/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { constexpr char kInputs[] = "inputs"; constexpr char kInitialStates[] = "initial_states"; constexpr char kParameters[] = "parameters"; constexpr char kOutputs[] = "outputs"; constexpr char kStepScopes[] = "step_scopes"; constexpr char kHasStates[] = "has_states"; constexpr char kExStates[] = "ex_states"; constexpr char kStates[] = "states"; constexpr char kStepBlock[] = "sub_block"; constexpr char kReverse[] = "reverse"; constexpr char kIsTrain[] = "is_train"; #define GRAD_SUFFIX "@GRAD" constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX; constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX; constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX; constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX; using StepScopeVar = std::vector; static void ClearStepScopes(const platform::DeviceContext &dev_ctx, framework::Scope *parent_scope, StepScopeVar *step_scopes) { if (step_scopes->empty()) return; dev_ctx.Wait(); for (auto *sub_scope : *step_scopes) { parent_scope->DeleteScope(sub_scope); } step_scopes->clear(); } // StepScopes manages scopes inside RNN. // StepScopes::CurScope() get the current scope // StepScopes::ExScope() get the ex-scope, or scope in previous time step. // StepScopes::Next() move to next time step. // // if is_train = False, then // there are two scopes for the RNN and just support forward. // else // the len(scopes) == seq_len // // if is_backward = True, then // reversely access scopes // else // access scopes from begin to end. class StepScopes { public: StepScopes(const platform::DeviceContext &dev_ctx, const framework::Scope &parent, StepScopeVar *scopes, bool is_train, size_t seq_len, bool is_backward = false) : counter_(is_backward ? seq_len - 1 : 0UL), scopes_(scopes), is_train_(is_train), is_backward_(is_backward) { size_t num_step_scopes = is_train ? seq_len : 2; PADDLE_ENFORCE(is_train || !is_backward, "Cannot backward when is not training"); if (!is_backward_) { ClearStepScopes(dev_ctx, const_cast(&parent), scopes); scopes->reserve(static_cast(num_step_scopes)); for (size_t i = 0; i < num_step_scopes; ++i) { scopes->emplace_back(&parent.NewScope()); } } } framework::Scope &CurScope() { return GetScope(counter_); } framework::Scope &ExScope() { auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1); return scope; } void Next() { if (is_backward_) { --counter_; } else { ++counter_; } } private: framework::Scope &GetScope(size_t scope_id) const { if (!is_train_) { scope_id %= 2; } PADDLE_ENFORCE_LT(scope_id, scopes_->size()); return *(*scopes_)[scope_id]; } size_t counter_; StepScopeVar *scopes_; bool is_train_; bool is_backward_; }; // Base class for RecurrentOp/RecurrentGradOp // Some common protected functions for RecurrentOp/RecurrentGradOp class RecurrentBase : public framework::OperatorBase { public: RecurrentBase(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} protected: // Get SequenceLength from Scope // The sequence length is got from input tensor. The input tensor's // dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape // is SEQ_LEN. The second of the tensor's shape could be the batch size or // nested sequence length. int64_t GetSequenceLength(const framework::Scope &scope) const { // Dim format SEQ_LEN, BATCH_SIZE, ... int64_t seq_len = -1; auto &all_inputs = Inputs(kInputs); PADDLE_ENFORCE(!all_inputs.empty()); for (auto &iname : all_inputs) { auto *var = scope.FindVar(iname); PADDLE_ENFORCE(var != nullptr); PADDLE_ENFORCE(var->IsType()); auto &dim = var->Get().dims(); if (seq_len == -1) { seq_len = dim[0]; } else { PADDLE_ENFORCE_EQ(seq_len, dim[0]); } } return seq_len; } // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), // map(dst_scope.Var, dst_vars)): // dst_tensor.ShareDataWith(src_tensor) static void LinkTensor(const framework::Scope &src_scope, const std::vector &src_vars, framework::Scope *dst_scope, const std::vector &dst_vars) { LinkTensorWithCallback( src_scope, src_vars, dst_scope, dst_vars, [&](const framework::Tensor &src, framework::Tensor *dst) { dst->ShareDataWith(src); }); } // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), // map(dst_scope.Var, dst_vars)): // callback(src_tensor, &dst_tensor) template static void LinkTensorWithCallback(const framework::Scope &src_scope, const std::vector &src_vars, framework::Scope *dst_scope, const std::vector &dst_vars, Callback callback, bool is_backward = false) { PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size()); for (size_t i = 0; i < dst_vars.size(); ++i) { VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i]; AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback, is_backward); } } // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), // map(dst_scope.FindVar, dst_vars)): // callback(src_tensor, &dst_tensor) template static void LinkTensorWithCallback(const framework::Scope &src_scope, const std::vector &src_vars, const framework::Scope &dst_scope, const std::vector &dst_vars, Callback callback, bool is_backward = false) { PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size()); for (size_t i = 0; i < dst_vars.size(); ++i) { VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i]; AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback, is_backward); } } // (seq_len, shape) -> return [seq_len] + list(shape) static framework::DDim PrependDims(size_t seq_len, const framework::DDim &src) { auto dims = framework::vectorize(src); dims.insert(dims.begin(), static_cast(seq_len)); return framework::make_ddim(dims); } private: template static void AccessTensor(const framework::Scope &src_scope, const std::string &src_var_name, framework::Scope *dst_scope, const std::string &dst_var_name, Callback callback, bool is_backward = false) { auto *src_var = src_scope.FindVar(src_var_name); if (is_backward && src_var == nullptr) { return; } PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name); auto &src_tensor = src_var->Get(); auto *dst_var = dst_scope->Var(dst_var_name); auto *dst_tensor = dst_var->GetMutable(); callback(src_tensor, dst_tensor); } template static void AccessTensor(const framework::Scope &src_scope, const std::string &src_var_name, const framework::Scope &dst_scope, const std::string &dst_var_name, Callback callback, bool is_backward = false) { auto *dst_var = dst_scope.FindVar(dst_var_name); if (is_backward && dst_var == nullptr) { return; } auto *src_var = src_scope.FindVar(src_var_name); PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name); auto &src_tensor = src_var->Get(); PADDLE_ENFORCE(dst_var != nullptr, "%s is not found.", dst_var_name); auto *dst_tensor = dst_var->GetMutable(); callback(src_tensor, dst_tensor); } }; class RecurrentOp : public RecurrentBase { public: RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : RecurrentBase(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &place) const override { bool has_state = Attr(kHasStates); auto seq_len = static_cast(this->GetSequenceLength(scope)); // get device context from pool platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(place); VLOG(3) << "Static RNN input sequence length = " << seq_len; StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len); auto reverse = Attr(kReverse); framework::Executor executor(place); auto *block = Attr(kStepBlock); auto *program = block->Program(); auto ctx = executor.Prepare( *program, block->ID(), std::vector() /*skip_ref_cnt_vars*/, true /*force_disable_gc*/); for (size_t i = 0; i < seq_len; ++i) { size_t seq_offset = reverse ? seq_len - i - 1 : i; VLOG(3) << "Recurrent operate at the time step " << seq_offset; auto &cur_scope = scopes.CurScope(); // Link outside::input --> inside::input // inside::input = outside::input[seq_offset: seq_offset+1] LinkTensorWithCallback( scope, Inputs(kInputs), &cur_scope, Inputs(kInputs), [&seq_offset](const framework::Tensor &outside, framework::Tensor *inside) { inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1)); auto dims = framework::vectorize(inside->dims()); dims.erase(dims.begin()); inside->Resize(framework::make_ddim(dims)); }); if (has_state) { if (i == 0) { // Link initial states --> ex_states LinkTensor(scope, Inputs(kInitialStates), &cur_scope, Attr>(kExStates)); } else { auto &ex_scope = scopes.ExScope(); // Link ex_scope::state --> cur_scope::ex_state LinkTensor(ex_scope, Attr>(kStates), &cur_scope, Attr>(kExStates)); } } // Every inputs are linked now, execute! executor.RunPreparedContext(ctx.get(), &cur_scope, false /*create_local_scope*/, true /*create_vars*/, true /* keep_kids */); // Copy inside::output -> outside::output // outside::output[seq_offset: seq_offset + 1] = inside::output this->LinkTensorWithCallback( cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs), [&](const framework::LoDTensor &src_tensor, framework::LoDTensor *dst_tensor) { if (i == 0) { // create output tensor at begin dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims())); dst_tensor->mutable_data(place, src_tensor.type()); } auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1); // Explicit copy output since the local RNN scope can be destroyed // early. framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out); }); scopes.Next(); } } private: StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx, const framework::Scope &scope, size_t seq_len) const { auto *var = scope.FindVar(Output(kStepScopes)); PADDLE_ENFORCE(var != nullptr); return StepScopes(dev_ctx, scope, var->GetMutable(), Attr(kIsTrain), seq_len); } }; class RecurrentGradOp : public RecurrentBase { public: RecurrentGradOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : RecurrentBase(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &place) const override { bool has_state = Attr(kHasStates); const size_t seq_len = static_cast(GetSequenceLength(scope)); // get device context from pool platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(place); StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len); auto reverse = Attr(kReverse); framework::Executor executor(place); auto *block = Attr(kStepBlock); auto *program = block->Program(); auto ctx = executor.Prepare( *program, block->ID(), std::vector() /*skip_ref_cnt_vars*/, true /*force_disable_gc*/); for (size_t step_id = 0; step_id < seq_len; ++step_id) { size_t seq_offset = reverse ? step_id : seq_len - step_id - 1; VLOG(3) << "Recurrent backward operate at the time step " << seq_offset; auto &cur_scope = scopes.CurScope(); // Link outside::output_grads --> inside::output_grads // inside::output_grad = outside::output_grad[seq_offset:seq_offset+1] LinkTensorWithCallback( scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads), [&](const framework::Tensor &outside, framework::Tensor *inside) { inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1)); auto dims = framework::vectorize(inside->dims()); dims.erase(dims.begin()); inside->Resize(framework::make_ddim(dims)); }, true /*is_backward*/); auto og_set = List2Set(Inputs(kOutputGrads)); if (VLOG_IS_ON(10)) { std::ostringstream sout; std::copy(og_set.begin(), og_set.end(), std::ostream_iterator(sout, ",")); VLOG(10) << " RNN output gradients = [" << sout.str() << "]"; } if (has_state) { // Link states // if cur_scope::cur_state_grad in out_grads: // cur_scope::cur_state_grad += ex_scope::ex_state_grad // else: // ex_scope::ex_state_grad --> cur_scope::cur_state_grad if (step_id != 0) { // not at beginning auto &ex_scope = scopes.ExScope(); auto ex_state_grads = GradVarLists(Attr>(kExStates)); auto cur_state_grads = GradVarLists(Attr>(kStates)); PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size()); for (size_t i = 0; i < ex_state_grads.size(); ++i) { auto &cur_grad = cur_state_grads[i]; auto &ex_grad = ex_state_grads[i]; auto &ex_tensor = ex_scope.FindVar(ex_grad)->Get(); VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad; auto *cur_grad_var = cur_scope.Var(cur_grad); auto cur_grad_tensor = cur_grad_var->GetMutable(); framework::TensorCopy(ex_tensor, place, dev_ctx, cur_grad_tensor); } } } VLOG(5) << "Recurrent memory linking finished "; // Run step block with cur_scope executor.RunPreparedContext(ctx.get(), &cur_scope, false /*create_local_scope*/, true /*create_vars*/, true /* keep_kids */); VLOG(5) << "executor.Run finished "; auto local_var_names = LocalVarNames(cur_scope); // Accumulate params // if (step == 0): // outside::param_grad = 0.0 // outside::param_grad += inside::param_grad { auto &pg_names = Outputs(kParamGrads); auto &p_names = Inputs(kParameters); PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size()); for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) { auto inside_grad_name = framework::GradVarName(p_names[param_id]); // If does not compute gradient of that variable inside rnn, just // continue if (local_var_names.find(inside_grad_name) == local_var_names.end()) { continue; } // zero gradient variable in step 0 if (step_id == 0) { auto &inside_tensor = cur_scope.FindVar(inside_grad_name) ->Get(); framework::AttributeMap attrs; attrs["dtype"] = inside_tensor.type(); attrs["shape"] = framework::vectorize2int(inside_tensor.dims()); attrs["value"] = 0.0f; auto zero_op = framework::OpRegistry::CreateOp( "fill_constant", framework::VariableNameMap{}, {{"Out", {pg_names[param_id]}}}, attrs); zero_op->Run(scope, place); } auto new_inside_name = cur_scope.Rename(inside_grad_name); // sum gradient auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_names[param_id], new_inside_name}}}, {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{{"use_mkldnn", {false}}}); sum_op->Run(cur_scope, place); cur_scope.Rename(new_inside_name, inside_grad_name); } } VLOG(5) << "Accumulate Parameter finished "; // Copy input gradient from inside to outside // outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad LinkTensorWithCallback( cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads), [&](const framework::LoDTensor &inside, framework::LoDTensor *outside) { if (inside.memory_size() == 0) { // IG is not created. return; } if (step_id == 0) { // alloc memory outside->Resize(PrependDims(seq_len, inside.dims())); outside->mutable_data(place, inside.type()); } auto dst = outside->Slice(seq_offset, seq_offset + 1); framework::TensorCopy(inside, place, dev_ctx, &dst); }, true /*is_backward*/); VLOG(5) << "Link outside gradient finished "; if (has_state) { if (step_id + 1 == seq_len) { // at_end // copy initialize states gradient from inside to outside LinkTensorWithCallback( cur_scope, GradVarLists(Attr>(kExStates)), scope, Outputs(kInitStateGrads), [&](const framework::LoDTensor &inside, framework::LoDTensor *outside) { outside->Resize(inside.dims()); outside->mutable_data(place, inside.type()); framework::TensorCopy(inside, place, dev_ctx, outside); }, true /*is_backward*/); VLOG(5) << "Link initialize state gradient finished "; } } scopes.Next(); } // Delete the scope of StepScopes auto *var = scope.FindVar(Input(kStepScopes)); PADDLE_ENFORCE(var != nullptr); auto *step_scopes = var->GetMutable(); ClearStepScopes(dev_ctx, const_cast(&scope), step_scopes); } private: StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx, const framework::Scope &scope, size_t seq_len) const { auto *var = scope.FindVar(Input(kStepScopes)); PADDLE_ENFORCE(var != nullptr); return StepScopes(dev_ctx, scope, var->GetMutable(), Attr(kIsTrain), seq_len, true /*is_backward*/); } std::unordered_set List2Set( const std::vector &list) const { std::unordered_set local_var_name_set; local_var_name_set.reserve(list.size()); for (auto &each : list) { local_var_name_set.insert(each); } return local_var_name_set; } std::unordered_set LocalVarNames( const framework::Scope &scope) const { return this->List2Set(scope.LocalVarNames()); } static std::vector GradVarLists( const std::vector &var_names) { std::vector retv; retv.reserve(var_names.size()); std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv), framework::GradVarName); return retv; } }; class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput(kInputs, "rnn inputs").AsDuplicable(); AddInput(kInitialStates, "rnn initial states").AsDuplicable(); AddInput(kParameters, "Parameters are used by step block as its input. However, the " "input is not a sequence tensor. Every time step, each operator " "in step block just use the parameter directly.") .AsDuplicable(); AddOutput(kOutputs, "The output sequence of RNN. The sequence length must be same.") .AsDuplicable(); AddOutput(kStepScopes, "StepScopes contain all local variables in each time step."); AddAttr(kHasStates, "Whether has states.").SetDefault(false); AddAttr>(kExStates, string::Sprintf( R"DOC(The ex-state variable names. The ex-state means the state value in the ex-timestep or the previous time step [%s, %s, %s] must be the same order)DOC", kExStates, kStates, kInitStateGrads)); AddAttr>( kStates, string::Sprintf( "The state variable names. [%s, %s, %s] must be the same order", kExStates, kStates, kInitStateGrads)); AddAttr(kStepBlock, "The step block inside RNN"); AddAttr(kReverse, R"DOC(Calculate RNN reversely or not. By default reverse=False Assume the input data is [A, B, C, D] if reverse is False: the computation of RNN is like A B C D | | | | v v v v rnn -----> rnn -----> rnn ----> rnn | | | | v v v v o o o o if reverse is True the computation of RNN is like A B C D | | | | v v v v rnn <----- rnn <----- rnn <---- rnn | | | | v v v v o o o o )DOC").SetDefault(false); AddAttr(kIsTrain, "").SetDefault(true); AddComment(R"DOC( Static Length Recurrent Operator. The static length recurrent operator can only operate on fixed size sequence data, i.e. in each mini-batch, the sequence length of all inputs are the same. )DOC"); } }; class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: virtual std::unique_ptr Apply() const { auto *grad = new framework::OpDesc(); grad->SetType("recurrent_grad"); for (auto &input_param : this->InputNames()) { grad->SetInput(input_param, this->Input(input_param)); grad->SetOutput(framework::GradVarName(input_param), this->InputGrad(input_param, false)); } for (auto &output_param : this->OutputNames()) { if (output_param == kStepScopes) { grad->SetInput(output_param, this->Output(output_param)); grad->SetInput(framework::GradVarName(output_param), this->Output(output_param)); } else { grad->SetInput(output_param, this->Output(output_param)); grad->SetInput(framework::GradVarName(output_param), this->OutputGrad(output_param)); } } grad->SetAttrMap(this->Attrs()); grad->SetBlockAttr(kStepBlock, grad_block_[0]); return std::unique_ptr(grad); } }; class RecurrentGradOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { std::vector output{kOutputs}; // In some case the kInitialStates is empty. // If the kInitialStates is empty, all the states should be empty. if (!ctx->HasInputs(kInitialStates)) { PADDLE_ENFORCE_EQ( ctx->Attrs().Get>(kExStates).size(), 0, "The Attr(%s) should be empty.", kExStates); PADDLE_ENFORCE_EQ( ctx->Attrs().Get>(kStates).size(), 0, "The Attr(%s) should be empty.", kStates); } PADDLE_ENFORCE(ctx->HasInputs(kInputs), "The input(%s) should not be empty.", kInputs); PADDLE_ENFORCE(ctx->HasInputs(kOutputs), "The input(%s) should not be empty.", kOutputs); // In some case the kInitialStates is empty. if (ctx->HasInputs(kInitialStates)) { PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInitialStates)), "The output of(%s) should not be empty.", framework::GradVarName(kInitialStates)); ctx->SetOutputsDim(framework::GradVarName(kInitialStates), ctx->GetInputsDim(kInitialStates)); } PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInputs)), "The output of(%s) should not be empty.", framework::GradVarName(kInputs)); ctx->SetOutputsDim(framework::GradVarName(kInputs), ctx->GetInputsDim(kInputs)); // In some case the kParameters is empty. if (ctx->HasInputs(kParameters)) { PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)), "The output of(%s) should not be empty.", framework::GradVarName(kParameters)); ctx->SetOutputsDim(framework::GradVarName(kParameters), ctx->GetInputsDim(kParameters)); } } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp, paddle::operators::RecurrentOpProtoMaker, paddle::operators::RecurrentGradOpDescMaker); REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp, paddle::operators::RecurrentGradOpShapeInference);