GPUParticleSystem.js 16.2 KB
Newer Older
M
r72  
Mr.doob 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * GPU Particle System
 * @author flimshaw - Charlie Hoey - http://charliehoey.com
 *
 * A simple to use, general purpose GPU system.  Particles are spawn-and-forget with
 * several options available, and do not require monitoring or cleanup after spawning.
 * Because the paths of all particles are completely deterministic once spawned, the scale
 * and direction of time is also variable.
 *
 * Currently uses a static wrapping perlin noise texture for turbulence, and a small png texture for
 * particles, but adding support for a particle texture atlas or changing to a different type of turbulence
 * would be a fairly light day's work.
 *
 * Shader and javascript packing code derrived from several Stack Overflow examples.
 *
 */

THREE.GPUParticleSystem = function(options) {

  var self = this;
  var options = options || {};

  // parse options and use defaults
  self.PARTICLE_COUNT = options.maxParticles || 1000000;
  self.PARTICLE_CONTAINERS = options.containerCount || 1;
  self.PARTICLES_PER_CONTAINER = Math.ceil(self.PARTICLE_COUNT / self.PARTICLE_CONTAINERS);
  self.PARTICLE_CURSOR = 0;
  self.time = 0;


  // Custom vertex and fragement shader
  var GPUParticleShader = {

    vertexShader: [

      'precision highp float;',
      'const vec4 bitSh = vec4(256. * 256. * 256., 256. * 256., 256., 1.);',
      'const vec4 bitMsk = vec4(0.,vec3(1./256.0));',
      'const vec4 bitShifts = vec4(1.) / bitSh;',

      '#define FLOAT_MAX  1.70141184e38',
      '#define FLOAT_MIN  1.17549435e-38',

      'lowp vec4 encode_float(highp float v) {',
      'highp float av = abs(v);',

      '//Handle special cases',
      'if(av < FLOAT_MIN) {',
      'return vec4(0.0, 0.0, 0.0, 0.0);',
      '} else if(v > FLOAT_MAX) {',
      'return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;',
      '} else if(v < -FLOAT_MAX) {',
      'return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;',
      '}',

      'highp vec4 c = vec4(0,0,0,0);',

      '//Compute exponent and mantissa',
      'highp float e = floor(log2(av));',
      'highp float m = av * pow(2.0, -e) - 1.0;',

      //Unpack mantissa
      'c[1] = floor(128.0 * m);',
      'm -= c[1] / 128.0;',
      'c[2] = floor(32768.0 * m);',
      'm -= c[2] / 32768.0;',
      'c[3] = floor(8388608.0 * m);',

      '//Unpack exponent',
      'highp float ebias = e + 127.0;',
      'c[0] = floor(ebias / 2.0);',
      'ebias -= c[0] * 2.0;',
      'c[1] += floor(ebias) * 128.0;',

      '//Unpack sign bit',
      'c[0] += 128.0 * step(0.0, -v);',

      '//Scale back to range',
      'return c / 255.0;',
      '}',

      'vec4 pack(const in float depth)',
      '{',
      'const vec4 bit_shift = vec4(256.0*256.0*256.0, 256.0*256.0, 256.0, 1.0);',
      'const vec4 bit_mask  = vec4(0.0, 1.0/256.0, 1.0/256.0, 1.0/256.0);',
M
r74  
Mr.doob 已提交
86
      'vec4 res = mod(depth*bit_shift*vec4(255), vec4(256))/vec4(255);',
M
r72  
Mr.doob 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      'res -= res.xxyz * bit_mask;',
      'return res;',
      '}',

      'float unpack(const in vec4 rgba_depth)',
      '{',
      'const vec4 bit_shift = vec4(1.0/(256.0*256.0*256.0), 1.0/(256.0*256.0), 1.0/256.0, 1.0);',
      'float depth = dot(rgba_depth, bit_shift);',
      'return depth;',
      '}',

      'uniform float uTime;',
      'uniform float uScale;',
      'uniform sampler2D tNoise;',

      'attribute vec4 particlePositionsStartTime;',
      'attribute vec4 particleVelColSizeLife;',

      'varying vec4 vColor;',
      'varying float lifeLeft;',

      'void main() {',

      '// unpack things from our attributes',
      'vColor = encode_float( particleVelColSizeLife.y );',

      '// convert our velocity back into a value we can use',
      'vec4 velTurb = encode_float( particleVelColSizeLife.x );',
      'vec3 velocity = vec3( velTurb.xyz );',
      'float turbulence = velTurb.w;',

      'vec3 newPosition;',

      'float timeElapsed = uTime - particlePositionsStartTime.a;',

      'lifeLeft = 1. - (timeElapsed / particleVelColSizeLife.w);',

      'gl_PointSize = ( uScale * particleVelColSizeLife.z ) * lifeLeft;',

      'velocity.x = ( velocity.x - .5 ) * 3.;',
      'velocity.y = ( velocity.y - .5 ) * 3.;',
      'velocity.z = ( velocity.z - .5 ) * 3.;',

      'newPosition = particlePositionsStartTime.xyz + ( velocity * 10. ) * ( uTime - particlePositionsStartTime.a );',

      'vec3 noise = texture2D( tNoise, vec2( newPosition.x * .015 + (uTime * .05), newPosition.y * .02 + (uTime * .015) )).rgb;',
      'vec3 noiseVel = ( noise.rgb - .5 ) * 30.;',

      'newPosition = mix(newPosition, newPosition + vec3(noiseVel * ( turbulence * 5. ) ), (timeElapsed / particleVelColSizeLife.a) );',

      'if( velocity.y > 0. && velocity.y < .05 ) {',
      'lifeLeft = 0.;',
      '}',

      'if( velocity.x < -1.45 ) {',
      'lifeLeft = 0.;',
      '}',

      'if( timeElapsed > 0. ) {',
      'gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );',
      '} else {',
      'gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
      'lifeLeft = 0.;',
      'gl_PointSize = 0.;',
      '}',
      '}'

    ].join("\n"),

    fragmentShader: [

      'float scaleLinear(float value, vec2 valueDomain) {',
      'return (value - valueDomain.x) / (valueDomain.y - valueDomain.x);',
      '}',

      'float scaleLinear(float value, vec2 valueDomain, vec2 valueRange) {',
      'return mix(valueRange.x, valueRange.y, scaleLinear(value, valueDomain));',
      '}',

      'varying vec4 vColor;',
      'varying float lifeLeft;',

      'uniform sampler2D tSprite;',

      'void main() {',

      'float alpha = 0.;',

      'if( lifeLeft > .995 ) {',
      'alpha = scaleLinear( lifeLeft, vec2(1., .995), vec2(0., 1.));//mix( 0., 1., ( lifeLeft - .95 ) * 100. ) * .75;',
      '} else {',
      'alpha = lifeLeft * .75;',
      '}',

      'vec4 tex = texture2D( tSprite, gl_PointCoord );',

      'gl_FragColor = vec4( vColor.rgb * tex.a, alpha * tex.a );',
      '}'

    ].join("\n")

  };

  // preload a million random numbers
  self.rand = [];

  for (var i = 1e5; i > 0; i--) {
    self.rand.push(Math.random() - .5);
  }

  self.random = function() {
    return ++i >= self.rand.length ? self.rand[i = 1] : self.rand[i];
  }

M
r74  
Mr.doob 已提交
201 202 203
  var textureLoader = new THREE.TextureLoader();

  self.particleNoiseTex = textureLoader.load("textures/perlin-512.png");
M
r72  
Mr.doob 已提交
204 205
  self.particleNoiseTex.wrapS = self.particleNoiseTex.wrapT = THREE.RepeatWrapping;

M
r74  
Mr.doob 已提交
206
  self.particleSpriteTex = textureLoader.load("textures/particle2.png");
M
r72  
Mr.doob 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  self.particleSpriteTex.wrapS = self.particleSpriteTex.wrapT = THREE.RepeatWrapping;

  self.particleShaderMat = new THREE.ShaderMaterial({
    transparent: true,
    depthWrite: false,
    uniforms: {
      "uTime": {
        type: "f",
        value: 0.0
      },
      "uScale": {
        type: "f",
        value: 1.0
      },
      "tNoise": {
        type: "t",
        value: self.particleNoiseTex
      },
      "tSprite": {
        type: "t",
        value: self.particleSpriteTex
      }
    },
    blending: THREE.AdditiveBlending,
    vertexShader: GPUParticleShader.vertexShader,
    fragmentShader: GPUParticleShader.fragmentShader
  });

  // define defaults for all values
  self.particleShaderMat.defaultAttributeValues.particlePositionsStartTime = [0, 0, 0, 0];
  self.particleShaderMat.defaultAttributeValues.particleVelColSizeLife = [0, 0, 0, 0];

  self.particleContainers = [];


  // extend Object3D
  THREE.Object3D.apply(this, arguments);

  this.init = function() {

    for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {

      var c = new THREE.GPUParticleContainer(self.PARTICLES_PER_CONTAINER, self);
      self.particleContainers.push(c);
      self.add(c);

    }

  }

  this.spawnParticle = function(options) {

    self.PARTICLE_CURSOR++;
    if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
      self.PARTICLE_CURSOR = 1;
    }

    var currentContainer = self.particleContainers[Math.floor(self.PARTICLE_CURSOR / self.PARTICLES_PER_CONTAINER)];

    currentContainer.spawnParticle(options);

  }

  this.update = function(time) {
    for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {

      self.particleContainers[i].update(time);

    }
  };

  this.init();

}

THREE.GPUParticleSystem.prototype = Object.create(THREE.Object3D.prototype);
THREE.GPUParticleSystem.prototype.constructor = THREE.GPUParticleSystem;


// Subclass for particle containers, allows for very large arrays to be spread out
THREE.GPUParticleContainer = function(maxParticles, particleSystem) {

  var self = this;
  self.PARTICLE_COUNT = maxParticles || 100000;
  self.PARTICLE_CURSOR = 0;
  self.time = 0;
  self.DPR = window.devicePixelRatio;
  self.GPUParticleSystem = particleSystem;

  var particlesPerArray = Math.floor(self.PARTICLE_COUNT / self.MAX_ATTRIBUTES);

  // extend Object3D
  THREE.Object3D.apply(this, arguments);

  // construct a couple small arrays used for packing variables into floats etc
  var UINT8_VIEW = new Uint8Array(4)
  var FLOAT_VIEW = new Float32Array(UINT8_VIEW.buffer)

  function decodeFloat(x, y, z, w) {
    UINT8_VIEW[0] = Math.floor(w)
    UINT8_VIEW[1] = Math.floor(z)
    UINT8_VIEW[2] = Math.floor(y)
    UINT8_VIEW[3] = Math.floor(x)
    return FLOAT_VIEW[0]
  }

  function componentToHex(c) {
    var hex = c.toString(16);
    return hex.length == 1 ? "0" + hex : hex;
  }

  function rgbToHex(r, g, b) {
    return "#" + componentToHex(r) + componentToHex(g) + componentToHex(b);
  }

  function hexToRgb(hex) {
    var r = hex >> 16;
    var g = (hex & 0x00FF00) >> 8;
    var b = hex & 0x0000FF;

    if (r > 0) r--;
    if (g > 0) g--;
    if (b > 0) b--;

    return [r, g, b];
  };

  self.particles = [];
  self.deadParticles = [];
  self.particlesAvailableSlot = [];

  // create a container for particles
  self.particleUpdate = false;

  // Shader Based Particle System
  self.particleShaderGeo = new THREE.BufferGeometry();

  // new hyper compressed attributes
  self.particleVertices = new Float32Array(self.PARTICLE_COUNT * 3); // position
  self.particlePositionsStartTime = new Float32Array(self.PARTICLE_COUNT * 4); // position
  self.particleVelColSizeLife = new Float32Array(self.PARTICLE_COUNT * 4);

  for (var i = 0; i < self.PARTICLE_COUNT; i++) {
    self.particlePositionsStartTime[i * 4 + 0] = 100; //x
    self.particlePositionsStartTime[i * 4 + 1] = 0; //y
    self.particlePositionsStartTime[i * 4 + 2] = 0.0; //z
    self.particlePositionsStartTime[i * 4 + 3] = 0.0; //startTime

    self.particleVertices[i * 3 + 0] = 0; //x
    self.particleVertices[i * 3 + 1] = 0; //y
    self.particleVertices[i * 3 + 2] = 0.0; //z

    self.particleVelColSizeLife[i * 4 + 0] = decodeFloat(128, 128, 0, 0); //vel
    self.particleVelColSizeLife[i * 4 + 1] = decodeFloat(0, 254, 0, 254); //color
    self.particleVelColSizeLife[i * 4 + 2] = 1.0; //size
    self.particleVelColSizeLife[i * 4 + 3] = 0.0; //lifespan
  }

  self.particleShaderGeo.addAttribute('position', new THREE.BufferAttribute(self.particleVertices, 3));
  self.particleShaderGeo.addAttribute('particlePositionsStartTime', new THREE.BufferAttribute(self.particlePositionsStartTime, 4).setDynamic(true));
  self.particleShaderGeo.addAttribute('particleVelColSizeLife', new THREE.BufferAttribute(self.particleVelColSizeLife, 4).setDynamic(true));

  self.posStart = self.particleShaderGeo.getAttribute('particlePositionsStartTime')
  self.velCol = self.particleShaderGeo.getAttribute('particleVelColSizeLife');

  self.particleShaderMat = self.GPUParticleSystem.particleShaderMat;

  this.init = function() {
    self.particleSystem = new THREE.Points(self.particleShaderGeo, self.particleShaderMat);
    self.particleSystem.frustumCulled = false;
    this.add(self.particleSystem);
  };

  var options = {},
    position = new THREE.Vector3(),
    velocity = new THREE.Vector3(),
    positionRandomness = 0.,
    velocityRandomness = 0.,
    color = 0xffffff,
    colorRandomness = 0.,
    turbulence = 0.,
    lifetime = 0.,
    size = 0.,
    sizeRandomness = 0.,
    i;

  var maxVel = 2;
  var maxSource = 250;
  this.offset = 0;
  this.count = 0;

  this.spawnParticle = function(options) {

    options = options || {};

    // setup reasonable default values for all arguments
    position = options.position !== undefined ? position.copy(options.position) : position.set(0., 0., 0.);
    velocity = options.velocity !== undefined ? velocity.copy(options.velocity) : velocity.set(0., 0., 0.);
    positionRandomness = options.positionRandomness !== undefined ? options.positionRandomness : 0.0;
    velocityRandomness = options.velocityRandomness !== undefined ? options.velocityRandomness : 0.0;
    color = options.color !== undefined ? options.color : 0xffffff;
    colorRandomness = options.colorRandomness !== undefined ? options.colorRandomness : 1.0;
    turbulence = options.turbulence !== undefined ? options.turbulence : 1.0;
    lifetime = options.lifetime !== undefined ? options.lifetime : 5.0;
    size = options.size !== undefined ? options.size : 10;
    sizeRandomness = options.sizeRandomness !== undefined ? options.sizeRandomness : 0.0,
      smoothPosition = options.smoothPosition !== undefined ? options.smoothPosition : false;

    if (self.DPR !== undefined) size *= self.DPR;

    i = self.PARTICLE_CURSOR;

    self.posStart.array[i * 4 + 0] = position.x + ((particleSystem.random()) * positionRandomness); // - ( velocity.x * particleSystem.random() ); //x
    self.posStart.array[i * 4 + 1] = position.y + ((particleSystem.random()) * positionRandomness); // - ( velocity.y * particleSystem.random() ); //y
    self.posStart.array[i * 4 + 2] = position.z + ((particleSystem.random()) * positionRandomness); // - ( velocity.z * particleSystem.random() ); //z
    self.posStart.array[i * 4 + 3] = self.time + (particleSystem.random() * 2e-2); //startTime

    if (smoothPosition === true) {
      self.posStart.array[i * 4 + 0] += -(velocity.x * particleSystem.random()); //x
      self.posStart.array[i * 4 + 1] += -(velocity.y * particleSystem.random()); //y
      self.posStart.array[i * 4 + 2] += -(velocity.z * particleSystem.random()); //z
    }

    var velX = velocity.x + (particleSystem.random()) * velocityRandomness;
    var velY = velocity.y + (particleSystem.random()) * velocityRandomness;
    var velZ = velocity.z + (particleSystem.random()) * velocityRandomness;

    // convert turbulence rating to something we can pack into a vec4
    var turbulence = Math.floor(turbulence * 254);

    // clamp our value to between 0. and 1.
    velX = Math.floor(maxSource * ((velX - -maxVel) / (maxVel - -maxVel)));
    velY = Math.floor(maxSource * ((velY - -maxVel) / (maxVel - -maxVel)));
    velZ = Math.floor(maxSource * ((velZ - -maxVel) / (maxVel - -maxVel)));

    self.velCol.array[i * 4 + 0] = decodeFloat(velX, velY, velZ, turbulence); //vel

    var rgb = hexToRgb(color);

    for (var c = 0; c < rgb.length; c++) {
      rgb[c] = Math.floor(rgb[c] + ((particleSystem.random()) * colorRandomness) * 254);
      if (rgb[c] > 254) rgb[c] = 254;
      if (rgb[c] < 0) rgb[c] = 0;
    }

    self.velCol.array[i * 4 + 1] = decodeFloat(rgb[0], rgb[1], rgb[2], 254); //color
    self.velCol.array[i * 4 + 2] = size + (particleSystem.random()) * sizeRandomness; //size
    self.velCol.array[i * 4 + 3] = lifetime; //lifespan

    if (this.offset == 0) {
      this.offset = self.PARTICLE_CURSOR;
    }

    self.count++;

    self.PARTICLE_CURSOR++;

    if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
      self.PARTICLE_CURSOR = 0;
    }

    self.particleUpdate = true;

  }

  this.update = function(time) {

    self.time = time;
    self.particleShaderMat.uniforms['uTime'].value = time;

    this.geometryUpdate();

  };

  this.geometryUpdate = function() {
    if (self.particleUpdate == true) {
      self.particleUpdate = false;

      // if we can get away with a partial buffer update, do so
      if (self.offset + self.count < self.PARTICLE_COUNT) {
        self.posStart.updateRange.offset = self.velCol.updateRange.offset = self.offset * 4;
        self.posStart.updateRange.count = self.velCol.updateRange.count = self.count * 4;
      } else {
        self.posStart.updateRange.offset = 0;
        self.posStart.updateRange.count = self.velCol.updateRange.count = (self.PARTICLE_COUNT * 4);
      }

      self.posStart.needsUpdate = true;
      self.velCol.needsUpdate = true;

      self.offset = 0;
      self.count = 0;
    }
  }

  this.init();

}

THREE.GPUParticleContainer.prototype = Object.create(THREE.Object3D.prototype);
THREE.GPUParticleContainer.prototype.constructor = THREE.GPUParticleContainer;