.x - end.x ) / 2.0; var dy2 = ( start.y - end.y ) / 2.0; var x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2; var y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2; // Compute (cx′, cy′) var rxs = rx * rx; var rys = ry * ry; var x1ps = x1p * x1p; var y1ps = y1p * y1p; // Ensure radii are large enough var cr = x1ps / rxs + y1ps / rys; if ( cr > 1 ) { // scale up rx,ry equally so cr == 1 var s = Math.sqrt( cr ); rx = s * rx; ry = s * ry; rxs = rx * rx; rys = ry * ry; } var dq = ( rxs * y1ps + rys * x1ps ); var pq = ( rxs * rys - dq ) / dq; var q = Math.sqrt( Math.max( 0, pq ) ); if ( large_arc_flag === sweep_flag ) q = - q; var cxp = q * rx * y1p / ry; var cyp = - q * ry * x1p / rx; // Step 3: Compute (cx, cy) from (cx′, cy′) var cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2; var cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2; // Step 4: Compute θ1 and Δθ var theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry ); var delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 ); path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation ); } function svgAngle( ux, uy, vx, vy ) { var dot = ux * vx + uy * vy; var len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy ); var ang = Math.acos( Math.max( -1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang; return ang; } /* * According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute * rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough */ function parseRectNode( node, style ) { var x = parseFloat( node.getAttribute( 'x' ) || 0 ); var y = parseFloat( node.getAttribute( 'y' ) || 0 ); var rx = parseFloat( node.getAttribute( 'rx' ) || 0 ); var ry = parseFloat( node.getAttribute( 'ry' ) || 0 ); var w = parseFloat( node.getAttribute( 'width' ) ); var h = parseFloat( node.getAttribute( 'height' ) ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.moveTo( x + 2 * rx, y ); path.lineTo( x + w - 2 * rx, y ); if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y, x + w, y, x + w, y + 2 * ry ); path.lineTo( x + w, y + h - 2 * ry ); if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y + h, x + w, y + h, x + w - 2 * rx, y + h ); path.lineTo( x + 2 * rx, y + h ); if ( rx !== 0 || ry !== 0 ) { path.bezierCurveTo( x, y + h, x, y + h, x, y + h - 2 * ry ); path.lineTo( x, y + 2 * ry ); path.bezierCurveTo( x, y, x, y, x + 2 * rx, y ); } return path; } function parsePolygonNode( node, style ) { function iterator( match, a, b ) { var x = parseFloat( a ); var y = parseFloat( b ); if ( index === 0 ) { path.moveTo( x, y ); } else { path.lineTo( x, y ); } index ++; } var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g; var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var index = 0; node.getAttribute( 'points' ).replace(regex, iterator); path.currentPath.autoClose = true; return path; } function parsePolylineNode( node, style ) { function iterator( match, a, b ) { var x = parseFloat( a ); var y = parseFloat( b ); if ( index === 0 ) { path.moveTo( x, y ); } else { path.lineTo( x, y ); } index ++; } var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g; var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); var index = 0; node.getAttribute( 'points' ).replace(regex, iterator); path.currentPath.autoClose = false; return path; } function parseCircleNode( node, style ) { var x = parseFloat( node.getAttribute( 'cx' ) ); var y = parseFloat( node.getAttribute( 'cy' ) ); var r = parseFloat( node.getAttribute( 'r' ) ); var subpath = new THREE.Path(); subpath.absarc( x, y, r, 0, Math.PI * 2 ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.subPaths.push( subpath ); return path; } function parseEllipseNode( node, style ) { var x = parseFloat( node.getAttribute( 'cx' ) ); var y = parseFloat( node.getAttribute( 'cy' ) ); var rx = parseFloat( node.getAttribute( 'rx' ) ); var ry = parseFloat( node.getAttribute( 'ry' ) ); var subpath = new THREE.Path(); subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 ); var path = new THREE.ShapePath(); path.color.setStyle( style.fill ); path.subPaths.push( subpath ); return path; } function parseLineNode( node, style ) { var x1 = parseFloat( node.getAttribute( 'x1' ) ); var y1 = parseFloat( node.getAttribute( 'y1' ) ); var x2 = parseFloat( node.getAttribute( 'x2' ) ); var y2 = parseFloat( node.getAttribute( 'y2' ) ); var path = new THREE.ShapePath(); path.moveTo( x1, y1 ); path.lineTo( x2, y2 ); path.currentPath.autoClose = false; return path; } // function parseStyle( node, style ) { style = Object.assign( {}, style ); // clone style if ( node.hasAttribute( 'fill' ) ) style.fill = node.getAttribute( 'fill' ); if ( node.style.fill !== '' ) style.fill = node.style.fill; return style; } function isVisible( style ) { return style.fill !== 'none' && style.fill !== 'transparent'; } // http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes function getReflection( a, b ) { return a - ( b - a ); } function parseFloats( string ) { var array = string.split( /[\s,]+|(?=\s?[+\-])/ ); for ( var i = 0; i < array.length; i ++ ) { var number = array[ i ]; // Handle values like 48.6037.7 // TODO Find a regex for this if ( number.indexOf( '.' ) !== number.lastIndexOf( '.' ) ) { array.splice( i + 1, 0, '0.' + number.split( '.' )[ 2 ] ); } array[ i ] = parseFloat( number ); } return array; } // console.log( 'THREE.SVGLoader' ); var paths = []; console.time( 'THREE.SVGLoader: DOMParser' ); var xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml console.timeEnd( 'THREE.SVGLoader: DOMParser' ); console.time( 'THREE.SVGLoader: Parse' ); parseNode( xml.documentElement, { fill: '#000' } ); // console.log( paths ); console.timeEnd( 'THREE.SVGLoader: Parse' ); return paths; } };