#include "redis.h" #include #include #include #include /* dscache.c - Disk store cache for disk store backend. * * When Redis is configured for using disk as backend instead of memory, the * memory is used as a cache, so that recently accessed keys are taken in * memory for fast read and write operations. * * Modified keys are marked to be flushed on disk, and will be flushed * as long as the maxium configured flush time elapsed. * * This file implements the whole caching subsystem and contains further * documentation. */ /* TODO: * * - The WATCH helper will be used to signal the cache system * we need to flush a given key/dbid into disk, adding this key/dbid * pair into a server.ds_cache_dirty linked list AND hash table (so that we * don't add the same thing multiple times). * * - cron() checks if there are elements on this list. When there are things * to flush, we create an IO Job for the I/O thread. * FIXME: how to mark this key as "busy"? With VM we used to change the * object->storage field, but this time we need this to work with every * kind of object, including shared ones. One possibility is just killing * object sharing at all. So let's assume this will be our solution. * * So we set keys that are in the process of being saved as * object->storage = REDIS_STORAGE_SAVING; * * - This is what we do on key lookup: * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY. * We don't do nothing special, lookup, return value object pointer. * 2) The key is in memory but object->storage == REDIS_DS_SAVING. * This is an explicit lookup so we have to abort the saving operation. * We kill the IO Job, set the storage to == REDIS_DB_MEMORY but * re-queue the object in the server.ds_cache_dirty list. * * Btw here we need some protection against the problem of continuously * writing against a value having the effect of this value to be never * saved on disk. That is, at some point we need to block and write it * if there is too much delay. * 3) The key is not in memory. We block to load the key from disk. * Of course the key may not be present at all on the disk store as well, * in such case we just detect this condition and continue, returning * NULL from lookup. * * - Preloading of needed keys: * 1) As it was done with VM, also with this new system we try preloading * keys a client is going to use. We block the client, load keys * using the I/O thread, unblock the client. Same code as VM more or less. * * - Transfering keys from memory to disk. * Again while in cron() we detect our memory limit was reached. What we * do is transfering random keys that are not set as dirty on disk, using * LRU to select the key. * If this is not enough to return again under the memory limits we also * start to flush keys that need to be synched on disk synchronously, * removing it from the memory. * * - IO thread operations are no longer stopped for sync loading/saving of * things. When a key is found to be in the process of being saved or * loaded we simply wait for the IO thread to end its work. * * Otherwise if there is to load a key without any IO thread operation * just started it is blocking-loaded in the lookup function. */ /* Virtual Memory is composed mainly of two subsystems: * - Blocking Virutal Memory * - Threaded Virtual Memory I/O * The two parts are not fully decoupled, but functions are split among two * different sections of the source code (delimited by comments) in order to * make more clear what functionality is about the blocking VM and what about * the threaded (not blocking) VM. * * Redis VM design: * * Redis VM is a blocking VM (one that blocks reading swapped values from * disk into memory when a value swapped out is needed in memory) that is made * unblocking by trying to examine the command argument vector in order to * load in background values that will likely be needed in order to exec * the command. The command is executed only once all the relevant keys * are loaded into memory. * * This basically is almost as simple of a blocking VM, but almost as parallel * as a fully non-blocking VM. */ /* =================== Virtual Memory - Blocking Side ====================== */ /* Create a VM pointer object. This kind of objects are used in place of * values in the key -> value hash table, for swapped out objects. */ vmpointer *createVmPointer(int vtype) { vmpointer *vp = zmalloc(sizeof(vmpointer)); vp->type = REDIS_VMPOINTER; vp->storage = REDIS_VM_SWAPPED; vp->vtype = vtype; return vp; } void vmInit(void) { off_t totsize; int pipefds[2]; size_t stacksize; struct flock fl; if (server.vm_max_threads != 0) zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */ redisLog(REDIS_NOTICE,"Using '%s' as swap file",server.vm_swap_file); /* Try to open the old swap file, otherwise create it */ if ((server.vm_fp = fopen(server.vm_swap_file,"r+b")) == NULL) { server.vm_fp = fopen(server.vm_swap_file,"w+b"); } if (server.vm_fp == NULL) { redisLog(REDIS_WARNING, "Can't open the swap file: %s. Exiting.", strerror(errno)); exit(1); } server.vm_fd = fileno(server.vm_fp); /* Lock the swap file for writing, this is useful in order to avoid * another instance to use the same swap file for a config error. */ fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; fl.l_start = fl.l_len = 0; if (fcntl(server.vm_fd,F_SETLK,&fl) == -1) { redisLog(REDIS_WARNING, "Can't lock the swap file at '%s': %s. Make sure it is not used by another Redis instance.", server.vm_swap_file, strerror(errno)); exit(1); } /* Initialize */ server.vm_next_page = 0; server.vm_near_pages = 0; server.vm_stats_used_pages = 0; server.vm_stats_swapped_objects = 0; server.vm_stats_swapouts = 0; server.vm_stats_swapins = 0; totsize = server.vm_pages*server.vm_page_size; redisLog(REDIS_NOTICE,"Allocating %lld bytes of swap file",totsize); if (ftruncate(server.vm_fd,totsize) == -1) { redisLog(REDIS_WARNING,"Can't ftruncate swap file: %s. Exiting.", strerror(errno)); exit(1); } else { redisLog(REDIS_NOTICE,"Swap file allocated with success"); } server.vm_bitmap = zcalloc((server.vm_pages+7)/8); redisLog(REDIS_VERBOSE,"Allocated %lld bytes page table for %lld pages", (long long) (server.vm_pages+7)/8, server.vm_pages); /* Initialize threaded I/O (used by Virtual Memory) */ server.io_newjobs = listCreate(); server.io_processing = listCreate(); server.io_processed = listCreate(); server.io_ready_clients = listCreate(); pthread_mutex_init(&server.io_mutex,NULL); pthread_mutex_init(&server.io_swapfile_mutex,NULL); server.io_active_threads = 0; if (pipe(pipefds) == -1) { redisLog(REDIS_WARNING,"Unable to intialized VM: pipe(2): %s. Exiting." ,strerror(errno)); exit(1); } server.io_ready_pipe_read = pipefds[0]; server.io_ready_pipe_write = pipefds[1]; redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR); /* LZF requires a lot of stack */ pthread_attr_init(&server.io_threads_attr); pthread_attr_getstacksize(&server.io_threads_attr, &stacksize); /* Solaris may report a stacksize of 0, let's set it to 1 otherwise * multiplying it by 2 in the while loop later will not really help ;) */ if (!stacksize) stacksize = 1; while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2; pthread_attr_setstacksize(&server.io_threads_attr, stacksize); /* Listen for events in the threaded I/O pipe */ if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE, vmThreadedIOCompletedJob, NULL) == AE_ERR) oom("creating file event"); } /* Mark the page as used */ void vmMarkPageUsed(off_t page) { off_t byte = page/8; int bit = page&7; redisAssert(vmFreePage(page) == 1); server.vm_bitmap[byte] |= 1<= server.vm_pages) { this -= server.vm_pages; if (this == 0) { /* Just overflowed, what we found on tail is no longer * interesting, as it's no longer contiguous. */ numfree = 0; } } if (vmFreePage(this)) { /* This is a free page */ numfree++; /* Already got N free pages? Return to the caller, with success */ if (numfree == n) { *first = this-(n-1); server.vm_next_page = this+1; redisLog(REDIS_DEBUG, "FOUND CONTIGUOUS PAGES: %lld pages at %lld\n", (long long) n, (long long) *first); return REDIS_OK; } } else { /* The current one is not a free page */ numfree = 0; } /* Fast-forward if the current page is not free and we already * searched enough near this place. */ since_jump++; if (!numfree && since_jump >= REDIS_VM_MAX_RANDOM_JUMP/4) { offset += random() % REDIS_VM_MAX_RANDOM_JUMP; since_jump = 0; /* Note that even if we rewind after the jump, we are don't need * to make sure numfree is set to zero as we only jump *if* it * is set to zero. */ } else { /* Otherwise just check the next page */ offset++; } } return REDIS_ERR; } /* Write the specified object at the specified page of the swap file */ int vmWriteObjectOnSwap(robj *o, off_t page) { if (server.vm_enabled) pthread_mutex_lock(&server.io_swapfile_mutex); if (fseeko(server.vm_fp,page*server.vm_page_size,SEEK_SET) == -1) { if (server.vm_enabled) pthread_mutex_unlock(&server.io_swapfile_mutex); redisLog(REDIS_WARNING, "Critical VM problem in vmWriteObjectOnSwap(): can't seek: %s", strerror(errno)); return REDIS_ERR; } rdbSaveObject(server.vm_fp,o); fflush(server.vm_fp); if (server.vm_enabled) pthread_mutex_unlock(&server.io_swapfile_mutex); return REDIS_OK; } /* Transfers the 'val' object to disk. Store all the information * a 'vmpointer' object containing all the information needed to load the * object back later is returned. * * If we can't find enough contiguous empty pages to swap the object on disk * NULL is returned. */ vmpointer *vmSwapObjectBlocking(robj *val) { off_t pages = rdbSavedObjectPages(val); off_t page; vmpointer *vp; redisAssert(val->storage == REDIS_VM_MEMORY); redisAssert(val->refcount == 1); if (vmFindContiguousPages(&page,pages) == REDIS_ERR) return NULL; if (vmWriteObjectOnSwap(val,page) == REDIS_ERR) return NULL; vp = createVmPointer(val->type); vp->page = page; vp->usedpages = pages; decrRefCount(val); /* Deallocate the object from memory. */ vmMarkPagesUsed(page,pages); redisLog(REDIS_DEBUG,"VM: object %p swapped out at %lld (%lld pages)", (void*) val, (unsigned long long) page, (unsigned long long) pages); server.vm_stats_swapped_objects++; server.vm_stats_swapouts++; return vp; } robj *vmReadObjectFromSwap(off_t page, int type) { robj *o; if (server.vm_enabled) pthread_mutex_lock(&server.io_swapfile_mutex); if (fseeko(server.vm_fp,page*server.vm_page_size,SEEK_SET) == -1) { redisLog(REDIS_WARNING, "Unrecoverable VM problem in vmReadObjectFromSwap(): can't seek: %s", strerror(errno)); _exit(1); } o = rdbLoadObject(type,server.vm_fp); if (o == NULL) { redisLog(REDIS_WARNING, "Unrecoverable VM problem in vmReadObjectFromSwap(): can't load object from swap file: %s", strerror(errno)); _exit(1); } if (server.vm_enabled) pthread_mutex_unlock(&server.io_swapfile_mutex); return o; } /* Load the specified object from swap to memory. * The newly allocated object is returned. * * If preview is true the unserialized object is returned to the caller but * the pages are not marked as freed, nor the vp object is freed. */ robj *vmGenericLoadObject(vmpointer *vp, int preview) { robj *val; redisAssert(vp->type == REDIS_VMPOINTER && (vp->storage == REDIS_VM_SWAPPED || vp->storage == REDIS_VM_LOADING)); val = vmReadObjectFromSwap(vp->page,vp->vtype); if (!preview) { redisLog(REDIS_DEBUG, "VM: object %p loaded from disk", (void*)vp); vmMarkPagesFree(vp->page,vp->usedpages); zfree(vp); server.vm_stats_swapped_objects--; } else { redisLog(REDIS_DEBUG, "VM: object %p previewed from disk", (void*)vp); } server.vm_stats_swapins++; return val; } /* Plain object loading, from swap to memory. * * 'o' is actually a redisVmPointer structure that will be freed by the call. * The return value is the loaded object. */ robj *vmLoadObject(robj *o) { /* If we are loading the object in background, stop it, we * need to load this object synchronously ASAP. */ if (o->storage == REDIS_VM_LOADING) vmCancelThreadedIOJob(o); return vmGenericLoadObject((vmpointer*)o,0); } /* Just load the value on disk, without to modify the key. * This is useful when we want to perform some operation on the value * without to really bring it from swap to memory, like while saving the * dataset or rewriting the append only log. */ robj *vmPreviewObject(robj *o) { return vmGenericLoadObject((vmpointer*)o,1); } /* How a good candidate is this object for swapping? * The better candidate it is, the greater the returned value. * * Currently we try to perform a fast estimation of the object size in * memory, and combine it with aging informations. * * Basically swappability = idle-time * log(estimated size) * * Bigger objects are preferred over smaller objects, but not * proportionally, this is why we use the logarithm. This algorithm is * just a first try and will probably be tuned later. */ double computeObjectSwappability(robj *o) { /* actual age can be >= minage, but not < minage. As we use wrapping * 21 bit clocks with minutes resolution for the LRU. */ time_t minage = estimateObjectIdleTime(o); long asize = 0, elesize; robj *ele; list *l; listNode *ln; dict *d; struct dictEntry *de; int z; if (minage <= 0) return 0; switch(o->type) { case REDIS_STRING: if (o->encoding != REDIS_ENCODING_RAW) { asize = sizeof(*o); } else { asize = sdslen(o->ptr)+sizeof(*o)+sizeof(long)*2; } break; case REDIS_LIST: if (o->encoding == REDIS_ENCODING_ZIPLIST) { asize = sizeof(*o)+ziplistSize(o->ptr); } else { l = o->ptr; ln = listFirst(l); asize = sizeof(list); if (ln) { ele = ln->value; elesize = (ele->encoding == REDIS_ENCODING_RAW) ? (sizeof(*o)+sdslen(ele->ptr)) : sizeof(*o); asize += (sizeof(listNode)+elesize)*listLength(l); } } break; case REDIS_SET: case REDIS_ZSET: z = (o->type == REDIS_ZSET); d = z ? ((zset*)o->ptr)->dict : o->ptr; if (!z && o->encoding == REDIS_ENCODING_INTSET) { intset *is = o->ptr; asize = sizeof(*is)+is->encoding*is->length; } else { asize = sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d)); if (z) asize += sizeof(zset)-sizeof(dict); if (dictSize(d)) { de = dictGetRandomKey(d); ele = dictGetEntryKey(de); elesize = (ele->encoding == REDIS_ENCODING_RAW) ? (sizeof(*o)+sdslen(ele->ptr)) : sizeof(*o); asize += (sizeof(struct dictEntry)+elesize)*dictSize(d); if (z) asize += sizeof(zskiplistNode)*dictSize(d); } } break; case REDIS_HASH: if (o->encoding == REDIS_ENCODING_ZIPMAP) { unsigned char *p = zipmapRewind((unsigned char*)o->ptr); unsigned int len = zipmapLen((unsigned char*)o->ptr); unsigned int klen, vlen; unsigned char *key, *val; if ((p = zipmapNext(p,&key,&klen,&val,&vlen)) == NULL) { klen = 0; vlen = 0; } asize = len*(klen+vlen+3); } else if (o->encoding == REDIS_ENCODING_HT) { d = o->ptr; asize = sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d)); if (dictSize(d)) { de = dictGetRandomKey(d); ele = dictGetEntryKey(de); elesize = (ele->encoding == REDIS_ENCODING_RAW) ? (sizeof(*o)+sdslen(ele->ptr)) : sizeof(*o); ele = dictGetEntryVal(de); elesize = (ele->encoding == REDIS_ENCODING_RAW) ? (sizeof(*o)+sdslen(ele->ptr)) : sizeof(*o); asize += (sizeof(struct dictEntry)+elesize)*dictSize(d); } } break; } return (double)minage*log(1+asize); } /* Try to swap an object that's a good candidate for swapping. * Returns REDIS_OK if the object was swapped, REDIS_ERR if it's not possible * to swap any object at all. * * If 'usethreaded' is true, Redis will try to swap the object in background * using I/O threads. */ int vmSwapOneObject(int usethreads) { int j, i; struct dictEntry *best = NULL; double best_swappability = 0; redisDb *best_db = NULL; robj *val; sds key; for (j = 0; j < server.dbnum; j++) { redisDb *db = server.db+j; /* Why maxtries is set to 100? * Because this way (usually) we'll find 1 object even if just 1% - 2% * are swappable objects */ int maxtries = 100; if (dictSize(db->dict) == 0) continue; for (i = 0; i < 5; i++) { dictEntry *de; double swappability; if (maxtries) maxtries--; de = dictGetRandomKey(db->dict); val = dictGetEntryVal(de); /* Only swap objects that are currently in memory. * * Also don't swap shared objects: not a good idea in general and * we need to ensure that the main thread does not touch the * object while the I/O thread is using it, but we can't * control other keys without adding additional mutex. */ if (val->storage != REDIS_VM_MEMORY || val->refcount != 1) { if (maxtries) i--; /* don't count this try */ continue; } swappability = computeObjectSwappability(val); if (!best || swappability > best_swappability) { best = de; best_swappability = swappability; best_db = db; } } } if (best == NULL) return REDIS_ERR; key = dictGetEntryKey(best); val = dictGetEntryVal(best); redisLog(REDIS_DEBUG,"Key with best swappability: %s, %f", key, best_swappability); /* Swap it */ if (usethreads) { robj *keyobj = createStringObject(key,sdslen(key)); vmSwapObjectThreaded(keyobj,val,best_db); decrRefCount(keyobj); return REDIS_OK; } else { vmpointer *vp; if ((vp = vmSwapObjectBlocking(val)) != NULL) { dictGetEntryVal(best) = vp; return REDIS_OK; } else { return REDIS_ERR; } } } int vmSwapOneObjectBlocking() { return vmSwapOneObject(0); } int vmSwapOneObjectThreaded() { return vmSwapOneObject(1); } /* Return true if it's safe to swap out objects in a given moment. * Basically we don't want to swap objects out while there is a BGSAVE * or a BGAEOREWRITE running in backgroud. */ int vmCanSwapOut(void) { return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1); } /* =================== Virtual Memory - Threaded I/O ======================= */ void freeIOJob(iojob *j) { if ((j->type == REDIS_IOJOB_PREPARE_SWAP || j->type == REDIS_IOJOB_DO_SWAP || j->type == REDIS_IOJOB_LOAD) && j->val != NULL) { /* we fix the storage type, otherwise decrRefCount() will try to * kill the I/O thread Job (that does no longer exists). */ if (j->val->storage == REDIS_VM_SWAPPING) j->val->storage = REDIS_VM_MEMORY; decrRefCount(j->val); } decrRefCount(j->key); zfree(j); } /* Every time a thread finished a Job, it writes a byte into the write side * of an unix pipe in order to "awake" the main thread, and this function * is called. * * Note that this is called both by the event loop, when a I/O thread * sends a byte in the notification pipe, and is also directly called from * waitEmptyIOJobsQueue(). * * In the latter case we don't want to swap more, so we use the * "privdata" argument setting it to a not NULL value to signal this * condition. */ void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata, int mask) { char buf[1]; int retval, processed = 0, toprocess = -1, trytoswap = 1; REDIS_NOTUSED(el); REDIS_NOTUSED(mask); REDIS_NOTUSED(privdata); if (privdata != NULL) trytoswap = 0; /* check the comments above... */ /* For every byte we read in the read side of the pipe, there is one * I/O job completed to process. */ while((retval = read(fd,buf,1)) == 1) { iojob *j; listNode *ln; struct dictEntry *de; redisLog(REDIS_DEBUG,"Processing I/O completed job"); /* Get the processed element (the oldest one) */ lockThreadedIO(); redisAssert(listLength(server.io_processed) != 0); if (toprocess == -1) { toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100; if (toprocess <= 0) toprocess = 1; } ln = listFirst(server.io_processed); j = ln->value; listDelNode(server.io_processed,ln); unlockThreadedIO(); /* If this job is marked as canceled, just ignore it */ if (j->canceled) { freeIOJob(j); continue; } /* Post process it in the main thread, as there are things we * can do just here to avoid race conditions and/or invasive locks */ redisLog(REDIS_DEBUG,"COMPLETED Job type: %d, ID %p, key: %s", j->type, (void*)j->id, (unsigned char*)j->key->ptr); de = dictFind(j->db->dict,j->key->ptr); redisAssert(de != NULL); if (j->type == REDIS_IOJOB_LOAD) { redisDb *db; vmpointer *vp = dictGetEntryVal(de); /* Key loaded, bring it at home */ vmMarkPagesFree(vp->page,vp->usedpages); redisLog(REDIS_DEBUG, "VM: object %s loaded from disk (threaded)", (unsigned char*) j->key->ptr); server.vm_stats_swapped_objects--; server.vm_stats_swapins++; dictGetEntryVal(de) = j->val; incrRefCount(j->val); db = j->db; /* Handle clients waiting for this key to be loaded. */ handleClientsBlockedOnSwappedKey(db,j->key); freeIOJob(j); zfree(vp); } else if (j->type == REDIS_IOJOB_PREPARE_SWAP) { /* Now we know the amount of pages required to swap this object. * Let's find some space for it, and queue this task again * rebranded as REDIS_IOJOB_DO_SWAP. */ if (!vmCanSwapOut() || vmFindContiguousPages(&j->page,j->pages) == REDIS_ERR) { /* Ooops... no space or we can't swap as there is * a fork()ed Redis trying to save stuff on disk. */ j->val->storage = REDIS_VM_MEMORY; /* undo operation */ freeIOJob(j); } else { /* Note that we need to mark this pages as used now, * if the job will be canceled, we'll mark them as freed * again. */ vmMarkPagesUsed(j->page,j->pages); j->type = REDIS_IOJOB_DO_SWAP; lockThreadedIO(); queueIOJob(j); unlockThreadedIO(); } } else if (j->type == REDIS_IOJOB_DO_SWAP) { vmpointer *vp; /* Key swapped. We can finally free some memory. */ if (j->val->storage != REDIS_VM_SWAPPING) { vmpointer *vp = (vmpointer*) j->id; printf("storage: %d\n",vp->storage); printf("key->name: %s\n",(char*)j->key->ptr); printf("val: %p\n",(void*)j->val); printf("val->type: %d\n",j->val->type); printf("val->ptr: %s\n",(char*)j->val->ptr); } redisAssert(j->val->storage == REDIS_VM_SWAPPING); vp = createVmPointer(j->val->type); vp->page = j->page; vp->usedpages = j->pages; dictGetEntryVal(de) = vp; /* Fix the storage otherwise decrRefCount will attempt to * remove the associated I/O job */ j->val->storage = REDIS_VM_MEMORY; decrRefCount(j->val); redisLog(REDIS_DEBUG, "VM: object %s swapped out at %lld (%lld pages) (threaded)", (unsigned char*) j->key->ptr, (unsigned long long) j->page, (unsigned long long) j->pages); server.vm_stats_swapped_objects++; server.vm_stats_swapouts++; freeIOJob(j); /* Put a few more swap requests in queue if we are still * out of memory */ if (trytoswap && vmCanSwapOut() && zmalloc_used_memory() > server.vm_max_memory) { int more = 1; while(more) { lockThreadedIO(); more = listLength(server.io_newjobs) < (unsigned) server.vm_max_threads; unlockThreadedIO(); /* Don't waste CPU time if swappable objects are rare. */ if (vmSwapOneObjectThreaded() == REDIS_ERR) { trytoswap = 0; break; } } } } processed++; if (processed == toprocess) return; } if (retval < 0 && errno != EAGAIN) { redisLog(REDIS_WARNING, "WARNING: read(2) error in vmThreadedIOCompletedJob() %s", strerror(errno)); } } void lockThreadedIO(void) { pthread_mutex_lock(&server.io_mutex); } void unlockThreadedIO(void) { pthread_mutex_unlock(&server.io_mutex); } /* Remove the specified object from the threaded I/O queue if still not * processed, otherwise make sure to flag it as canceled. */ void vmCancelThreadedIOJob(robj *o) { list *lists[3] = { server.io_newjobs, /* 0 */ server.io_processing, /* 1 */ server.io_processed /* 2 */ }; int i; redisAssert(o->storage == REDIS_VM_LOADING || o->storage == REDIS_VM_SWAPPING); again: lockThreadedIO(); /* Search for a matching object in one of the queues */ for (i = 0; i < 3; i++) { listNode *ln; listIter li; listRewind(lists[i],&li); while ((ln = listNext(&li)) != NULL) { iojob *job = ln->value; if (job->canceled) continue; /* Skip this, already canceled. */ if (job->id == o) { redisLog(REDIS_DEBUG,"*** CANCELED %p (key %s) (type %d) (LIST ID %d)\n", (void*)job, (char*)job->key->ptr, job->type, i); /* Mark the pages as free since the swap didn't happened * or happened but is now discarded. */ if (i != 1 && job->type == REDIS_IOJOB_DO_SWAP) vmMarkPagesFree(job->page,job->pages); /* Cancel the job. It depends on the list the job is * living in. */ switch(i) { case 0: /* io_newjobs */ /* If the job was yet not processed the best thing to do * is to remove it from the queue at all */ freeIOJob(job); listDelNode(lists[i],ln); break; case 1: /* io_processing */ /* Oh Shi- the thread is messing with the Job: * * Probably it's accessing the object if this is a * PREPARE_SWAP or DO_SWAP job. * If it's a LOAD job it may be reading from disk and * if we don't wait for the job to terminate before to * cancel it, maybe in a few microseconds data can be * corrupted in this pages. So the short story is: * * Better to wait for the job to move into the * next queue (processed)... */ /* We try again and again until the job is completed. */ unlockThreadedIO(); /* But let's wait some time for the I/O thread * to finish with this job. After all this condition * should be very rare. */ usleep(1); goto again; case 2: /* io_processed */ /* The job was already processed, that's easy... * just mark it as canceled so that we'll ignore it * when processing completed jobs. */ job->canceled = 1; break; } /* Finally we have to adjust the storage type of the object * in order to "UNDO" the operaiton. */ if (o->storage == REDIS_VM_LOADING) o->storage = REDIS_VM_SWAPPED; else if (o->storage == REDIS_VM_SWAPPING) o->storage = REDIS_VM_MEMORY; unlockThreadedIO(); redisLog(REDIS_DEBUG,"*** DONE"); return; } } } unlockThreadedIO(); printf("Not found: %p\n", (void*)o); redisAssert(1 != 1); /* We should never reach this */ } void *IOThreadEntryPoint(void *arg) { iojob *j; listNode *ln; REDIS_NOTUSED(arg); pthread_detach(pthread_self()); while(1) { /* Get a new job to process */ lockThreadedIO(); if (listLength(server.io_newjobs) == 0) { /* No new jobs in queue, exit. */ redisLog(REDIS_DEBUG,"Thread %ld exiting, nothing to do", (long) pthread_self()); server.io_active_threads--; unlockThreadedIO(); return NULL; } ln = listFirst(server.io_newjobs); j = ln->value; listDelNode(server.io_newjobs,ln); /* Add the job in the processing queue */ j->thread = pthread_self(); listAddNodeTail(server.io_processing,j); ln = listLast(server.io_processing); /* We use ln later to remove it */ unlockThreadedIO(); redisLog(REDIS_DEBUG,"Thread %ld got a new job (type %d): %p about key '%s'", (long) pthread_self(), j->type, (void*)j, (char*)j->key->ptr); /* Process the Job */ if (j->type == REDIS_IOJOB_LOAD) { vmpointer *vp = (vmpointer*)j->id; j->val = vmReadObjectFromSwap(j->page,vp->vtype); } else if (j->type == REDIS_IOJOB_PREPARE_SWAP) { j->pages = rdbSavedObjectPages(j->val); } else if (j->type == REDIS_IOJOB_DO_SWAP) { if (vmWriteObjectOnSwap(j->val,j->page) == REDIS_ERR) j->canceled = 1; } /* Done: insert the job into the processed queue */ redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)", (long) pthread_self(), (void*)j, (char*)j->key->ptr); lockThreadedIO(); listDelNode(server.io_processing,ln); listAddNodeTail(server.io_processed,j); unlockThreadedIO(); /* Signal the main thread there is new stuff to process */ redisAssert(write(server.io_ready_pipe_write,"x",1) == 1); } return NULL; /* never reached */ } void spawnIOThread(void) { pthread_t thread; sigset_t mask, omask; int err; sigemptyset(&mask); sigaddset(&mask,SIGCHLD); sigaddset(&mask,SIGHUP); sigaddset(&mask,SIGPIPE); pthread_sigmask(SIG_SETMASK, &mask, &omask); while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) { redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s", strerror(err)); usleep(1000000); } pthread_sigmask(SIG_SETMASK, &omask, NULL); server.io_active_threads++; } /* We need to wait for the last thread to exit before we are able to * fork() in order to BGSAVE or BGREWRITEAOF. */ void waitEmptyIOJobsQueue(void) { while(1) { int io_processed_len; lockThreadedIO(); if (listLength(server.io_newjobs) == 0 && listLength(server.io_processing) == 0 && server.io_active_threads == 0) { unlockThreadedIO(); return; } /* While waiting for empty jobs queue condition we post-process some * finshed job, as I/O threads may be hanging trying to write against * the io_ready_pipe_write FD but there are so much pending jobs that * it's blocking. */ io_processed_len = listLength(server.io_processed); unlockThreadedIO(); if (io_processed_len) { vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read, (void*)0xdeadbeef,0); usleep(1000); /* 1 millisecond */ } else { usleep(10000); /* 10 milliseconds */ } } } void vmReopenSwapFile(void) { /* Note: we don't close the old one as we are in the child process * and don't want to mess at all with the original file object. */ server.vm_fp = fopen(server.vm_swap_file,"r+b"); if (server.vm_fp == NULL) { redisLog(REDIS_WARNING,"Can't re-open the VM swap file: %s. Exiting.", server.vm_swap_file); _exit(1); } server.vm_fd = fileno(server.vm_fp); } /* This function must be called while with threaded IO locked */ void queueIOJob(iojob *j) { redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n", (void*)j, j->type, (char*)j->key->ptr); listAddNodeTail(server.io_newjobs,j); if (server.io_active_threads < server.vm_max_threads) spawnIOThread(); } int vmSwapObjectThreaded(robj *key, robj *val, redisDb *db) { iojob *j; j = zmalloc(sizeof(*j)); j->type = REDIS_IOJOB_PREPARE_SWAP; j->db = db; j->key = key; incrRefCount(key); j->id = j->val = val; incrRefCount(val); j->canceled = 0; j->thread = (pthread_t) -1; val->storage = REDIS_VM_SWAPPING; lockThreadedIO(); queueIOJob(j); unlockThreadedIO(); return REDIS_OK; } /* ============ Virtual Memory - Blocking clients on missing keys =========== */ /* This function makes the clinet 'c' waiting for the key 'key' to be loaded. * If there is not already a job loading the key, it is craeted. * The key is added to the io_keys list in the client structure, and also * in the hash table mapping swapped keys to waiting clients, that is, * server.io_waited_keys. */ int waitForSwappedKey(redisClient *c, robj *key) { struct dictEntry *de; robj *o; list *l; /* If the key does not exist or is already in RAM we don't need to * block the client at all. */ de = dictFind(c->db->dict,key->ptr); if (de == NULL) return 0; o = dictGetEntryVal(de); if (o->storage == REDIS_VM_MEMORY) { return 0; } else if (o->storage == REDIS_VM_SWAPPING) { /* We were swapping the key, undo it! */ vmCancelThreadedIOJob(o); return 0; } /* OK: the key is either swapped, or being loaded just now. */ /* Add the key to the list of keys this client is waiting for. * This maps clients to keys they are waiting for. */ listAddNodeTail(c->io_keys,key); incrRefCount(key); /* Add the client to the swapped keys => clients waiting map. */ de = dictFind(c->db->io_keys,key); if (de == NULL) { int retval; /* For every key we take a list of clients blocked for it */ l = listCreate(); retval = dictAdd(c->db->io_keys,key,l); incrRefCount(key); redisAssert(retval == DICT_OK); } else { l = dictGetEntryVal(de); } listAddNodeTail(l,c); /* Are we already loading the key from disk? If not create a job */ if (o->storage == REDIS_VM_SWAPPED) { iojob *j; vmpointer *vp = (vmpointer*)o; o->storage = REDIS_VM_LOADING; j = zmalloc(sizeof(*j)); j->type = REDIS_IOJOB_LOAD; j->db = c->db; j->id = (robj*)vp; j->key = key; incrRefCount(key); j->page = vp->page; j->val = NULL; j->canceled = 0; j->thread = (pthread_t) -1; lockThreadedIO(); queueIOJob(j); unlockThreadedIO(); } return 1; } /* Preload keys for any command with first, last and step values for * the command keys prototype, as defined in the command table. */ void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { int j, last; if (cmd->vm_firstkey == 0) return; last = cmd->vm_lastkey; if (last < 0) last = argc+last; for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) { redisAssert(j < argc); waitForSwappedKey(c,argv[j]); } } /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands. * Note that the number of keys to preload is user-defined, so we need to * apply a sanity check against argc. */ void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { int i, num; REDIS_NOTUSED(cmd); num = atoi(argv[2]->ptr); if (num > (argc-3)) return; for (i = 0; i < num; i++) { waitForSwappedKey(c,argv[3+i]); } } /* Preload keys needed to execute the entire MULTI/EXEC block. * * This function is called by blockClientOnSwappedKeys when EXEC is issued, * and will block the client when any command requires a swapped out value. */ void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { int i, margc; struct redisCommand *mcmd; robj **margv; REDIS_NOTUSED(cmd); REDIS_NOTUSED(argc); REDIS_NOTUSED(argv); if (!(c->flags & REDIS_MULTI)) return; for (i = 0; i < c->mstate.count; i++) { mcmd = c->mstate.commands[i].cmd; margc = c->mstate.commands[i].argc; margv = c->mstate.commands[i].argv; if (mcmd->vm_preload_proc != NULL) { mcmd->vm_preload_proc(c,mcmd,margc,margv); } else { waitForMultipleSwappedKeys(c,mcmd,margc,margv); } } } /* Is this client attempting to run a command against swapped keys? * If so, block it ASAP, load the keys in background, then resume it. * * The important idea about this function is that it can fail! If keys will * still be swapped when the client is resumed, this key lookups will * just block loading keys from disk. In practical terms this should only * happen with SORT BY command or if there is a bug in this function. * * Return 1 if the client is marked as blocked, 0 if the client can * continue as the keys it is going to access appear to be in memory. */ int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) { if (cmd->vm_preload_proc != NULL) { cmd->vm_preload_proc(c,cmd,c->argc,c->argv); } else { waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv); } /* If the client was blocked for at least one key, mark it as blocked. */ if (listLength(c->io_keys)) { c->flags |= REDIS_IO_WAIT; aeDeleteFileEvent(server.el,c->fd,AE_READABLE); server.vm_blocked_clients++; return 1; } else { return 0; } } /* Remove the 'key' from the list of blocked keys for a given client. * * The function returns 1 when there are no longer blocking keys after * the current one was removed (and the client can be unblocked). */ int dontWaitForSwappedKey(redisClient *c, robj *key) { list *l; listNode *ln; listIter li; struct dictEntry *de; /* The key object might be destroyed when deleted from the c->io_keys * list (and the "key" argument is physically the same object as the * object inside the list), so we need to protect it. */ incrRefCount(key); /* Remove the key from the list of keys this client is waiting for. */ listRewind(c->io_keys,&li); while ((ln = listNext(&li)) != NULL) { if (equalStringObjects(ln->value,key)) { listDelNode(c->io_keys,ln); break; } } redisAssert(ln != NULL); /* Remove the client form the key => waiting clients map. */ de = dictFind(c->db->io_keys,key); redisAssert(de != NULL); l = dictGetEntryVal(de); ln = listSearchKey(l,c); redisAssert(ln != NULL); listDelNode(l,ln); if (listLength(l) == 0) dictDelete(c->db->io_keys,key); decrRefCount(key); return listLength(c->io_keys) == 0; } /* Every time we now a key was loaded back in memory, we handle clients * waiting for this key if any. */ void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) { struct dictEntry *de; list *l; listNode *ln; int len; de = dictFind(db->io_keys,key); if (!de) return; l = dictGetEntryVal(de); len = listLength(l); /* Note: we can't use something like while(listLength(l)) as the list * can be freed by the calling function when we remove the last element. */ while (len--) { ln = listFirst(l); redisClient *c = ln->value; if (dontWaitForSwappedKey(c,key)) { /* Put the client in the list of clients ready to go as we * loaded all the keys about it. */ listAddNodeTail(server.io_ready_clients,c); } } }