# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import random import numpy as np import os import shutil import paddle from paddle.fluid import core from datetime import timedelta import paddle.fluid.core as core from paddle.fluid.framework import _test_eager_guard from paddle.fluid.dygraph.parallel import ParallelEnv def init_process_group(strategy=None): nranks = ParallelEnv().nranks rank = ParallelEnv().local_rank is_master = True if rank == 0 else False store = paddle.fluid.core.TCPStore("127.0.0.1", 6173, is_master, nranks) pg_group = core.ProcessGroupCustom( store, rank, nranks, paddle.CustomPlace(ParallelEnv().device_type, ParallelEnv().device_id)) return pg_group class TestProcessGroupFp32(unittest.TestCase): def setUp(self): paddle.seed(2022) random.seed(2022) np.random.seed(2022) self.config() def config(self): self.dtype = "float32" self.shape = (2, 10, 5) def test_create_process_group_xccl(self): with _test_eager_guard(): paddle.set_device('custom_cpu:%d' % paddle.distributed.ParallelEnv().dev_id) pg = init_process_group() x = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) y = np.random.random(self.shape).astype(self.dtype) tensor_y = paddle.to_tensor(y) sum_result = tensor_x + tensor_y if pg.rank() == 0: task = pg.allreduce(tensor_x) task.wait() # assert np.array_equal(tensor_x, sum_result) else: task = pg.allreduce(tensor_y) task.wait() # assert np.array_equal(tensor_y, sum_result) print("test allreduce sum api ok") x = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) y = np.random.random(self.shape).astype(self.dtype) tensor_y = paddle.to_tensor(y) max_result = paddle.maximum(tensor_x, tensor_y) if pg.rank() == 0: task = pg.allreduce(tensor_x, core.ReduceOp.MAX) task.wait() # assert np.array_equal(tensor_x, max_result) else: task = pg.allreduce(tensor_y, core.ReduceOp.MAX) task.wait() # assert np.array_equal(tensor_y, max_result) print("test allreduce max api ok") # test broadcast # rank 0 x = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) # rank 1 y = np.random.random(self.shape).astype(self.dtype) tensor_y = paddle.to_tensor(y) broadcast_result = paddle.assign(tensor_x) if pg.rank() == 0: task = pg.broadcast(tensor_x, 0) task.synchronize() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) assert task.is_completed() # assert np.array_equal(broadcast_result, tensor_x) else: task = pg.broadcast(tensor_y, 0) task.synchronize() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) assert task.is_completed() # assert np.array_equal(broadcast_result, tensor_y) print("test broadcast api ok") # test barrier # rank 0 if pg.rank() == 0: task = pg.barrier() task.wait() # rank 1 else: task = pg.barrier() task.wait() print("test barrier api ok\n") return # test allgather # rank 0 x = np.random.random(self.shape).astype(self.dtype) y = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) tensor_y = paddle.to_tensor(y) out_shape = list(self.shape) out_shape[0] *= 2 out = np.random.random(out_shape).astype(self.dtype) tensor_out = paddle.to_tensor(out) if pg.rank() == 0: task = pg.all_gather(tensor_x, tensor_out) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) # rank 1 else: task = pg.all_gather(tensor_y, tensor_out) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2]) out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]) # assert np.array_equal(tensor_x, out_1) # assert np.array_equal(tensor_y, out_2) print("test allgather api ok\n") # test alltoall # rank 0 x = np.random.random(self.shape).astype(self.dtype) y = np.random.random(self.shape).astype(self.dtype) out1 = np.random.random(self.shape).astype(self.dtype) out2 = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) tensor_y = paddle.to_tensor(y) tensor_out1 = paddle.to_tensor(out1) tensor_out2 = paddle.to_tensor(out2) raw_tensor_x_2 = paddle.slice(tensor_x, [0], [self.shape[0] // 2], [self.shape[0]]) raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0], [self.shape[0] // 2]) if pg.rank() == 0: task = pg.alltoall(tensor_x, tensor_out1) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) # rank 1 else: task = pg.alltoall(tensor_y, tensor_out2) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) out1_2 = paddle.slice(tensor_out1, [0], [self.shape[0] // 2], [self.shape[0]]) out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2]) # if pg.rank() == 0: # assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy()) # else: # assert np.array_equal(out2_1, raw_tensor_x_2) print("test alltoall api ok\n") # test Reduce # rank 0 x = np.random.random(self.shape).astype(self.dtype) y = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) tensor_y = paddle.to_tensor(y) sum_result = tensor_x + tensor_y if pg.rank() == 0: task = pg.reduce(tensor_x, 0) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) # rank 1 else: task = pg.reduce(tensor_y, 0) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) # if pg.rank() == 0: # assert np.array_equal(tensor_x, sum_result) print("test reduce sum api ok\n") # test Scatter # rank 0 in_shape = list(self.shape) in_shape[0] *= 2 x = np.random.random(in_shape).astype(self.dtype) y = np.random.random(self.shape).astype(self.dtype) tensor_x = paddle.to_tensor(x) tensor_y = paddle.to_tensor(y) if pg.rank() == 0: task = pg.scatter(tensor_x, tensor_y, 0) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) # rank 1 else: task = pg.scatter(tensor_x, tensor_y, 0) task.wait() # paddle.fluid.core._custom_device_synchronize("custom_cpu", -1) out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]]) out2 = paddle.slice(tensor_x, [0], [self.shape[0]], [self.shape[0] * 2]) # if pg.rank() == 0: # assert np.array_equal(tensor_y, out1) # else: # assert np.array_equal(tensor_y, out2) print("test scatter api ok\n") if __name__ == "__main__": unittest.main()