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Abstract

Object detection is one of the most important areas in
computer vision, which plays a key role in various prac-
tical scenarios. Due to limitation of hardware, it is often
necessary to sacrifice accuracy to ensure the infer speed of
the detector in practice. Therefore, the balance between ef-
fectiveness and efficiency of object detector must be con-
sidered. The goal of this paper is to implement an ob-
Jject detector with relatively balanced effectiveness and ef-
ficiency that can be directly applied in actual application
scenarios, rather than propose a novel detection model.
Considering that YOLOv3 has been widely used in prac-
tice, we develop a new object detector based on YOLOv3.
We mainly try to combine various existing tricks that al-
most not increase the number of model parameters and
FLOPs, to achieve the goal of improving the accuracy of
detector as much as possible while ensuring that the speed
is almost unchanged. Since all experiments in this pa-
per are conducted based on PaddlePaddle, we call it PP-
YOLO. By combining multiple tricks, PP-YOLO can achieve
a better balance between effectiveness (45.2% mAP) and
efficiency (72.9 FPS), surpassing the existing state-of-the-
art detectors such as EfficientDet and YOLOvV4. Source
code is at https://github.com/PaddlePaddle/
PaddleDetection.

1. Introduction

Object detection is an important yet challenging task.
In the past few years, thanks to the advance of deep con-
volutional neural network[18, 13], object detectors have
achieved remarkable performance[33, 21, 31, 32, 1, 22, 28,

In particular, one stage object detectors have a good bal-
ance between speed and accuracy, and have been widely
used in practice[27, 22, 30, 31, 32, 1]. YOLO series,
including YOLOv1[30], YOLOv2[31], YOLOvV3[32] and
YOLOV4[1], is one of the most famous series. Among
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Figure 1. Comparison of the proposed PP-YOLO and other state-
of-the-art object detectors. PP-YOLO runs faster than YOLOv4
and improves mAP from 43.5% to 45.2%.

them, the network structures of YOLO to YOLOv3 have
relatively large changes. YOLOvV4 considers various strate-
gies such as bag of freebies and bag of specials on the ba-
sis of YOLOv3, which greatly improves the performance of
the detector. This paper introduces an improved YOLOv3
model based on PaddlePaddle (PP-YOLO). A bunch of
tricks that almost not increase the infer time are added to
improve the overall performance of the model.

Unlike YOLOv4, we did not explore different backbone
networks and data augmentation methods, nor did we use
NAS to search for hyperparameters. For the backbone, we
directly use the most common ResNet[ 3] as the backbone
of PP-YOLO. For data augmentation, we directly used the
most basic MixUp [43]. One reason is that ResNet is used
more wildly, such that various deep learning frameworks
have deeply optimized for ResNet series, which will be
more convenient in actual deployment and will have better
infer speed in practical. Another reason is that the replace-
ment of backbone and data augmentation are relatively in-
dependent factors, almost irrelevant to the tricks discussed
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in this paper. Since there are already a lot of works to study
backbone network and to explore data augmentation, we do
not repeat them in this paper. Searching for hyperparame-
ters using NAS often consumes more computing power, so
there is usually no condition to use NAS to perform a hyper-
parameter search in each new scenario. Therefore, we still
use the manually set parameters following YOLOv3[32].
We believe that using a better backbone network, using
more effective data augmentation method and using NAS
to search for hyperparameters can further improve the per-
formance of PP-YOLO.

The focus of this paper is how to stack some effective
tricks that hardly affect efficiency to get better performance.
Many of these tricks cannot be directly applied to the net-
work structure of YOLOvV3, so small modification is re-
quired. Moreover, where to add tricks also needs care-
ful consideration and experiment. This paper is not in-
tended to introduce a novel object detecotor. It is more
like a recipe, which tell you how to build a better detec-
tor step by step. We have found some tricks that are ef-
fective for the YOLOv3 detector, which can save devel-
opers’ time of trial and error. The final PP-YOLO model
improves the mAP on COCO from 43.5% to 45.2% at a
speed faster than YOLOv4. The code and model is released
in the PaddleDetection code-base (https://github.
com/PaddlePaddle/PaddleDetection).

2. Related Work
Anchor-based methods are still the mainstream of object
detection [33, 21, 31,32, 1,22,28,9,45,2,5, 37, 20,4, 15],

which evolved from early proposal based detectors, such
as Fast R-CNN [11]. Their core idea is to introduce an-
chor boxes, which can be viewed as pre-defined propos-
als, as a priori for bounding box regression. It mainly
includes two branches: one-stage detectors and two-stage
detectors[24]. A large amount of one-stage detectors in-
cluding YOLOv2[31], YOLOvV3[32], YOLOv4[!], Reti-
naNet [22], RefineDet [44], EfficentDet [35], FreeAnchor
[45], and two-stage detectors including faster R-CNN [33]
FPN[21], Cascade R-CNNJ[2], Trident-Net[20] are pro-
posed to promote the growth of state-of-the-art perfor-
mance in object detection continuously. Besides, anchor-
free detectors have recently received more and more at-
tention. In the past two years, a large number of new
anchor-free methods have been proposed. The anchor-
free method actually has a long history. Earlier works
such as YOLOv1[30], DenseBox[14] and UnitBox[41] can
be considered as early anchor-free detectors. They can
be divided into two types. Anchor-point based detec-
tors perform object bounding box regression based on an-
chor points instead of anchor boxes, including FSAF [49],
FCOS[36], FoveaBox[17], SAPD[48]. Keypoint based de-
tectors reformulate the object detection as keypoints local-

ization problem, including CornerNet[!19], CenterNet[S],
ExtremeNet[47] and RepPoint[40]. Breaking the limitation
imposed by hand-craft anchors, anchor-free methods show
great potential for extreme object scales and aspect ratios
[16]. The performance of some recently proposed anchor-
free detectors can also compete with state-of-the-art anchor-
based detectors.

YOLO series detectors [30, 31, 32, 1] have been widely
used in practice, due to their excellent effectiveness and
efficiency. Until the writing of this paper, it has devel-
oped to YOLOv4[!]. YOLOv4 discusses a large number
of tricks including many “bag of freebies” which not in-
crease the infer time, and several “bag of specials” that in-
crease the inference cost by a small amount but can signif-
icantly improve the accuracy of object detection. YOLOv4
greatly improves the effectiveness and efficiency of the
YOLOV3[32]. This paper is also developed based on
YOLOV3 model and also explored a lot of tricks. Unlike
YOLOV4, we have not explored some widely studied parts
such as data augmentation and backbone. Many tricks we
discussed in this paper are different from YOLOV4 and the
detailed implementation of tricks is also different.

3. Method

An one-stage anchor-based detector is normally made
up of a backbone network, a detection neck, which is typ-
ically a feature pyramid network (FPN), and a detection
head for object classification and localization. They are
also common components in most of the one-stage anchor-
free detectors based on anchor-point. We first revise the de-
tail structure of YOLOv3 and introduce a modified version
which replace the backbone to ResNet50-vd-dcn, which is
used as the basic baseline in this paper. Then we introduce
a bunch of tricks which can improve the performance of
YOLOV3 almost without losing efficiency.

3.1. Architecture

Backbone The overall architecture of YOLOv3 is shown
in Fig. 2. In original YOLOvV3[32], DarkNet-53 is first
applied to extract feature maps at different scales. Since
ResNet[ 3] has been widely used and and has been stud-
ied more extensively, there are more different variants for
selection, and it has also been better optimized by deep
learning frameworks. SElCHcpEcCHCOHSinalbackioHe
DEENEESSRNNRESNCSOENRENOEO! Considering
directly replace DarkNet-53 with ResNet50-vd will hurt the
performance of YOLOvV3 detector. NiCHCHIECEISORCICONS

volutional layers in ResNet50-vd with deformable convo-
|NEGHENEYEES The effectiveness of Deformable Convolu-

tional Networks (DCN) has been verified in many detection
models. DCN itself will not significantly increase the num-
ber of parameters and FLOPs in the model, but in practical
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Figure 2. The network architecture of YOLOV3 and inject points for PP-YOLO. Activation layers are omitted for brevity. Details are

described in Section 3.1 and Section 3.2.

application, too many DCN layers will greatly increase in-
fer time.

ENESISEEEIDENS We denote this modified back-
bone as ResNet50-vd-den, and the output of stage 3, 4 and

5 as 03, 04, 05.

Detection Neck Then the FPN [21] is used to build an
feature pyramid with lateral connections between feature
maps. Feature maps C5, Cy, C5 are input to the FPN mod-
ule. We denote the output feature maps of pyramid level [
as P;, where [ = 3,4, 5 in our experiments. The resolution
of P, is % X g for an input image of size W x H. The
detail structure of FPN is shown in Fig. 2.

Detection Head The detection head of YOLOV3 is very
simple. It consists of two convolutional layers. A 3 x 3 con-
volutional followed by an 1 x 1 convolutional layer is adopt
to get the final predictions. The output channel of each fi-
nal prediction is 3(K + 5), FiCicHAlSumbeHoNclasses]
Each position on each final prediction map has been asso-
CENTTCEICTSRNNGHGES or cach anchoIiSHTS]

JECHRBSSISEaiel For classification and localization, cross en-
tropy loss and L1 loss is adopt correspondingly. An ob-
jectness loss [32] is applied to supervise objectness score,
which is used to identify whether is there an object or not.

3.2. Selection of Tricks

The various tricks we used in this paper are described
in this section. These tricks are all already existing, which
coming from different works [ 10, 1,42, 39,38, 25, 12]. This
paper does not propose an novel detection method, but just
focuses on combining the existing tricks to implement an
effective and efficient detector. Because many tricks can-
not be applied to YOLOv3 directly, we need to adjust them
according to the its structure.

Larger Batch Size Using a larger batch size can improve
the stability of training and get better results. Here we
change the training batch size from 64 to 192, and adjust
the training schedule and learning rate accordingly.

EMA When training a model, it is often beneficial to main-
tain moving averages of the trained parameters. Evaluations
that use averaged parameters sometimes produce signifi-
cantly better results than the final trained values [35]. The
Exponential Moving Average (EMA) compute the moving
averages of trained parameters using exponential decay. For
each parameter IV, we maintain an shadow parameter

Wema = \Wgapa+ (1 — X)W, (D

where A is the decay. We apply EMA with decay A\ of
0.9998 and use the shadow parameter W4 for evalua-
tion.

DropBlock [ 10] DropBlock is a form of structured dropout,


记忆中的我、
Underline
可变性卷积，DCN本身不会增加参数量，但在实际应用中，会增加推理时间。

记忆中的我、
Highlight
为了平衡效率和有效性，只在最后一个阶段使用DCN替换3x3卷积。

记忆中的我、
Highlight

记忆中的我、
Underline

记忆中的我、
Underline

记忆中的我、
Underline

记忆中的我、
Highlight


where units in a contiguous region of a feature map are
dropped together. D STCHCRNTCIOHSHANPEpERE
only apply DropBlock to the FPN, since we find that adding

DropBlock to the backbone will lead to a decrease of the
PEHGEaNesl The detailed inject points of the DropBlock

are marked by “triangles” in Figure 2.

IoU Loss [42] Bounding box regression is the crucial step in
object detection. In YOLOV3, L1 loss is adopted for bound-
ing box regression. It is not tailored to the mAP evaluation
metric, which is strongly rely on Intersection over Union
(IoU). IoU loss and other variations such as CloU loss and
GloU loss[46, 34] have been proposed to address this prob-
lem. Different from YOLOv4, we do not replace the L1-loss

with IoU loss directly, we add another branch to calculate
IGENGES We find that the improvements of various IoU loss

are similar, so we choose the most basic IoU loss [42].

IoU Aware [39] In YOLOV3, the classification probabil-
ity and objectness score is multiplied as the final detection
confidence, which do not consider the localization accu-
racy. To solve this problem, an IoU prediction branch is
added to measure the accuracy of localization. During train-
ing, IoU aware loss is adopt to training the IoU prediction
branch. During inference, the predicted IoU is multiplied
by the classification probability and objectiveness score to
compute the final detection confidence, which is more cor-
related with the localization accuracy. The final detection
confidence is then used as the input of the subsequent NMS.
IoU aware branch will add additional computational cost.
However, only 0.01% number of parameters and 0.0001%
FLOPs are added, which can be almost ignored.

Grid Sensitive[ | ] Grid Sensitive is an effective trick intro-
duced by YOLOv4. When we decode the coordinate of the
bounding box center x and y, in original YOLOV3, we can
get them by

r=s- (gx + U(p:r))a (2)
y=s-(gy +0(py)), 3)

where ¢ is the sigmoid function, g, and g, are integers and
s is a scale factor. Obviously, = and y cannot be exactly
equal to s - g or s - (g, + 1). This makes it difficult to
predict the centres of bounding boxes that just located on
the grid boundary. We can address this problem, by change
the equation to

:I,':S-(gz—‘,—a%f(px)—(a—l)/Q), “4)
y=s-(g9y+a-opy) —(a—1)/2), )
where « is set to 1.05 in this paper. This makes it easier for
the model to predict bounding box center exactly located on

the grid boundary. The FLOPs added by Grid Sensitive is
really small, and can be totally ignored.

Matrix NMS [38] Matrix NMS is motivated by Soft-NMS,
which decays the other detection scores as amonotonic de-

creasing function of their overlaps. However, such process
is sequential like traditional Greedy NMS and could not
be implemented in parallel. Matrix NMS views this pro-
cess from another perspective and implement it in a parallel
manner. Therefore, the Matrix NMS is faster than tradi-
tional NMS, which will not bring any loss of efficiency.

CoordConv [25] CoordConv, which works by giving con-
volution access to its own input coordinates through the use
of extra coordinate channels. CoordConv allows networks
to learn either complete translation invariance or varying
degrees of translation dependence. Considering that Coord-
Conv will add two inputs channels to the convolution layer,
some parameters and FLOPs will be added. [iiSideilioles

IAyETSECHORIEAANIICO0IAEORW The detailed in-

ject points of the CoordConv are marked by ”diamonds” in
Figure 2.

SPP [12] The Spatial Pyramid Pooling (SPP) is first pro-
posed by He et al[12]. SPP integrates SPM into CNN
and use max-pooling operation instead of bag-of-word op-
eration. YOLOvV4 apply SPP module by concatenating
max-pooling outputs with kernel size k x k, where k =
{1,5,9,13}, and stride equals to 1. Under this design, a
relatively large k£ x k max-pooling effectively increase the
receptive field of backbone featurcjildeiallNCISRRIGHIF

applied on the top feature map as shown in Figure 2 with
ISEEEEE No parameter are introduced by SPP itself, but

the number of input channel of the following convolutional
layer will increase. So around 2% additional papameters
and 1% extra FLOPs are introduced.

Better Pretrain Model Using a pretrain model with higher
classification accuracy on ImageNet may result in better de-
tection performance. Here we use the distilled ResNet50-vd
model as the pretrain model [29] . This obviously does not
affect the efficiency of the detector.

4. Experiment

In this section, we present the effectiveness of differ-
ent tricks. Experiments were carried out on the bounding
box detection track of the COCO dataset [23]. Following
the common practice [32, 35, 1], we use trainval35k
split for training, which contains ~118% images, minival
split (5%) for validation and ablation study, and test-dev
split(~20k) for testing.

4.1. Implementation Details

We use ResNet50-vd-den[ 13] as the backbone networks
unless specified. The architecture of FPN and head in our
basic models is completely the same as YOLOv3[32]. The
details have been presented in section 3.1. We initialize
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| Methods | mAP(%) | Parameters | GFLOPs | infer time | FPS
A | Darknet53 YOLOV3 [389  [590.3M [ 6552 | 172ms | 582
B | ResNet50-vd-dcn YOLOvV3 39.1 43.89 M 44.71 12.6 ms 79.2
C | B+LB + EMA + DropBlock | 41.4 43.89 M 44,71 12.6 ms 79.2
D | C+1IoU Loss 41.9 43.89 M 44.71 12.6 ms 79.2
E | D + Iou Aware 42.5 43.90 M 44.71 13.3 ms 74.9
F | E + Grid Sensitive 42.8 43.90 M 44.71 13.4 ms 74.8
G | F+ Matrix NMS 43.5 4390 M 44.71 13.4 ms 74.8
H | G + CoordConv 44.0 4393 M 44.76 13.5ms 74.1
1 H + SPP 44.3 4493 M 45.12 13.7 ms 72.9
J | I+ Better ImageNet Pretrain | 44.6 4493 M 45.12 13.7 ms 72.9

Table 1. The ablation study of tricks on the MS-COCO minival split.

our detectors following common practice. Specifically, our
backbone networks are initialized with the weights pre-
trained on ImageNet[7]. For the FPN and detection heads,
we initialize them randomly as same as in YOLOv3[32].
For the baseline model (A, B), The training schedule is as
same as YOLOV3. Under larger batch size setting, the entire
network is trained with stochastic gradient descent (SGD)
for 250K iterations with the initial learning rate being 0.01
and a minibatch of 192 images distributed on 8 GPUs. The
learning rate is divided by 10 at iteration 150K and 200K,
respectively. Weight decay is set as 0.0005, and momentum
is set as 0.9. Multi-scale training from 320 to 608 pixels is
applied. MixUp[43] is adopted for data augmentation.

4.2. Ablation Study

In this section, we present the effectiveness of each mod-
ule in an incremental manner. The reason is that each trick is
not completely independent. Some tricks are effective when
applied alone, but they are not effective when combined to-
gether. Since there are too many combinations of various
tricks, it is difficult to conduct a comprehensive analysis.
Therefore, we show how to improve the performance of
the object detector step by step in the order of our explo-
ration and discovering the effectiveness of tricks. Results
are shown in Table 1, where infer time and FPS do not con-
sider the influence of NMS following YOLOv4[1].

A — B First of all, we try to build a basic version of PP-
YOLO. Because the ResNet[ | 3] series is more widely used,
we first replace the original YOLOvV3 backbone Darknet53
with ResNet50-vd. However, we found that it will cause
a significant decrease in mAP. Considering that the number
of parameters and FLOPs of ResNet50-vd are much smaller
than those of Darknet53, we replace the 3 x 3 convolutional
layer in the last stage of ResNet with deformable convolu-
tion layer[6]. In this way, we get a basic PP-YOLO model
(B) with a mAP of 39.1%, which is slightly higher than the
original YOLOV3 (A), but its parameters, FLOPs and infer
time are much smaller than the original YOLOv3 model.

B — C We first try to optimize the training strategy. We use

a larger batch size and EMA to improve the stability of the
model, and also apply DropBlock to prevent the model from
overfitting. After using these strategies, the mAP of model
(C) increases to 41.4% without any loss of efficiency.

C — F Next, we consider modifying the YOLO loss to im-
prove the effectiveness of the model, because modifying the
loss generally only has an impact on the training process,
and will not or rarely affect the infer time. We add IoU
Loss (D), IoU Aware (E) and Grid Sensitive (F) modules,
and increase the mAP by 0.5%, 0.6% and 0.3% respec-
tively. Among them, IoU loss will not affect the number
of parameters and the infer time at all. IoU Aware and Grid
Sensitive will increase the post-processing time by 0.7ms
and 0.1ms, since the current implementation is not efficient
enough, which can be greatly reduced by merging them as
a single OP in PaddlePaddle in the future. On the whole,
we have increased the mAP of PP-YOLO from 41.4% to
42.8%.

F — G Post-processing is also a place where we can im-
prove the performance. We use Matrix NMS (G) to replace
traditional greedy NMS. We can see that the mAP has im-
proved by 0.6%. Since the infer time in Table 1 does not
consider NMS, so the influence is not shown here. In fact,
the overall infer time is decreased since the efficiency of
MatrixNMS is higher than traditional NMS.

G — IIt has become difficult to continue to improve mAP
without increasing the number of parameters and FLOPs.
So we considered two methods that only increase a few
parameters and FLOPs but can bring effective improve-
ments, CoordConv (H) and SPP (I). CoordConv will cause
the input channel of convolutional layers increase by 2,
the number of parameters increases by 0.03M, and FLOPs
increases by 0.05G, which is very small compared to the
whole model. It can bring an improvement of 0.5% mAP.
SPP itself does not increase the parameters, but it will in-
crease the input channel of the convolutional layer just fol-
lowing it, resulting in an increase of the parameters by 1M
and FLOPs by 0.36G. It can improve the mAP of PP-YOLO



Method Backbone Size wio ’[Flf’l? (Vv}fiot(l)l) TRT AP AP5qg  APy5 APg APy, APy,
RetinaNet [22] ResNet-50 640 37 - 37.0% - - - - -
RetinaNet [22] ResNet-101 640 29.4 - 37.9% - - - - -
RetinaNet [22] ResNet-50 1024 19.6 - 40.1% - - - - -
RetinaNet [22] ResNet-101 1024 15.4 - 41.1% - - - - -
EfficientDet-DO [35] Efficient-BO 512 98.0% - 338% 522% 358% 12.0% 383% 51.2%
EfficientDet-D1 [35] Efficient-B1 640 74.1F - 39.6% 58.6% 423% 179% 443% 56.0%
EfficientDet-D2 [35] Efficient-B2 768 56.5% - 43.0% 623% 462% 22.5% 47.0% 58.4%
EfficientDet-D2 [35] Efficient-B3 896 34.5% - 458% 65.0% 493% 26.6% 49.4% 59.8%
RFBNet[3] HarDNet68 512 41.5 - 33.9% 543% 362% 14.7% 36.6% 50.5%
RFBNet[3] HarDNet85 512 37.1 - 36.8% 57.1% 39.5% 169% 40.5% 52.9%
YOLOvV3 + ASFF* [26] | Darknet-53 320 60 - 381% 574% 42.1% 16.1% 41.6% 53.6%
YOLOV3 + ASFF* [26] | Darknet-53 416 54 - 40.6% 60.6% 451% 20.3% 442% 54.1%
YOLOV3 + ASFF* [26] | Darknet-53 608 45.5 - 42.4% 63.0% 474% 255% 457% 52.3%
YOLOV3 + ASFF* [26] | Darknet-53 800 29.4 - 439% 64.1% 492% 27.0% 46.6% 53.4%
YOLOv4 [1] CSPDarknet-53 416 96 164.0* 41.2% 62.8% 443% 204% 444% 56.0%
YOLOV4 [1] CSPDarknet-53 512 83 138.4* 43.0% 64.9% 46.5% 243% 46.1% 552%
YOLOV4 [1] CSPDarknet-53 608 62 105.5* 435% 657% 473% 26.7% 46.7% 53.3%
PP-YOLO ResNet50-vd-den | 320 132.2 242.2 393% 593% 427% 16.7% 41.4% 57.8%
PP-YOLO ResNet50-vd-den | 416 109.6 215.4 42.5% 62.8% 46.5% 212% 452% 582%
PP-YOLO ResNet50-vd-den | 512 89.9 188.4 444% 64.6% 488% 24.4% 47.1% 58.2%
PP-YOLO ResNet50-vd-den | 608 72.9 155.6 452% 652% 499% 263% 47.8% 57.2%

Table 2. Comparison of the speed and accuracy of different object detectors on the MS-COCO (test-dev 2017). We compare the results with
batch size = 1, without tensorRT (w/o TRT) or with tensorRT(with TRT). Results marked by 4 are updated results from the corresponding

official code base, which are higher than the results in original paper. Results marked by

993499

are test in our environment using official code

and model, which are slightly higher than results reported in official code-base.

by 0.3% further. After adding these two modules, the infer
time has increased by 0.3ms.

I — J Replacing the pre-trained model is a very common
approach. However, the accuracy of pretrained classifica-
tion model is higher does not mean that the final detection
model is more effective, and the degree of improvement will
be affected by the tricks we used. So we consider it at the
end. For fair comparisons, we still use ImageNet for pre-
training. We use a distilled ResNet50-vd model for back-
bone initialization. The mAP of PP-YOLO can be further
improved by 0.3%. In fact, using other detection datasets
for pre-training can greatly improve the performance of the
model, but this is beyond the scope of this paper.

4.3. Comparison with Other State-of-the-Art De-
tectors

Comparison of the results on MS-COCO test split with
other state-of-the-art object detectors are shown in Figure
1 and Table 2. The FPS results of PP-YOLO and other
methods are all tested on V100 with batch size = 1. We
considered two different test conditions, without tensorRT
(w/o TRT) and with tensorRT (with TRT). The test methods
are consistent with YOLOv4[]. Results marked by "+ are
updated results from the corresponding official code-base,
which are higher than the results in original paper, Results
marked by ”*” are test in our environment using official
code and model, which are slightly higher than results re-

ported in official code-base.

Compared with other state-of-the-art methods, our PP-
YOLO has certain advantages in speed and accuracy. For
example, compared with YOLOv4, our PPYOLO can in-
creased the mAP on COCO from 43.5% to 45.2% with FPS
improved from 62 to 72.9. It is worth noticing that tensorRT
accelerates the PP-YOLO model more obviously. The rel-
ative improvement of PP-YOLO (around 100%) is larger
than YOLOv4(around 70%). We speculate that it is mainly
because tensorRT optimizes for ResNet model better than
Darknet.

In addition, we can get a series of PP-YOLO results by
changing the input size of the image. Here we also show
the results for 320, 416, 512 and 608 input sizes. Figure 1
shows that PP-YOLO results have advantages in the balance
of speed and accuracy compared with other detectors.

5. Conclusions

This paper introduce a new implementation of object
detector based on PaddlePaddle, called PP-YOLO. PP-
YOLO is faster (FPS) and more accurate(COCO mAP) than
other state-of-the-art detectors, such as EfficientDet and
YOLOvV4. In this paper, we explore a lot of tricks and
show how to combine these tricks on the YOLOV3 detec-
tor and demonstrate their effectiveness. We hope this paper
can help developers and researchers save exploration time
and get better performance in practical applications.
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