/** * @author Rich Tibbett / https://github.com/richtr * @author mrdoob / http://mrdoob.com/ * @author Tony Parisi / http://www.tonyparisi.com/ * @author Takahiro / https://github.com/takahirox * @author Don McCurdy / https://www.donmccurdy.com */ THREE.GLTFLoader = ( function () { function GLTFLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.dracoLoader = null; } GLTFLoader.prototype = { constructor: GLTFLoader, crossOrigin: 'Anonymous', load: function ( url, onLoad, onProgress, onError ) { var scope = this; var path = this.path !== undefined ? this.path : THREE.LoaderUtils.extractUrlBase( url ); var loader = new THREE.FileLoader( scope.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( data ) { try { scope.parse( data, path, onLoad, onError ); } catch ( e ) { if ( onError !== undefined ) { onError( e ); } else { throw e; } } }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; }, setDRACOLoader: function ( dracoLoader ) { this.dracoLoader = dracoLoader; return this; }, parse: function ( data, path, onLoad, onError ) { var content; var extensions = {}; if ( typeof data === 'string' ) { content = data; } else { var magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) ); if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { try { extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); } catch ( error ) { if ( onError ) onError( error ); return; } content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content; } else { content = THREE.LoaderUtils.decodeText( new Uint8Array( data ) ); } } var json = JSON.parse( content ); if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.' ) ); return; } if ( json.extensionsUsed ) { for ( var i = 0; i < json.extensionsUsed.length; ++ i ) { var extensionName = json.extensionsUsed[ i ]; var extensionsRequired = json.extensionsRequired || []; switch ( extensionName ) { case EXTENSIONS.KHR_LIGHTS: extensions[ extensionName ] = new GLTFLightsExtension( json ); break; case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[ extensionName ] = new GLTFMaterialsUnlitExtension( json ); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break; case EXTENSIONS.MSFT_TEXTURE_DDS: extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] = new GLTFTextureDDSExtension(); break; default: if ( extensionsRequired.indexOf( extensionName ) >= 0 ) { console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); } } } } var parser = new GLTFParser( json, extensions, { path: path || this.path || '', crossOrigin: this.crossOrigin, manager: this.manager } ); parser.parse( function ( scene, scenes, cameras, animations, json ) { var glTF = { scene: scene, scenes: scenes, cameras: cameras, animations: animations, asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData( extensions, glTF, json ); onLoad( glTF ); }, onError ); } }; /* GLTFREGISTRY */ function GLTFRegistry() { var objects = {}; return { get: function ( key ) { return objects[ key ]; }, add: function ( key, object ) { objects[ key ] = object; }, remove: function ( key ) { delete objects[ key ]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ var EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS: 'KHR_lights', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', MSFT_TEXTURE_DDS: 'MSFT_texture_dds' }; /** * DDS Texture Extension * * Specification: * https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds * */ function GLTFTextureDDSExtension() { if ( ! THREE.DDSLoader ) { throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader' ); } this.name = EXTENSIONS.MSFT_TEXTURE_DDS; this.ddsLoader = new THREE.DDSLoader(); } /** * Lights Extension * * Specification: PENDING */ function GLTFLightsExtension( json ) { this.name = EXTENSIONS.KHR_LIGHTS; this.lights = {}; var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS ] ) || {}; var lights = extension.lights || {}; for ( var lightId in lights ) { var light = lights[ lightId ]; var lightNode; var color = new THREE.Color().fromArray( light.color ); switch ( light.type ) { case 'directional': lightNode = new THREE.DirectionalLight( color ); lightNode.target.position.set( 0, 0, 1 ); lightNode.add( lightNode.target ); break; case 'point': lightNode = new THREE.PointLight( color ); break; case 'spot': lightNode = new THREE.SpotLight( color ); // Handle spotlight properties. light.spot = light.spot || {}; light.spot.innerConeAngle = light.spot.innerConeAngle !== undefined ? light.spot.innerConeAngle : 0; light.spot.outerConeAngle = light.spot.outerConeAngle !== undefined ? light.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = light.spot.outerConeAngle; lightNode.penumbra = 1.0 - light.spot.innerConeAngle / light.spot.outerConeAngle; lightNode.target.position.set( 0, 0, 1 ); lightNode.add( lightNode.target ); break; case 'ambient': lightNode = new THREE.AmbientLight( color ); break; } if ( lightNode ) { lightNode.decay = 2; if ( light.intensity !== undefined ) { lightNode.intensity = light.intensity; } lightNode.name = light.name || ( 'light_' + lightId ); this.lights[ lightId ] = lightNode; } } } /** * Unlit Materials Extension (pending) * * PR: https://github.com/KhronosGroup/glTF/pull/1163 */ function GLTFMaterialsUnlitExtension( json ) { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } GLTFMaterialsUnlitExtension.prototype.getMaterialType = function ( material ) { return THREE.MeshBasicMaterial; }; GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, material, parser ) { var pending = []; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; var metallicRoughness = material.pbrMetallicRoughness; if ( metallicRoughness ) { if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) ); } } return Promise.all( pending ); }; /* BINARY EXTENSION */ var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF'; var BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; function GLTFBinaryExtension( data ) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); this.header = { magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) }; if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); } else if ( this.header.version < 2.0 ) { throw new Error( 'THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.' ); } var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); var chunkIndex = 0; while ( chunkIndex < chunkView.byteLength ) { var chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; var chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = THREE.LoaderUtils.decodeText( contentArray ); } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength ); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if ( this.content === null ) { throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/pull/874 */ function GLTFDracoMeshCompressionExtension ( json, dracoLoader ) { if ( ! dracoLoader ) { throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; } GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) { var json = this.json; var dracoLoader = this.dracoLoader; var bufferViewIndex = primitive.extensions[ this.name ].bufferView; var gltfAttributeMap = primitive.extensions[ this.name ].attributes; var threeAttributeMap = {}; var attributeNormalizedMap = {}; var attributeTypeMap = {}; for ( var attributeName in gltfAttributeMap ) { if ( !( attributeName in ATTRIBUTES ) ) continue; threeAttributeMap[ ATTRIBUTES[ attributeName ] ] = gltfAttributeMap[ attributeName ]; } for ( attributeName in primitive.attributes ) { if ( ATTRIBUTES[ attributeName ] !== undefined && gltfAttributeMap[ attributeName ] !== undefined ) { var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; attributeTypeMap[ ATTRIBUTES[ attributeName ] ] = componentType; attributeNormalizedMap[ ATTRIBUTES[ attributeName ] ] = accessorDef.normalized === true; } } return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { return new Promise( function ( resolve ) { dracoLoader.decodeDracoFile( bufferView, function ( geometry ) { for ( var attributeName in geometry.attributes ) { var attribute = geometry.attributes[ attributeName ]; var normalized = attributeNormalizedMap[ attributeName ]; if ( normalized !== undefined ) attribute.normalized = normalized; } resolve( geometry ); }, threeAttributeMap, attributeTypeMap ); } ); } ); }; /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness */ function GLTFMaterialsPbrSpecularGlossinessExtension() { return { name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, specularGlossinessParams: [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity', 'refractionRatio', ], getMaterialType: function () { return THREE.ShaderMaterial; }, extendParams: function ( params, material, parser ) { var pbrSpecularGlossiness = material.extensions[ this.name ]; var shader = THREE.ShaderLib[ 'standard' ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); var specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' ); var glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' ); var specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' texelSpecular = sRGBToLinear( texelSpecular );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' ); var glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' ); var lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb;', 'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );', 'material.specularColor = specularFactor.rgb;', ].join( '\n' ); var fragmentShader = shader.fragmentShader .replace( 'uniform float roughness;', 'uniform vec3 specular;' ) .replace( 'uniform float metalness;', 'uniform float glossiness;' ) .replace( '#include ', specularMapParsFragmentChunk ) .replace( '#include ', glossinessMapParsFragmentChunk ) .replace( '#include ', specularMapFragmentChunk ) .replace( '#include ', glossinessMapFragmentChunk ) .replace( '#include ', lightPhysicalFragmentChunk ); delete uniforms.roughness; delete uniforms.metalness; delete uniforms.roughnessMap; delete uniforms.metalnessMap; uniforms.specular = { value: new THREE.Color().setHex( 0x111111 ) }; uniforms.glossiness = { value: 0.5 }; uniforms.specularMap = { value: null }; uniforms.glossinessMap = { value: null }; params.vertexShader = shader.vertexShader; params.fragmentShader = fragmentShader; params.uniforms = uniforms; params.defines = { 'STANDARD': '' }; params.color = new THREE.Color( 1.0, 1.0, 1.0 ); params.opacity = 1.0; var pending = []; if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) { var array = pbrSpecularGlossiness.diffuseFactor; params.color.fromArray( array ); params.opacity = array[ 3 ]; } if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) { pending.push( parser.assignTexture( params, 'map', pbrSpecularGlossiness.diffuseTexture.index ) ); } params.emissive = new THREE.Color( 0.0, 0.0, 0.0 ); params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; params.specular = new THREE.Color( 1.0, 1.0, 1.0 ); if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) { params.specular.fromArray( pbrSpecularGlossiness.specularFactor ); } if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) { var specGlossIndex = pbrSpecularGlossiness.specularGlossinessTexture.index; pending.push( parser.assignTexture( params, 'glossinessMap', specGlossIndex ) ); pending.push( parser.assignTexture( params, 'specularMap', specGlossIndex ) ); } return Promise.all( pending ); }, createMaterial: function ( params ) { // setup material properties based on MeshStandardMaterial for Specular-Glossiness var material = new THREE.ShaderMaterial( { defines: params.defines, vertexShader: params.vertexShader, fragmentShader: params.fragmentShader, uniforms: params.uniforms, fog: true, lights: true, opacity: params.opacity, transparent: params.transparent } ); material.isGLTFSpecularGlossinessMaterial = true; material.color = params.color; material.map = params.map === undefined ? null : params.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = params.aoMap === undefined ? null : params.aoMap; material.aoMapIntensity = 1.0; material.emissive = params.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap; material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap; material.bumpScale = 1; material.normalMap = params.normalMap === undefined ? null : params.normalMap; if ( params.normalScale ) material.normalScale = params.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = params.specularMap === undefined ? null : params.specularMap; material.specular = params.specular; material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap; material.glossiness = params.glossiness; material.alphaMap = null; material.envMap = params.envMap === undefined ? null : params.envMap; material.envMapIntensity = 1.0; material.refractionRatio = 0.98; material.extensions.derivatives = true; return material; }, /** * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can * copy only properties it knows about or inherits, and misses many properties that would * normally be defined by MeshStandardMaterial. * * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of * loading a glTF model, but cloning later (e.g. by the user) would require these changes * AND also updating `.onBeforeRender` on the parent mesh. * * @param {THREE.ShaderMaterial} source * @return {THREE.ShaderMaterial} */ cloneMaterial: function ( source ) { var target = source.clone(); target.isGLTFSpecularGlossinessMaterial = true; var params = this.specularGlossinessParams; for ( var i = 0, il = params.length; i < il; i ++ ) { target[ params[ i ] ] = source[ params[ i ] ]; } return target; }, // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer. refreshUniforms: function ( renderer, scene, camera, geometry, material, group ) { if ( material.isGLTFSpecularGlossinessMaterial !== true ) { return; } var uniforms = material.uniforms; var defines = material.defines; uniforms.opacity.value = material.opacity; uniforms.diffuse.value.copy( material.color ); uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.glossinessMap ) { uvScaleMap = material.glossinessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset; var repeat; if ( uvScaleMap.matrix !== undefined ) { // > r88. if ( uvScaleMap.matrixAutoUpdate === true ) { offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; var rotation = uvScaleMap.rotation; var center = uvScaleMap.center; uvScaleMap.matrix.setUvTransform( offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y ); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } else { // <= r87. Remove when reasonable. offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } uniforms.envMap.value = material.envMap; uniforms.envMapIntensity.value = material.envMapIntensity; uniforms.flipEnvMap.value = ( material.envMap && material.envMap.isCubeTexture ) ? - 1 : 1; uniforms.refractionRatio.value = material.refractionRatio; uniforms.specular.value.copy( material.specular ); uniforms.glossiness.value = material.glossiness; uniforms.glossinessMap.value = material.glossinessMap; uniforms.emissiveMap.value = material.emissiveMap; uniforms.bumpMap.value = material.bumpMap; uniforms.normalMap.value = material.normalMap; uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) { defines.USE_GLOSSINESSMAP = ''; // set USE_ROUGHNESSMAP to enable vUv defines.USE_ROUGHNESSMAP = ''; } if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) { delete defines.USE_GLOSSINESSMAP; delete defines.USE_ROUGHNESSMAP; } } }; } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype ); GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) { var result = this.resultBuffer; var values = this.sampleValues; var stride = this.valueSize; var stride2 = stride * 2; var stride3 = stride * 3; var td = t1 - t0; var p = ( t - t0 ) / td; var pp = p * p; var ppp = pp * p; var offset1 = i1 * stride3; var offset0 = offset1 - stride3; var s0 = 2 * ppp - 3 * pp + 1; var s1 = ppp - 2 * pp + p; var s2 = - 2 * ppp + 3 * pp; var s3 = ppp - pp; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( var i = 0; i !== stride; i ++ ) { var p0 = values[ offset0 + i + stride ]; // splineVertex_k var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_TYPE = { 5126: Number, //35674: THREE.Matrix2, 35675: THREE.Matrix3, 35676: THREE.Matrix4, 35664: THREE.Vector2, 35665: THREE.Vector3, 35666: THREE.Vector4, 35678: THREE.Texture }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: THREE.NearestFilter, 9729: THREE.LinearFilter, 9984: THREE.NearestMipMapNearestFilter, 9985: THREE.LinearMipMapNearestFilter, 9986: THREE.NearestMipMapLinearFilter, 9987: THREE.LinearMipMapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: THREE.ClampToEdgeWrapping, 33648: THREE.MirroredRepeatWrapping, 10497: THREE.RepeatWrapping }; var WEBGL_TEXTURE_FORMATS = { 6406: THREE.AlphaFormat, 6407: THREE.RGBFormat, 6408: THREE.RGBAFormat, 6409: THREE.LuminanceFormat, 6410: THREE.LuminanceAlphaFormat }; var WEBGL_TEXTURE_DATATYPES = { 5121: THREE.UnsignedByteType, 32819: THREE.UnsignedShort4444Type, 32820: THREE.UnsignedShort5551Type, 33635: THREE.UnsignedShort565Type }; var WEBGL_SIDES = { 1028: THREE.BackSide, // Culling front 1029: THREE.FrontSide // Culling back //1032: THREE.NoSide // Culling front and back, what to do? }; var WEBGL_DEPTH_FUNCS = { 512: THREE.NeverDepth, 513: THREE.LessDepth, 514: THREE.EqualDepth, 515: THREE.LessEqualDepth, 516: THREE.GreaterEqualDepth, 517: THREE.NotEqualDepth, 518: THREE.GreaterEqualDepth, 519: THREE.AlwaysDepth }; var WEBGL_BLEND_EQUATIONS = { 32774: THREE.AddEquation, 32778: THREE.SubtractEquation, 32779: THREE.ReverseSubtractEquation }; var WEBGL_BLEND_FUNCS = { 0: THREE.ZeroFactor, 1: THREE.OneFactor, 768: THREE.SrcColorFactor, 769: THREE.OneMinusSrcColorFactor, 770: THREE.SrcAlphaFactor, 771: THREE.OneMinusSrcAlphaFactor, 772: THREE.DstAlphaFactor, 773: THREE.OneMinusDstAlphaFactor, 774: THREE.DstColorFactor, 775: THREE.OneMinusDstColorFactor, 776: THREE.SrcAlphaSaturateFactor // The followings are not supported by Three.js yet //32769: CONSTANT_COLOR, //32770: ONE_MINUS_CONSTANT_COLOR, //32771: CONSTANT_ALPHA, //32772: ONE_MINUS_CONSTANT_COLOR }; var WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; var ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TEXCOORD_0: 'uv', TEXCOORD0: 'uv', // deprecated TEXCOORD: 'uv', // deprecated TEXCOORD_1: 'uv2', COLOR_0: 'color', COLOR0: 'color', // deprecated COLOR: 'color', // deprecated WEIGHTS_0: 'skinWeight', WEIGHT: 'skinWeight', // deprecated JOINTS_0: 'skinIndex', JOINT: 'skinIndex' // deprecated } var PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; var INTERPOLATION = { CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE. // KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout, // using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization. // See KeyframeTrack.optimize() for the detail. LINEAR: THREE.InterpolateLinear, STEP: THREE.InterpolateDiscrete }; var STATES_ENABLES = { 2884: 'CULL_FACE', 2929: 'DEPTH_TEST', 3042: 'BLEND', 3089: 'SCISSOR_TEST', 32823: 'POLYGON_OFFSET_FILL', 32926: 'SAMPLE_ALPHA_TO_COVERAGE' }; var ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; /* UTILITY FUNCTIONS */ function resolveURL( url, path ) { // Invalid URL if ( typeof url !== 'string' || url === '' ) return ''; // Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url; // Data URI if ( /^data:.*,.*$/i.test( url ) ) return url; // Blob URL if ( /^blob:.*$/i.test( url ) ) return url; // Relative URL return path + url; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial() { return new THREE.MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: THREE.FrontSide } ); } function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) { // Add unknown glTF extensions to an object's userData. for ( var name in objectDef.extensions ) { if ( knownExtensions[ name ] === undefined ) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ]; } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {THREE.Geometry} geometry * @param {Array} targets * @param {Array} accessors */ function addMorphTargets( geometry, targets, accessors ) { var hasMorphPosition = false; var hasMorphNormal = false; for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; if ( target.POSITION !== undefined ) hasMorphPosition = true; if ( target.NORMAL !== undefined ) hasMorphNormal = true; if ( hasMorphPosition && hasMorphNormal ) break; } if ( ! hasMorphPosition && ! hasMorphNormal ) return; var morphPositions = []; var morphNormals = []; for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; var attributeName = 'morphTarget' + i; if ( hasMorphPosition ) { // Three.js morph position is absolute value. The formula is // basePosition // + weight0 * ( morphPosition0 - basePosition ) // + weight1 * ( morphPosition1 - basePosition ) // ... // while the glTF one is relative // basePosition // + weight0 * glTFmorphPosition0 // + weight1 * glTFmorphPosition1 // ... // then we need to convert from relative to absolute here. if ( target.POSITION !== undefined ) { // Cloning not to pollute original accessor var positionAttribute = cloneBufferAttribute( accessors[ target.POSITION ] ); positionAttribute.name = attributeName; var position = geometry.attributes.position; for ( var j = 0, jl = positionAttribute.count; j < jl; j ++ ) { positionAttribute.setXYZ( j, positionAttribute.getX( j ) + position.getX( j ), positionAttribute.getY( j ) + position.getY( j ), positionAttribute.getZ( j ) + position.getZ( j ) ); } } else { positionAttribute = geometry.attributes.position; } morphPositions.push( positionAttribute ); } if ( hasMorphNormal ) { // see target.POSITION's comment var normalAttribute; if ( target.NORMAL !== undefined ) { var normalAttribute = cloneBufferAttribute( accessors[ target.NORMAL ] ); normalAttribute.name = attributeName; var normal = geometry.attributes.normal; for ( var j = 0, jl = normalAttribute.count; j < jl; j ++ ) { normalAttribute.setXYZ( j, normalAttribute.getX( j ) + normal.getX( j ), normalAttribute.getY( j ) + normal.getY( j ), normalAttribute.getZ( j ) + normal.getZ( j ) ); } } else { normalAttribute = geometry.attributes.normal; } morphNormals.push( normalAttribute ); } } if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; } /** * @param {THREE.Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets( mesh, meshDef ) { mesh.updateMorphTargets(); if ( meshDef.weights !== undefined ) { for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) { mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { var targetNames = meshDef.extras.targetNames; if ( mesh.morphTargetInfluences.length === targetNames.length ) { mesh.morphTargetDictionary = {}; for ( var i = 0, il = targetNames.length; i < il; i ++ ) { mesh.morphTargetDictionary[ targetNames[ i ] ] = i; } } else { console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' ); } } } function isPrimitiveEqual( a, b ) { if ( a.indices !== b.indices ) { return false; } return isObjectEqual( a.attributes, b.attributes ); } function isObjectEqual( a, b ) { if ( Object.keys( a ).length !== Object.keys( b ).length ) return false; for ( var key in a ) { if ( a[ key ] !== b[ key ] ) return false; } return true; } function isArrayEqual( a, b ) { if ( a.length !== b.length ) return false; for ( var i = 0, il = a.length; i < il; i ++ ) { if ( a[ i ] !== b[ i ] ) return false; } return true; } function getCachedGeometry( cache, newPrimitive ) { for ( var i = 0, il = cache.length; i < il; i ++ ) { var cached = cache[ i ]; if ( isPrimitiveEqual( cached.primitive, newPrimitive ) ) return cached.promise; } return null; } function getCachedCombinedGeometry( cache, geometries ) { for ( var i = 0, il = cache.length; i < il; i ++ ) { var cached = cache[ i ]; if ( isArrayEqual( geometries, cached.baseGeometries ) ) return cached.geometry; } return null; } function getCachedMultiPassGeometry( cache, geometry, primitives ) { for ( var i = 0, il = cache.length; i < il; i ++ ) { var cached = cache[ i ]; if ( geometry === cached.baseGeometry && isArrayEqual( primitives, cached.primitives ) ) return cached.geometry; } return null; } function cloneBufferAttribute( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { var count = attribute.count; var itemSize = attribute.itemSize; var array = attribute.array.slice( 0, count * itemSize ); for ( var i = 0; i < count; ++ i ) { array[ i ] = attribute.getX( i ); if ( itemSize >= 2 ) array[ i + 1 ] = attribute.getY( i ); if ( itemSize >= 3 ) array[ i + 2 ] = attribute.getZ( i ); if ( itemSize >= 4 ) array[ i + 3 ] = attribute.getW( i ); } return new THREE.BufferAttribute( array, itemSize, attribute.normalized ); } return attribute.clone(); } /** * Checks if we can build a single Mesh with MultiMaterial from multiple primitives. * Returns true if all primitives use the same attributes/morphAttributes/mode * and also have index. Otherwise returns false. * * @param {Array} primitives * @return {Boolean} */ function isMultiPassGeometry( primitives ) { if ( primitives.length < 2 ) return false; var primitive0 = primitives[ 0 ]; var targets0 = primitive0.targets || []; if ( primitive0.indices === undefined ) return false; for ( var i = 1, il = primitives.length; i < il; i ++ ) { var primitive = primitives[ i ]; if ( primitive0.mode !== primitive.mode ) return false; if ( primitive.indices === undefined ) return false; if ( ! isObjectEqual( primitive0.attributes, primitive.attributes ) ) return false; var targets = primitive.targets || []; if ( targets0.length !== targets.length ) return false; for ( var j = 0, jl = targets0.length; j < jl; j ++ ) { if ( ! isObjectEqual( targets0[ j ], targets[ j ] ) ) return false; } } return true; } /* GLTF PARSER */ function GLTFParser( json, extensions, options ) { this.json = json || {}; this.extensions = extensions || {}; this.options = options || {}; // loader object cache this.cache = new GLTFRegistry(); // BufferGeometry caching this.primitiveCache = []; this.multiplePrimitivesCache = []; this.multiPassGeometryCache = [] this.textureLoader = new THREE.TextureLoader( this.options.manager ); this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.fileLoader = new THREE.FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' ); } GLTFParser.prototype.parse = function ( onLoad, onError ) { var json = this.json; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this.markDefs(); // Fire the callback on complete this.getMultiDependencies( [ 'scene', 'animation', 'camera' ] ).then( function ( dependencies ) { var scenes = dependencies.scenes || []; var scene = scenes[ json.scene || 0 ]; var animations = dependencies.animations || []; var cameras = dependencies.cameras || []; onLoad( scene, scenes, cameras, animations, json ); } ).catch( onError ); }; /** * Marks the special nodes/meshes in json for efficient parse. */ GLTFParser.prototype.markDefs = function () { var nodeDefs = this.json.nodes || []; var skinDefs = this.json.skins || []; var meshDefs = this.json.meshes || []; var meshReferences = {}; var meshUses = {}; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { var joints = skinDefs[ skinIndex ].joints; for ( var i = 0, il = joints.length; i < il; i ++ ) { nodeDefs[ joints[ i ] ].isBone = true; } } // Meshes can (and should) be reused by multiple nodes in a glTF asset. To // avoid having more than one THREE.Mesh with the same name, count // references and rename instances below. // // Example: CesiumMilkTruck sample model reuses "Wheel" meshes. for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { var nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.mesh !== undefined ) { if ( meshReferences[ nodeDef.mesh ] === undefined ) { meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0; } meshReferences[ nodeDef.mesh ] ++; // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) { meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; } } } this.json.meshReferences = meshReferences; this.json.meshUses = meshUses; }; /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ GLTFParser.prototype.getDependency = function ( type, index ) { var cacheKey = type + ':' + index; var dependency = this.cache.get( cacheKey ); if ( ! dependency ) { switch ( type ) { case 'scene': dependency = this.loadScene( index ); break; case 'node': dependency = this.loadNode( index ); break; case 'mesh': dependency = this.loadMesh( index ); break; case 'accessor': dependency = this.loadAccessor( index ); break; case 'bufferView': dependency = this.loadBufferView( index ); break; case 'buffer': dependency = this.loadBuffer( index ); break; case 'material': dependency = this.loadMaterial( index ); break; case 'texture': dependency = this.loadTexture( index ); break; case 'skin': dependency = this.loadSkin( index ); break; case 'animation': dependency = this.loadAnimation( index ); break; case 'camera': dependency = this.loadCamera( index ); break; default: throw new Error( 'Unknown type: ' + type ); } this.cache.add( cacheKey, dependency ); } return dependency; }; /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ GLTFParser.prototype.getDependencies = function ( type ) { var dependencies = this.cache.get( type ); if ( ! dependencies ) { var parser = this; var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; dependencies = Promise.all( defs.map( function ( def, index ) { return parser.getDependency( type, index ); } ) ); this.cache.add( type, dependencies ); } return dependencies; }; /** * Requests all multiple dependencies of the specified types asynchronously, with caching. * @param {Array} types * @return {Promise>>} */ GLTFParser.prototype.getMultiDependencies = function ( types ) { var results = {}; var pendings = []; for ( var i = 0, il = types.length; i < il; i ++ ) { var type = types[ i ]; var value = this.getDependencies( type ); value = value.then( function ( key, value ) { results[ key ] = value; }.bind( this, type + ( type === 'mesh' ? 'es' : 's' ) ) ); pendings.push( value ); } return Promise.all( pendings ).then( function () { return results; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ GLTFParser.prototype.loadBuffer = function ( bufferIndex ) { var bufferDef = this.json.buffers[ bufferIndex ]; var loader = this.fileLoader; if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); } // If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) { return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); } var options = this.options; return new Promise( function ( resolve, reject ) { loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) { var bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { var byteLength = bufferViewDef.byteLength || 0; var byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ GLTFParser.prototype.loadAccessor = function ( accessorIndex ) { var parser = this; var json = this.json; var accessorDef = this.json.accessors[ accessorIndex ]; if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { // Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return null; } var pendingBufferViews = []; if ( accessorDef.bufferView !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); } else { pendingBufferViews.push( null ); } if ( accessorDef.sparse !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); } return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { var bufferView = bufferViews[ 0 ]; var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. var elementBytes = TypedArray.BYTES_PER_ELEMENT; var itemBytes = elementBytes * itemSize; var byteOffset = accessorDef.byteOffset || 0; var byteStride = json.bufferViews[ accessorDef.bufferView ].byteStride; var normalized = accessorDef.normalized === true; var array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) { var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType; var ib = parser.cache.get( ibCacheKey ); if ( ! ib ) { // Use the full buffer if it's interleaved. array = new TypedArray( bufferView ); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes ); parser.cache.add( ibCacheKey, ib ); } bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset / elementBytes, normalized ); } else { if ( bufferView === null ) { array = new TypedArray( accessorDef.count * itemSize ); } else { array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); } bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized ); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) { var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); if ( bufferView !== null ) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute.setArray( bufferAttribute.array.slice() ); } for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) { var index = sparseIndices[ i ]; bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' ); } } return bufferAttribute; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.loadTexture = function ( textureIndex ) { var parser = this; var json = this.json; var options = this.options; var textureLoader = this.textureLoader; var URL = window.URL || window.webkitURL; var textureDef = json.textures[ textureIndex ]; var textureExtensions = textureDef.extensions || {}; var source; if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) { source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ]; } else { source = json.images[ textureDef.source ]; } var sourceURI = source.uri; var isObjectURL = false; if ( source.bufferView !== undefined ) { // Load binary image data from bufferView, if provided. sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) { isObjectURL = true; var blob = new Blob( [ bufferView ], { type: source.mimeType } ); sourceURI = URL.createObjectURL( blob ); return sourceURI; } ); } return Promise.resolve( sourceURI ).then( function ( sourceURI ) { // Load Texture resource. var loader = THREE.Loader.Handlers.get( sourceURI ); if ( ! loader ) { loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader : textureLoader; } return new Promise( function ( resolve, reject ) { loader.load( resolveURL( sourceURI, options.path ), resolve, undefined, reject ); } ); } ).then( function ( texture ) { // Clean up resources and configure Texture. if ( isObjectURL === true ) { URL.revokeObjectURL( sourceURI ); } texture.flipY = false; if ( textureDef.name !== undefined ) texture.name = textureDef.name; // .format of dds texture is set in DDSLoader if ( ! textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) { texture.format = textureDef.format !== undefined ? WEBGL_TEXTURE_FORMATS[ textureDef.format ] : THREE.RGBAFormat; } if ( textureDef.internalFormat !== undefined && texture.format !== WEBGL_TEXTURE_FORMATS[ textureDef.internalFormat ] ) { console.warn( 'THREE.GLTFLoader: Three.js does not support texture internalFormat which is different from texture format. ' + 'internalFormat will be forced to be the same value as format.' ); } texture.type = textureDef.type !== undefined ? WEBGL_TEXTURE_DATATYPES[ textureDef.type ] : THREE.UnsignedByteType; var samplers = json.samplers || {}; var sampler = samplers[ textureDef.sampler ] || {}; texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || THREE.LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || THREE.LinearMipMapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || THREE.RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || THREE.RepeatWrapping; return texture; } ); }; /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} textureName * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.assignTexture = function ( materialParams, textureName, textureIndex ) { return this.getDependency( 'texture', textureIndex ).then( function ( texture ) { materialParams[ textureName ] = texture; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ GLTFParser.prototype.loadMaterial = function ( materialIndex ) { var parser = this; var json = this.json; var extensions = this.extensions; var materialDef = this.json.materials[ materialIndex ]; var materialType; var materialParams = {}; var materialExtensions = materialDef.extensions || {}; var pending = []; if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) { var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; materialType = sgExtension.getMaterialType( materialDef ); pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) ); } else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) { var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; materialType = kmuExtension.getMaterialType( materialDef ); pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) ); } else { // Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material materialType = THREE.MeshStandardMaterial; var metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) ); } materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; if ( metallicRoughness.metallicRoughnessTexture !== undefined ) { var textureIndex = metallicRoughness.metallicRoughnessTexture.index; pending.push( parser.assignTexture( materialParams, 'metalnessMap', textureIndex ) ); pending.push( parser.assignTexture( materialParams, 'roughnessMap', textureIndex ) ); } } if ( materialDef.doubleSided === true ) { materialParams.side = THREE.DoubleSide; } var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if ( alphaMode === ALPHA_MODES.BLEND ) { materialParams.transparent = true; } else { materialParams.transparent = false; if ( alphaMode === ALPHA_MODES.MASK ) { materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; } } if ( materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture.index ) ); materialParams.normalScale = new THREE.Vector2( 1, 1 ); if ( materialDef.normalTexture.scale !== undefined ) { materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale ); } } if ( materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture.index ) ); if ( materialDef.occlusionTexture.strength !== undefined ) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if ( materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) { materialParams.emissive = new THREE.Color().fromArray( materialDef.emissiveFactor ); } if ( materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture.index ) ); } return Promise.all( pending ).then( function () { var material; if ( materialType === THREE.ShaderMaterial ) { material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams ); } else { material = new materialType( materialParams ); } if ( materialDef.name !== undefined ) material.name = materialDef.name; // Normal map textures use OpenGL conventions: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#materialnormaltexture if ( material.normalScale ) { material.normalScale.y = - material.normalScale.y; } // baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding. if ( material.map ) material.map.encoding = THREE.sRGBEncoding; if ( material.emissiveMap ) material.emissiveMap.encoding = THREE.sRGBEncoding; if ( material.specularMap ) material.specularMap.encoding = THREE.sRGBEncoding; if ( materialDef.extras ) material.userData = materialDef.extras; if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef ); return material; } ); }; /** * @param {THREE.BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {Array} accessors */ function addPrimitiveAttributes( geometry, primitiveDef, accessors ) { var attributes = primitiveDef.attributes; for ( var gltfAttributeName in attributes ) { var threeAttributeName = ATTRIBUTES[ gltfAttributeName ]; var bufferAttribute = accessors[ attributes[ gltfAttributeName ] ]; // Skip attributes already provided by e.g. Draco extension. if ( !threeAttributeName ) continue; if ( threeAttributeName in geometry.attributes ) continue; geometry.addAttribute( threeAttributeName, bufferAttribute ); } if ( primitiveDef.indices !== undefined && ! geometry.index ) { geometry.setIndex( accessors[ primitiveDef.indices ] ); } if ( primitiveDef.targets !== undefined ) { addMorphTargets( geometry, primitiveDef.targets, accessors ); } if ( primitiveDef.extras !== undefined ) { geometry.userData = primitiveDef.extras; } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * If we can build a single BufferGeometry with .groups from multiple primitives, returns one BufferGeometry. * Otherwise, returns BufferGeometries without .groups as many as primitives. * * @param {Array} primitives * @return {Promise>} */ GLTFParser.prototype.loadGeometries = function ( primitives ) { var parser = this; var extensions = this.extensions; var cache = this.primitiveCache; var isMultiPass = isMultiPassGeometry( primitives ); var originalPrimitives; if ( isMultiPass ) { originalPrimitives = primitives; // save original primitives and use later // We build a single BufferGeometry with .groups from multiple primitives // because all primitives share the same attributes/morph/mode and have indices. primitives = [ primitives[ 0 ] ]; // Sets .groups and combined indices to a geometry later in this method. } return this.getDependencies( 'accessor' ).then( function ( accessors ) { var pending = []; for ( var i = 0, il = primitives.length; i < il; i ++ ) { var primitive = primitives[ i ]; // See if we've already created this geometry var cached = getCachedGeometry( cache, primitive ); if ( cached ) { // Use the cached geometry if it exists pending.push( cached ); } else if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) { // Use DRACO geometry if available var geometryPromise = extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then( function ( geometry ) { addPrimitiveAttributes( geometry, primitive, accessors ); return geometry; } ); cache.push( { primitive: primitive, promise: geometryPromise } ); pending.push( geometryPromise ); } else { // Otherwise create a new geometry var geometry = new THREE.BufferGeometry(); addPrimitiveAttributes( geometry, primitive, accessors ); var geometryPromise = Promise.resolve( geometry ); // Cache this geometry cache.push( { primitive: primitive, promise: geometryPromise } ); pending.push( geometryPromise ); } } return Promise.all( pending ).then( function ( geometries ) { if ( isMultiPass ) { var baseGeometry = geometries[ 0 ]; // See if we've already created this combined geometry var cache = parser.multiPassGeometryCache; var cached = getCachedMultiPassGeometry( cache, baseGeometry, originalPrimitives ); if ( cached !== null ) return [ cached.geometry ]; // Cloning geometry because of index override. // Attributes can be reused so cloning by myself here. var geometry = new THREE.BufferGeometry(); geometry.name = baseGeometry.name; geometry.userData = baseGeometry.userData; for ( var key in baseGeometry.attributes ) geometry.addAttribute( key, baseGeometry.attributes[ key ] ); for ( var key in baseGeometry.morphAttributes ) geometry.morphAttributes[ key ] = baseGeometry.morphAttributes[ key ]; var indices = []; var offset = 0; for ( var i = 0, il = originalPrimitives.length; i < il; i ++ ) { var accessor = accessors[ originalPrimitives[ i ].indices ]; for ( var j = 0, jl = accessor.count; j < jl; j ++ ) indices.push( accessor.array[ j ] ); geometry.addGroup( offset, accessor.count, i ); offset += accessor.count; } geometry.setIndex( indices ); cache.push( { geometry: geometry, baseGeometry: baseGeometry, primitives: originalPrimitives } ); return [ geometry ]; } else if ( geometries.length > 1 && THREE.BufferGeometryUtils !== undefined ) { // Tries to merge geometries with BufferGeometryUtils if possible for ( var i = 1, il = primitives.length; i < il; i ++ ) { // can't merge if draw mode is different if ( primitives[ 0 ].mode !== primitives[ i ].mode ) return geometries; } // See if we've already created this combined geometry var cache = parser.multiplePrimitivesCache; var cached = getCachedCombinedGeometry( cache, geometries ); if ( cached ) { if ( cached.geometry !== null ) return [ cached.geometry ]; } else { var geometry = THREE.BufferGeometryUtils.mergeBufferGeometries( geometries, true ); cache.push( { geometry: geometry, baseGeometries: geometries } ); if ( geometry !== null ) return [ geometry ]; } } return geometries; } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ GLTFParser.prototype.loadMesh = function ( meshIndex ) { var scope = this; var json = this.json; var extensions = this.extensions; var meshDef = this.json.meshes[ meshIndex ]; return this.getMultiDependencies( [ 'accessor', 'material' ] ).then( function ( dependencies ) { var primitives = meshDef.primitives; var originalMaterials = []; for ( var i = 0, il = primitives.length; i < il; i ++ ) { originalMaterials[ i ] = primitives[ i ].material === undefined ? createDefaultMaterial() : dependencies.materials[ primitives[ i ].material ]; } return scope.loadGeometries( primitives ).then( function ( geometries ) { var isMultiMaterial = geometries.length === 1 && geometries[ 0 ].groups.length > 0; var meshes = []; for ( var i = 0, il = geometries.length; i < il; i ++ ) { var geometry = geometries[ i ]; var primitive = primitives[ i ]; // 1. create Mesh var mesh; var material = isMultiMaterial ? originalMaterials : originalMaterials[ i ] if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) { // .isSkinnedMesh isn't in glTF spec. See .markDefs() mesh = meshDef.isSkinnedMesh === true ? new THREE.SkinnedMesh( geometry, material ) : new THREE.Mesh( geometry, material ); if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) { mesh.drawMode = THREE.TriangleStripDrawMode; } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) { mesh.drawMode = THREE.TriangleFanDrawMode; } } else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) { mesh = new THREE.LineSegments( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) { mesh = new THREE.Line( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) { mesh = new THREE.LineLoop( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) { mesh = new THREE.Points( geometry, material ); } else { throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode ); } if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) { updateMorphTargets( mesh, meshDef ); } mesh.name = meshDef.name || ( 'mesh_' + meshIndex ); if ( geometries.length > 1 ) mesh.name += '_' + i; if ( meshDef.extras !== undefined ) mesh.userData = meshDef.extras; meshes.push( mesh ); // 2. update Material depending on Mesh and BufferGeometry var materials = isMultiMaterial ? mesh.material : [ mesh.material ]; var useVertexColors = geometry.attributes.color !== undefined; var useFlatShading = geometry.attributes.normal === undefined; var useSkinning = mesh.isSkinnedMesh === true; var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0; var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined; for ( var j = 0, jl = materials.length; j < jl; j ++ ) { var material = materials[ j ]; if ( mesh.isPoints ) { var cacheKey = 'PointsMaterial:' + material.uuid; var pointsMaterial = scope.cache.get( cacheKey ); if ( ! pointsMaterial ) { pointsMaterial = new THREE.PointsMaterial(); THREE.Material.prototype.copy.call( pointsMaterial, material ); pointsMaterial.color.copy( material.color ); pointsMaterial.map = material.map; pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet scope.cache.add( cacheKey, pointsMaterial ); } material = pointsMaterial; } else if ( mesh.isLine ) { var cacheKey = 'LineBasicMaterial:' + material.uuid; var lineMaterial = scope.cache.get( cacheKey ); if ( ! lineMaterial ) { lineMaterial = new THREE.LineBasicMaterial(); THREE.Material.prototype.copy.call( lineMaterial, material ); lineMaterial.color.copy( material.color ); lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet scope.cache.add( cacheKey, lineMaterial ); } material = lineMaterial; } // Clone the material if it will be modified if ( useVertexColors || useFlatShading || useSkinning || useMorphTargets ) { var cacheKey = 'ClonedMaterial:' + material.uuid + ':'; if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:'; if ( useSkinning ) cacheKey += 'skinning:'; if ( useVertexColors ) cacheKey += 'vertex-colors:'; if ( useFlatShading ) cacheKey += 'flat-shading:'; if ( useMorphTargets ) cacheKey += 'morph-targets:'; if ( useMorphNormals ) cacheKey += 'morph-normals:'; var cachedMaterial = scope.cache.get( cacheKey ); if ( ! cachedMaterial ) { cachedMaterial = material.isGLTFSpecularGlossinessMaterial ? extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].cloneMaterial( material ) : material.clone(); if ( useSkinning ) cachedMaterial.skinning = true; if ( useVertexColors ) cachedMaterial.vertexColors = THREE.VertexColors; if ( useFlatShading ) cachedMaterial.flatShading = true; if ( useMorphTargets ) cachedMaterial.morphTargets = true; if ( useMorphNormals ) cachedMaterial.morphNormals = true; scope.cache.add( cacheKey, cachedMaterial ); } material = cachedMaterial; } materials[ j ] = material; // workarounds for mesh and geometry if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) { console.log( 'THREE.GLTFLoader: Duplicating UVs to support aoMap.' ); geometry.addAttribute( 'uv2', new THREE.BufferAttribute( geometry.attributes.uv.array, 2 ) ); } if ( material.isGLTFSpecularGlossinessMaterial ) { // for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update mesh.onBeforeRender = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].refreshUniforms; } } mesh.material = isMultiMaterial ? materials : materials[ 0 ]; } if ( meshes.length === 1 ) { return meshes[ 0 ]; } var group = new THREE.Group(); for ( var i = 0, il = meshes.length; i < il; i ++ ) { group.add( meshes[ i ] ); } return group; } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ GLTFParser.prototype.loadCamera = function ( cameraIndex ) { var camera; var cameraDef = this.json.cameras[ cameraIndex ]; var params = cameraDef[ cameraDef.type ]; if ( ! params ) { console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); return; } if ( cameraDef.type === 'perspective' ) { camera = new THREE.PerspectiveCamera( THREE.Math.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 ); } else if ( cameraDef.type === 'orthographic' ) { camera = new THREE.OrthographicCamera( params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar ); } if ( cameraDef.name !== undefined ) camera.name = cameraDef.name; if ( cameraDef.extras ) camera.userData = cameraDef.extras; return Promise.resolve( camera ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ GLTFParser.prototype.loadSkin = function ( skinIndex ) { var skinDef = this.json.skins[ skinIndex ]; var skinEntry = { joints: skinDef.joints }; if ( skinDef.inverseBindMatrices === undefined ) { return Promise.resolve( skinEntry ); } return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) { skinEntry.inverseBindMatrices = accessor; return skinEntry; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ GLTFParser.prototype.loadAnimation = function ( animationIndex ) { var json = this.json; var animationDef = this.json.animations[ animationIndex ]; return this.getMultiDependencies( [ 'accessor', 'node' ] ).then( function ( dependencies ) { var tracks = []; for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) { var channel = animationDef.channels[ i ]; var sampler = animationDef.samplers[ channel.sampler ]; if ( sampler ) { var target = channel.target; var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output; var inputAccessor = dependencies.accessors[ input ]; var outputAccessor = dependencies.accessors[ output ]; var node = dependencies.nodes[ name ]; if ( node ) { node.updateMatrix(); node.matrixAutoUpdate = true; var TypedKeyframeTrack; switch ( PATH_PROPERTIES[ target.path ] ) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = THREE.NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = THREE.QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default: TypedKeyframeTrack = THREE.VectorKeyframeTrack; break; } var targetName = node.name ? node.name : node.uuid; var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : THREE.InterpolateLinear; var targetNames = []; if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) { // node can be THREE.Group here but // PATH_PROPERTIES.weights(morphTargetInfluences) should be // the property of a mesh object under group. node.traverse( function ( object ) { if ( object.isMesh === true && object.morphTargetInfluences ) { targetNames.push( object.name ? object.name : object.uuid ); } } ); } else { targetNames.push( targetName ); } // KeyframeTrack.optimize() will modify given 'times' and 'values' // buffers before creating a truncated copy to keep. Because buffers may // be reused by other tracks, make copies here. for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) { var track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], THREE.AnimationUtils.arraySlice( inputAccessor.array, 0 ), THREE.AnimationUtils.arraySlice( outputAccessor.array, 0 ), interpolation ); // Here is the trick to enable custom interpolation. // Overrides .createInterpolant in a factory method which creates custom interpolation. if ( sampler.interpolation === 'CUBICSPLINE' ) { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) { // A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument. return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result ); }; // Workaround, provide an alternate way to know if the interpolant type is cubis spline to track. // track.getInterpolation() doesn't return valid value for custom interpolant. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } tracks.push( track ); } } } } var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex; return new THREE.AnimationClip( name, undefined, tracks ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ GLTFParser.prototype.loadNode = function ( nodeIndex ) { var json = this.json; var extensions = this.extensions; var meshReferences = this.json.meshReferences; var meshUses = this.json.meshUses; var nodeDef = this.json.nodes[ nodeIndex ]; return this.getMultiDependencies( [ 'mesh', 'skin', 'camera', 'light' ] ).then( function ( dependencies ) { var node; // .isBone isn't in glTF spec. See .markDefs if ( nodeDef.isBone === true ) { node = new THREE.Bone(); } else if ( nodeDef.mesh !== undefined ) { var mesh = dependencies.meshes[ nodeDef.mesh ]; node = mesh.clone(); // for Specular-Glossiness if ( mesh.isGroup === true ) { for ( var i = 0, il = mesh.children.length; i < il; i ++ ) { var child = mesh.children[ i ]; if ( child.material && child.material.isGLTFSpecularGlossinessMaterial === true ) { node.children[ i ].onBeforeRender = child.onBeforeRender; } } } else { if ( mesh.material && mesh.material.isGLTFSpecularGlossinessMaterial === true ) { node.onBeforeRender = mesh.onBeforeRender; } } if ( meshReferences[ nodeDef.mesh ] > 1 ) { node.name += '_instance_' + meshUses[ nodeDef.mesh ] ++; } } else if ( nodeDef.camera !== undefined ) { node = dependencies.cameras[ nodeDef.camera ]; } else if ( nodeDef.extensions && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ] && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) { var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights; node = lights[ nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ]; } else { node = new THREE.Object3D(); } if ( nodeDef.name !== undefined ) { node.name = THREE.PropertyBinding.sanitizeNodeName( nodeDef.name ); } if ( nodeDef.extras ) node.userData = nodeDef.extras; if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef ); if ( nodeDef.matrix !== undefined ) { var matrix = new THREE.Matrix4(); matrix.fromArray( nodeDef.matrix ); node.applyMatrix( matrix ); } else { if ( nodeDef.translation !== undefined ) { node.position.fromArray( nodeDef.translation ); } if ( nodeDef.rotation !== undefined ) { node.quaternion.fromArray( nodeDef.rotation ); } if ( nodeDef.scale !== undefined ) { node.scale.fromArray( nodeDef.scale ); } } return node; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ GLTFParser.prototype.loadScene = function () { // scene node hierachy builder function buildNodeHierachy( nodeId, parentObject, json, allNodes, skins ) { var node = allNodes[ nodeId ]; var nodeDef = json.nodes[ nodeId ]; // build skeleton here as well if ( nodeDef.skin !== undefined ) { var meshes = node.isGroup === true ? node.children : [ node ]; for ( var i = 0, il = meshes.length; i < il; i ++ ) { var mesh = meshes[ i ]; var skinEntry = skins[ nodeDef.skin ]; var bones = []; var boneInverses = []; for ( var j = 0, jl = skinEntry.joints.length; j < jl; j ++ ) { var jointId = skinEntry.joints[ j ]; var jointNode = allNodes[ jointId ]; if ( jointNode ) { bones.push( jointNode ); var mat = new THREE.Matrix4(); if ( skinEntry.inverseBindMatrices !== undefined ) { mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 ); } boneInverses.push( mat ); } else { console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', jointId ); } } mesh.bind( new THREE.Skeleton( bones, boneInverses ), mesh.matrixWorld ); } } // build node hierachy parentObject.add( node ); if ( nodeDef.children ) { var children = nodeDef.children; for ( var i = 0, il = children.length; i < il; i ++ ) { var child = children[ i ]; buildNodeHierachy( child, node, json, allNodes, skins ); } } } return function loadScene( sceneIndex ) { var json = this.json; var extensions = this.extensions; var sceneDef = this.json.scenes[ sceneIndex ]; return this.getMultiDependencies( [ 'node', 'skin' ] ).then( function ( dependencies ) { var scene = new THREE.Scene(); if ( sceneDef.name !== undefined ) scene.name = sceneDef.name; if ( sceneDef.extras ) scene.userData = sceneDef.extras; if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef ); var nodeIds = sceneDef.nodes || []; for ( var i = 0, il = nodeIds.length; i < il; i ++ ) { buildNodeHierachy( nodeIds[ i ], scene, json, dependencies.nodes, dependencies.skins ); } // Ambient lighting, if present, is always attached to the scene root. if ( sceneDef.extensions && sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ] && sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) { var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights; scene.add( lights[ sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ] ); } return scene; } ); }; }(); return GLTFLoader; } )();