diff --git a/python/paddle/v2/framework/tests/test_mnist.py b/python/paddle/v2/framework/tests/test_mnist.py deleted file mode 100644 index c8d54b7c94b7815fa79e5a11f4e159657dc2a6cb..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_mnist.py +++ /dev/null @@ -1,257 +0,0 @@ -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator -import numpy -import paddle.v2 as paddle -exit( - 0 -) # FIXME(yuyang18): InferShape has been removed, this unittest should be changed until compile time is ready - -BATCH_SIZE = 100 - -scope = core.Scope() -place = core.CPUPlace() -# if you want to test GPU training, you can use gpu place -# place = core.GPUPlace(0) -dev_ctx = core.DeviceContext.create(place) - -init_net = core.Net.create() -forward_net = core.Net.create() -backward_net = None -optimize_net = core.Net.create() - - -def atomic_id(): - id = 0 - while True: - yield id - id += 1 - - -uniq_id = atomic_id().next - - -def data_layer(name, dims): - var = scope.var(name) - tensor = var.get_tensor() - tensor.set_dims(dims) # 1 is batch size holder. - return name - - -def feed_data(name, data): - assert isinstance(data, numpy.ndarray) - tensor = scope.find_var(name).get_tensor() - tensor.set_dims(data.shape) - if data.dtype == numpy.dtype("int32"): - tensor.alloc_int(place) - elif data.dtype == numpy.dtype("float32"): - tensor.alloc_float(place) - else: - raise ValueError("data type not supported") - tensor.set(data, place) - - -def grad_var_name(var_name): - return var_name + "@GRAD" - - -def sgd_optimizer(net, param_name, learning_rate=0.005): - grad_name = grad_var_name(param_name) - optimize_op = Operator( - "sgd", - param=param_name, - grad=grad_name, - param_out=param_name, - learning_rate=learning_rate) - net.append_op(optimize_op) - - -# should use operator and add these to the init_network -def init_param(net, param_name, dims): - scope.var(param_name) - op = Operator( - "uniform_random", Out=param_name, dims=dims, min=-0.5, max=0.5, seed=10) - op.infer_shape(scope) - net.append_op(op) - - -# fc_layer -def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): - """ - The fully connected layer. - - :param input: The name of input variable. - :type input: str - :param size: The size of fully connected layer. - :param act: The name of activation. - :param param: The attribute of learnable parameter which can be used to - modify initialization mean and std of the parameter. - :param bias: The attribute of bias. If set False, this layer does not have - a bias. - :param name: The name of this layer. If it is not set explictly, a name - will be generated automatically. - :return: The name of the output variable. - """ - - if name is None: - name = "fc_%d" % uniq_id() - if not isinstance(name, str): - raise ValueError("The name of a layer should be a string.") - - input_dims = scope.find_var(input).get_tensor().get_dims() - - w_name = param or name + ".w" - init_param(net=init_net, param_name=w_name, dims=[input_dims[1], size]) - sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01) - - pre_activation = name + ".mul.out" - scope.var(pre_activation) - mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation) - net.append_op(mul_op) - - # create bias variable if needed - if bias: - bias_name = name + ".b" - init_param(net=init_net, param_name=bias_name, dims=[size]) - sgd_optimizer( - net=optimize_net, param_name=bias_name, learning_rate=0.001) - bias_out = name + ".rowwise_add.out" - scope.var(bias_out) - rowwise_append_op = Operator( - "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out) - net.append_op(rowwise_append_op) - pre_activation = bias_out - - activation_op = Operator(act, X=pre_activation, Y=name) - net.append_op(activation_op) - scope.var(name) - net.infer_shape(scope) - return name - - -def cross_entropy_layer(net, input, label): - cost_name = "cross_entropy_%d" % uniq_id() - cross_entropy_op = Operator( - "cross_entropy", X=input, Label=label, Y=cost_name) - net.append_op(cross_entropy_op) - scope.var(cost_name) - net.infer_shape(scope) - return cost_name - - -def create_backward_net(forward_net): - net = core.Operator.backward(forward_net, set()) - for input in net.inputs()["all"]: - var = scope.var(input) - var.get_tensor() - for output in net.outputs()["all"]: - var = scope.var(output) - var.get_tensor() - return net - - -def debug_print_op(op): - print("===============" + op.type() + "==============") - print("***inputs:***") - for input in op.inputs()["all"]: - print input, scope.find_var(input).get_tensor().get_dims() - print("\n***outputs:***") - for output in op.outputs()["all"]: - print output, scope.find_var(output).get_tensor().get_dims() - print("") - print("") - - -def set_cost(cost): - cost_shape = numpy.array(scope.find_var(cost).get_tensor()).shape - cost_grad = \ - scope.find_var(grad_var_name(cost)).get_tensor() - cost_grad.set_dims(cost_shape) - cost_grad.alloc_float(place) - cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) - - -def get_cost_mean(cost): - cost_data = numpy.array(scope.find_var(cost).get_tensor()) - return cost_data.sum() / len(cost_data) - - -def error_rate(predict, label): - predict_var = numpy.array(scope.find_var(predict).get_tensor()).argmax( - axis=1) - label = numpy.array(scope.find_var(label).get_tensor()) - error_num = numpy.sum(predict_var != label) - return error_num / float(len(label)) - - -images = data_layer(name="pixel", dims=[BATCH_SIZE, 784]) -labels = data_layer(name="label", dims=[BATCH_SIZE, 1]) -fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid") -fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid") -predict = fc_layer(net=forward_net, input=fc2, size=10, act="softmax") -cost = cross_entropy_layer(net=forward_net, input=predict, label=labels) - -init_net.complete_add_op(True) -forward_net.complete_add_op(True) -backward_net = create_backward_net(forward_net) -optimize_net.complete_add_op(True) - -print(init_net) -print(forward_net) -print(backward_net) -print(optimize_net) - -debug_print_op(forward_net) -debug_print_op(backward_net) -debug_print_op(optimize_net) - -train_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.mnist.train(), buf_size=8192), - batch_size=BATCH_SIZE) - - -def test(cost_name): - test_reader = paddle.batch( - paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) - cost = [] - error = [] - for data in test_reader(): - image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") - label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") - label_data = numpy.expand_dims(label_data, axis=1) - feed_data(images, image_data) - feed_data(labels, label_data) - - forward_net.infer_shape(scope) - forward_net.run(scope, dev_ctx) - cost.append(get_cost_mean(cost_name)) - error.append(error_rate(predict, "label")) - print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( - sum(error) / float(len(error)))) - - -PASS_NUM = 1 - -init_net.run(scope, dev_ctx) -for pass_id in range(PASS_NUM): - batch_id = 0 - - for data in train_reader(): - image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") - label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") - label_data = numpy.expand_dims(label_data, axis=1) - feed_data(images, image_data) - feed_data(labels, label_data) - - forward_net.infer_shape(scope) - forward_net.run(scope, dev_ctx) - set_cost(cost) - backward_net.infer_shape(scope) - backward_net.run(scope, dev_ctx) - - optimize_net.run(scope, dev_ctx) - if batch_id % 100 == 0: - print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") - test(cost) - - batch_id = batch_id + 1