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ABSTRACT
Although deep convolution neural networks (DCNN) have achieved
excellent performance in human pose estimation, these networks
often have a large number of parameters and computations, leading
to the slow inference speed. For this issue, an effective solution
is knowledge distillation, which transfers knowledge from a large
pre-trained network (teacher) to a small network (student). How-
ever, there are some defects in the existing approaches: (I) Only a
single teacher is adopted, neglecting the potential that a student
can learn from multiple teachers. (II) The human segmentation
mask can be regarded as additional prior information to restrict the
location of keypoints, which is never utilized. (III) A student with
a small number of parameters cannot fully imitate heatmaps pro-
vided by datasets and teachers. (IV) There exists noise in heatmaps
generated by teachers, which causes model degradation. To over-
come these defects, we propose an orderly dual-teacher knowledge
distillation (ODKD) framework, which consists of two teachers
with different capabilities. Specifically, the weaker one (primary
teacher, PT) is used to teach keypoints information, the stronger
one (senior teacher, ST) is utilized to transfer segmentation and
keypoints information by adding the human segmentation mask.
Taking dual-teacher together, an orderly learning strategy is pro-
posed to promote knowledge absorbability. Moreover, we employ a
binarization operation which further improves the learning ability
of the student and reduces noise in heatmaps. Experimental results
on COCO and OCHuman keypoints datasets show that our pro-
posed ODKD can improve the performance of different lightweight
models by a large margin, and HRNet-W16 equipped with ODKD
achieves state-of-the-art performance for lightweight human pose
estimation.

KEYWORDS
Human pose estimation, knowledge distillation, prior information,
binarization operation

1 INTRODUCTION
Human pose estimation aims at locating the human keypoints in the
input images. As a fundamental computer vision task, it has been
applied in many areas such as human action recognition, virtual
reality and smart surveillance.

With the development of DCNN [2, 6, 13, 19, 26, 28], human pose
estimation has achieved significant improvements. On the challeng-
ing COCO benchmark [15], these networks consistently achieve top
accuracy. However, the performance improvements always come
with the cost of increasing the amount of parameters and compu-
tations, which leads to poor practicabilities on embedded devices
such as smart phones and robots, like high memory requirements

Figure 1: The process of introducing prior information.

and slow inference speed. Li et al. [14] successfully constructed an
in-home lower body rehabilitation system based on lightweight
HRNet which makes the lightweight models receive more atten-
tion. Therefore, how to make a trade-off between performance and
efficiency has become a crucial problem.

There have been some attempts to address the above problem.
On the basis of the large models [3, 26, 28], recent works [14, 20, 34]
employed few stages or small backbones to achieve model compres-
sion. Although these models achieve a faster inference speed, their
performance has a dramatic drop. Among the model compression
approaches, knowledge distillation shows great superiority, which
is to transfer knowledge of a large teacher model to a small student
model. And a current work [32] has employed the student-teacher
strategy to improve the performance and speed of the a student
model. However, we observe that this method suffers from several
problems: (I) Only a single teacher is used in the overall process,
neglecting that multiple teachers can provide more privileged infor-
mation for a student. (II) As a detection task, human pose estimation
consists of two subtasks: the classification task (identifying the key-
points) and the regression task (locating the keypoints). It is difficult
for large models to achieve high detection accuracy and more diffi-
cult for small lightweight models. Meanwhile, lightweight models
are obtained by using some operations such as fewer stages and
channels, which further causes inefficient heatmaps learning. (III)
Ideally, in heatmaps generated by a human pose estimation model,
there is only a peak with maximum response corresponding to the
position of keypoints. However, multiple peaks usually appear in
heatmaps, as pointed out in DARK [31]. Among them, only a peak
is what we need to approximate and imitate. Redundant peaks can
be deemed noise, which provides the wrong learning signal for
a student model and causes the degeneration of a student model.
Moreover, the existing human pose estimation models suffer from
a common issue: in crowded scenarios, keypoints of one person are
easily located on the body of another person, which severely affects
the final performance. As available and extra prior information,
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as shown in Figure 1, the human segmentation mask can provide
valuable context cues to help restrict the position of keypoints,
however, which is ignored.

To solve the above problems, we propose a new learning frame-
work called orderly dual-teacher knowledge distillation (ODKD),
which introduces two teachers with different capabilities. Specifi-
cally, the weaker one (primary teacher, PT) transfers keypoints in-
formation to a student, the stronger one (senior teacher, ST) teaches
segmentation and keypoints information. These two teachers have
slightly different inputs and network structures. Besides, as shown
in TAKD [17], a student network performance degrades when the
gap between a student and teacher is large. Considering that a
similar situation also exists in our method, so we adopt the same
strategy in TAKD where PT serves as a teacher assistant to bridge
the gap between a student and ST.

Dual-teacher is employed in our proposed ODKD framework, a
natural question to ask is: could we adopt more teachers to provide
a student with more learning signals? In this paper, we mainly
consider the following two aspects. Our proposed dual-teacher has
different assignments where one teaches keypoints information, the
other transfers segmentation and keypoints information. Adding
additional teachers does not introduce new information. Besides,
taking a dual-teacher is a compromise between performance and
efficiency. The more teachers are, the better the performance may
be but the longer the training time is. And we focus on exploring
the knowledge distillation framework, rather than designing light-
weight network structures. Therefore, we utilize two teachers in
the final framework.

In a real-world scenario, when a small student network is asked
to learn from two large teacher networks with different capabilities,
a straightforward method is to learn from dual-teacher simultane-
ously. However, when facing two learning signals, the student is
confused about which teacher it should learn from, and yielding
a suboptimal result. From the perspective of human cognition, a
more realistic and reasonable solution is multi-step learning. In
theory, multi-step learning can stimulate more efficient learning
of a student network. To this end, we propose an orderly learning
strategy where the student learns from ST and PT successively so
that knowledge from two aspects can be fully absorbed. To further
improve the learning efficiency of a student network and reduce
noise in heatmaps generated by teachers, we employ a binarization
operation in [5] by which the student network only needs to classify
each pixel in heatmaps as 0 or 1. And an appropriate binarization
threshold can erase extra peaks, which avoids ineffective learning
and model degeneration.

The purpose of adopting binarization operation in this paper
is different from [5]. In [5], the binarization operation is utilized
to convert the task so that Focal Loss can be used to address the
class imbalance problem in human pose estimation. However, we
employ a binarization operation to simplify the learning task and
reduce noise.

To demonstrate the effectiveness and extensibility of our pro-
posed ODKD framework, we conduct a series of experiments on
two keypoints datasets, COCO [15] and OCHuman [33]. Experimen-
tal results show that ODKD can promote the existing lightweight
human pose estimation models by a large margin.

The contributions of this paper are summarized as follows:

• In contrast to the existing works focusing on improving the
performance of human pose estimation models, we pay more
attention to the model efficiency. To this end, we propose
an orderly dual-teacher knowledge distillation framework
(ODKD) for human pose estimation, which integrates an
orderly dual-teacher and the human segmentation mask.
The proposed ODKD framework serves as a model-agnostic
approach and can be applied to most of lightweight human
pose estimation models.

• We adopt a binarization operation to convert the regression
task to the classification task, and the task after binarization
is simpler than the original task.

• We verify the effectiveness and extensibility of ODKD on
different benchmark datasets, COCO and OCHuman with
different baseline models. And HRNet-W16 equipped with
ODKD achieves state-of-the-art performance for lightweight
human pose estimation.

2 RELATEDWORK
2.1 Lightweight Human Pose Estimation
There have been some works to compress the human pose estima-
tion models. Based on OpenPose [3], Daniil et al. [20] proposed
a lightweight OpenPose network where the heavy computational
backbone VGG [24] was replaced by the simple and effective Mo-
bileNet [11], and 7 × 7 convolutions were replaced by lots of 3 × 3
convolutions. Although its inference speed becomes faster, there
is a significant performance gap between the model and the cur-
rent mainstream models. Umer et al. [23] constructed an efficient
convolutional network to accelerate inference without conduct-
ing quantitative experiments on model efficiency. Bulat et al. [1]
employed the neural network binarization to achieve model com-
pression. Zhang et al. [34] proposed a lightweight pose network
(LPN), which was equipped with the depthwise separable convolu-
tion and iterative training strategy. However, this iterative training
strategy takes more than triple the training time of the original
training strategy. Li et al. [14] proposed a lightweight HRNet which
integrated the attention mechanism with Efficient Spatial Pyramid
(ESP) [16].

2.2 Knowledge Distillation
Knowledge distillation has been successfully applied to many com-
puter vision tasks, such as image classification [12, 17, 25, 27, 29], ob-
ject detection [4, 8], pose estimation [32, 35], etc. Chen et al. [4] em-
ployed knowledge distillation to learn compact object detection net-
works and proposed several loss functions to improve the efficiency
of knowledge transfer. Dai et al. [8] proposed a general instance
distillation for object detection where feature-based, relation-based
and response-based knowledge was considered. Zhao et al. [35]
employed a knowledge framework to solve the occlusion prob-
lem in human pose estimation. Zhang et al. [32] expanded the
lightweight human pose estimation network by introducing knowl-
edge distillation, but the approach only employed a single teacher,
neglecting that multiple teachers can provide more valuable infor-
mation. Mirzadeh et al. [17] introduced a distillation framework
called Teacher Assistant Knowledge Distillation (TAKD), where
an intermediate-sized network (teacher assistant) was adopted to
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bridge the gap between the student and the teacher. Song et al. [25]
proposed a densely guided knowledge distillation (DGKD) to elim-
inate the error avalanche problem in TAKD. The main difference
between our method and TAKD and DGKD can be summarized
as follows: (I) Our method employs dual-teacher to teach different
information, while TAKD and DGKD apply multiple teachers to
teach the same information. (II) Although our method is inspired
by DGKD, there is some difference between them. When distill-
ing the student model, our method employs an orderly learning
strategy, while DGKD utilizes multiple teachers to teach a student
simultaneously. Crucially, our method can be seen as an extension
of existing knowledge distillation methods.

3 APPROACH
3.1 Background
The key to knowledge distillation is to let a small network (student)
imitate not only the output of a large network (teacher), but also
true labels of datasets. Let 𝑙𝑠 and 𝑙𝑡 be the logits of the student and
teacher, respectively. T is a temperature parameter to soften the
output of the student and teacher. 𝑦𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑙𝑠/𝑇 ) and 𝑦𝑡 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑙𝑡/𝑇 ) are the soften outputs of the student and teacher,
respectively. To encourage the student to mimic the output of the
teacher, a KL-divergence loss 𝐿𝐾𝐷 can be minimized as follows:

𝐿𝐾𝐷 = 𝑇 2𝐾𝐿(𝑦𝑠 , 𝑦𝑡 ) (1)

To minimize the gap between the output of the student model
softmax(𝑙𝑠 ) and true labels 𝑙 of datasets, the cross-entropy loss 𝐿𝐶𝐸
can be penalized as follows:

𝐿𝐶𝐸 = 𝐹 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑙𝑠 ), 𝑙) (2)

Finally, the overall loss function can be denoted by adding a balance
factor 𝛼 as follows:

𝐿 = (1 − 𝛼)𝐿𝐶𝐸 + 𝛼𝐿𝐾𝐷 (3)

3.2 ODKD Framework
As illustrated in Figure 2, our proposed orderly dual-teacher knowl-
edge distillation (ODKD) framework consists of two large teacher
networks with different capabilities: primary teacher (PT) and se-
nior teacher (ST). The final target is to transfer knowledge of PT
and ST to a lightweight student network. We adopt a binarization
operation and two different loss functions. In this section, we firstly
elaborate on the implementation process of an orderly dual-teacher.
Secondly, we describe the details of a binarization operation. Finally,
we give loss functions used in the overall process.

Orderly dual-teacher. There are three differences between PT
and ST. The first is the input of networks. The input of PT is a
three-channel RGB image, while the input of ST is generated by
concatenating a three-channel RGB image and one-channel hu-
man segmentation mask. The second is slightly different network
structures. PT is a common human pose estimation model, such as
SimpleBaseline [28], while ST is the variant of PT where we add
an 1 × 1 convolution at the head of ST to transform the number
of channels from 4 to 3. The third is different capabilities. PT is
used to teach keypoints information, but ST is used to transfer
segmentation and keypoints information. There is some difference
between a lightweight student and PT. For example, a student model

Student

Primary Teacher

Step.4: MSE loss

Senior Teacher

lst lpt

ls

Figure 2: Illustration of ourmethod.We adopt two loss func-
tions: MSE loss and cross-entropy loss. 𝛽-Binarization de-
notes the binarization operation with a factor 𝛽 .

employs fewer channels or stages than PT, which leads to a large
performance gap between them. With the guidance of the human
segmentation mask, ST is more powerful than PT, which further
widens the gap between a student and ST. To solve the problem,
as shown in Step 4 of Figure 2, we add a path where PT serves
as a teacher assistant to bridge the gap between a student and ST.
During training, we firstly pre-train ST by imitating true labels
of datasets. Then PT is obtained by mimicking labels provided by
datasets and ST. After these, an orderly learning strategy is utilized
where a student learns from ST and PT successively, as shown in
Steps 6 and 7 of Figure 2. At test time, only a student is employed.

Binarization operation. The binarization operation aims to
simplify the learning task and reduce noise in heatmaps generated
by teachers. As shown in Figure 3(a), the heatmap predicted by
teacher models almost exhibits a 2D Gaussian distribution structure
where each pixel of the heatmap ranges from 0 to 1. It is very difficult
for a lightweight student model to approximate the distribution. A
straightforward solution is to convert the difficult task to a simple
task. Moreover, multiple peaks appear in heatmaps generated by
teachers and redundant peaks can be regarded as noise, which
provides a worthless learning signal for a student. To solve the
above problems, as shown in Figure 2, we employ a binarization
operation during obtaining a lightweight student model, which can
be denoted as follows with a threshold 𝛽 :

𝐶 (𝑦) =
{
1 𝑖 𝑓 𝐻 (𝑦) > 𝛽,

0 𝑖 𝑓 𝐻 (𝑦) ≤ 𝛽,
(4)

where 𝐻 (𝑦) is the value of the heatmap at location 𝑦 and 𝐶 (𝑦)
is the class of pixel at location 𝑦. For the ground-truth heatmaps,
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(a) Heatmap predicted by teachers

(b) Heatmap after a binarization operation

Figure 3: Illustration of a binarization operation. (a) Pre-
dicted Heatmap. (b) Heatmap representation after a bina-
rization operation.

we empirically set 𝛽 to 0.6. For the heatmaps from teachers, the
threshold is chosen by the ablation experiments. After binarization,
the result is illustrated in Figure 3(b). A student only needs to make
a simple binary classification for each pixel and an appropriate
threshold can eliminate redundant peaks. When training ST and PT,
we do not employ a binarization operation as the number of layers
of these two models is enough to approximate the data distribution.

Loss functions.Whether to use a binarization operation affects
which loss function to use. When training ST and PT, a binarization
operation is not employed, and therefore the loss function used is
the conventional MSE loss, which can be denoted as follows:

𝐿𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑙𝑖 − 𝑙𝑖 )2, (5)

where 𝑙𝑖 and 𝑙𝑖 specify the predicted heatmap and ground-truth
heatmap for the 𝑖-th joint, respectively. In the process of obtaining a
lightweight student model, a binarization operation is utilized, and
the cross-entropy loss is penalized to minimize the gap between
the predicted value 𝑞 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑙𝑠 ) and the label value 𝑝:

𝐿𝐶 = −(𝑝𝑙𝑜𝑔𝑞 + (1 − 𝑝)𝑙𝑜𝑔(1 − 𝑞))

=

{
−𝑙𝑜𝑔𝑞 𝑖 𝑓 𝑝 = 1,
−𝑙𝑜𝑔(1 − 𝑞) 𝑖 𝑓 𝑝 = 0.

(6)

Taking Eq.(3), (5), and (6) together, we can obtain the loss functions
used in the overall process as follows:

𝐿𝑆𝑇 = 𝐿𝑀𝑆𝐸 (7)

𝐿𝑃𝑇 = 𝐿𝑆𝑇→𝑃𝑇 = (1 − 𝛼0)𝐿𝐶𝐸𝑃𝑇 + 𝛼0𝐿𝐾𝐷𝑆𝑇→𝑃𝑇

= (1 − 𝛼0)𝐿𝑀𝑆𝐸𝑃𝑇 + 𝛼0𝐿𝑀𝑆𝐸𝑆𝑇→𝑃𝑇
,

(8)

Algorithm 1 : ODKD student training
Input: preprocessed image 𝑥 and human segmentation mask𝑚,

label 𝑙 , pre-trained senior teacher 𝑆𝑇 , primary teacher 𝑃𝑇 , student

𝑆 , the number of iterations 𝑛, the number of epochs 𝑁

Output: distilled student 𝑆 .

for 𝑖 = 1 to 𝑁 do

for 𝑗 = 1 to 𝑛 do

Step.1 concatenate 𝑥 and𝑚 to obtain y;

Step.2 feed 𝑦 to 𝑆𝑇 , to obtain the senior teacher logits 𝑙𝑠𝑡 ;

Step.3 feed 𝑥 to 𝑃𝑇 , to obtain the primary teacher logits 𝑙𝑝𝑡 ;

Step.4 update 𝑃𝑇 based on Eq.(8);

Step.5 feed 𝑥 to 𝑆 , to obtain the student logits 𝑙𝑠 ;

Step.6 update 𝑆 based on Eq.(9);

Step.7 update 𝑆 based on Eq.(10).

end for

end for

𝐿𝑆1 = 𝐿𝑆𝑇→𝑆 = (1 − 𝛼1)𝐿𝐶𝐸𝑆 + 𝛼1𝐿𝐾𝐷𝑆𝑇→𝑆

= (1 − 𝛼1)𝐿𝐶𝑆
+ 𝛼1𝐿𝐶𝑆𝑇→𝑆

,
(9)

𝐿𝑆2 = 𝐿𝑃𝑇→𝑆 = (1 − 𝛼2)𝐿𝐶𝐸𝑆 + 𝛼2𝐿𝐾𝐷𝑃𝑇→𝑆

= (1 − 𝛼2)𝐿𝐶𝑆
+ 𝛼2𝐿𝐶𝑃𝑇→𝑆

,
(10)

where the right arrow at the subscript indicates the teaching direc-
tion, and 𝛼0, 𝛼1 and 𝛼2 are balance factors. Here we set them to
0.5 as demonstrated in FPD [32]. Finally, the overall process can be
summarized as Algorithm 1.

4 EXPERIMENT
4.1 Experiment Setup
Dataset. We employ two human pose estimation datasets, COCO
and OCHuman. COCO dataset contains over 200K images and 250K
person instances labeled with 17 keypoints. The images are ex-
tracted from real scenes. We train our models only on the train2017
set, equipped with 57K images and 150K person instances, and eval-
uate our method on the val2017 set and test-dev2017 set, consisting
of 5K images and 20K images, respectively.

OCHuman dataset is also collected from real scenes. Different
from COCO dataset, it is a more challenging dataset, where each
human instance is heavily occluded by one or several others and
the postures of the human bodies are more complex. The purpose
of designing this dataset is to use general datasets such as COCO
as a training set, test the robustness of models to occlusion using
OCHuman. Therefore, this dataset has no training set, but only a
validation set and test set. The validation set and test set have 4731
images and 8110 person instances in total.

Evaluation Metric. For the two datasets, we employ the same
evaluation metric based on Object Keypoint Similarity (OKS). OKS
can be calculated by:

𝑂𝐾𝑆 =

∑
𝑖 𝑒𝑥𝑝 (−𝑑2𝑖 /2𝑠

2𝑘2
𝑖
)𝛿 (𝑣𝑖 > 0)∑

𝑖 𝛿 (𝑣𝑖 > 0) , (11)
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where, 𝑑𝑖 is the Euclidean distance between each ground truth
keypoint and corresponding detected keypoint, 𝑣𝑖 is the visibility
flag of the ground truth, 𝑠 is the object scale, and 𝑘𝑖 is a per-keypoint
constant that controls falloff. We report standard average precision
and recall: AP (the mean of AP scores at OKS = 0.50, 0.55,. . ., 0.90,
0.95), AP50 (AP at OKS = 0.50), AP75, AP𝑀 for medium objects,
AP𝐿 for large objects and AR (the mean of AR scores at OKS = 0.50,
0.55,. . ., 0.90, 0.95).

Training. Our models are implemented on two NVIDIA 2080Ti
GPUs.We extend the human detection boxes to a fixed ratio, namely
height: width = 4 : 3, and then crop the boxes from images. Finally,
we resize the cropped images to a fixed size, for example, 256×192.
In the experiments, we choose three combinations of ST, PT and stu-
dent models. One combination is that SimpleBaseline-ResNet50 [28]
with the human segmentation mask, SimpleBaseline-ResNet50 and
LPN-ResNet50 [34] are chosen as ST, PT and student, respectively.
One combination is an 8-stage hourglass [32] with the human seg-
mentation mask, 8-stage hourglass and 4-stage hourglass. Another
combination is HRNet-W32 [26] with the human segmentation
mask, HRNet-W32 and HRNet-W16. We reproduce LPN without
any tricks, including the attention mechanism, the iterative training
strategy and 𝛽-Soft-Argmax. Other settings are the same as the orig-
inal work. For SimpleBaseline and Hourglass network, we adopt
the same training strategies as in the original works. Following
the structure of HRNet, we design a small network HRNet-W16 by
reducing the number of basic channels to 16. The total epochs are
set as 150, and the learning rate is dropped at the 120th and 140th
epochs.

Testing. The top-down pipeline is adopted that first locates
the human body by the person detectors and then applies the pose
estimationmodels to acquire the detection results. For a fair compar-
ison, we adopt the same person detectors provided by HRNet [26]
both for COCO validation and test-dev set. The human detection AP
is 56.4 and 60.9 respectively. For OCHuman test set, we use ground-
truth detection boxes. Following the common practice[6, 19, 26, 28],
we compute the heatmap by averaging the heatmaps of the original
and flipped images. The final keypoints are obtained by adjusting
a quarter offset in the direction from the highest response to the
second highest response.

4.2 Component Ablation Studies
In this subsection, we conduct the ablation experiments on the
COCO validation set to verify the effectiveness of our proposed
components. We choose SimpleBaseline as the teacher model and
LPN as the student model. By default, the input size 256 × 192 and
the ResNet-50 backbone are used because they are less computa-
tional.

The studies ondistillationpaths.Weexplore the performance
of different distillation paths on the COCO validation set. As shown
in Table 1, we divide all the experiments into four groups. The first
group is our baseline model, which achieves 64.5 AP. The second
group belongs to single teacher knowledge distillation. The third
group belongs to dual-teacher knowledge distillation, where there
is no path between ST and PT. The fourth group is dual-teacher
knowledge distillation, where PT serves as a teacher assistant to
bridge the gap between ST and S. We firstly compare these methods

Table 1: The ablation study on the architecture of ODKD on
the COCO validation set. We adopt MSE Loss. → indicates
the teaching direction.

Group Method AP

1 (a) S (LPN, baseline) 64.5

2 (b) ST→S 64.9
(c) PT→S 65.0

3
(d) ST, PT→S 65.0
(e) PT→S, ST→S 64.7
(f) ST→S, PT→S 65.0

4

(g) ST→PT→S 64.9
(h) ST→PT. ST, PT→S 64.9
(i) ST→PT. PT→S, ST→S 65.0
(j) ST→PT. ST→S, PT→S (ODKD) 65.2

Table 2: Comparisons on the binarization thresholds and
GPU memory usage. The batch size is set as 24.

Models LPN ODKD
𝛽 - 0.2 0.3 0.4 0.5 0.6
AP 65.2 65.7 65.9 65.7 65.3 65.1

GPU Memory Usage (MB) 9286 6694

within each group. In group 2, Method (b) obtains less performance
improvement than (c), as the output of ST is more abstract than
that of PT, which is a more difficult learning task for a student. In
group 3, Method (d) is a situation where dual-teacher teaches a
student simultaneously, while Method (e) and (f) belong to a cir-
cumstance where dual-teacher teaches a student in multiple steps.
Method (d) and (f) achieve 65.0 AP, which is higher than (e). The
reason behind this is that in Method (d) and (f), segmentation in-
formation can be firstly used to help restrict the location range of
keypoints, and then keypoints information is utilized to optimize
the location of keypoints, which produces more accurate heatmaps.
While in Method (e), segmentation information is learned in the
second step, which leads to inadequate utilization of prior infor-
mation. In group 4, Method (h) employs dual-teacher to guide a
student simultaneously, while Method (i) and (j) utilize an orderly
dual-teacher knowledge distillation strategy. Method (i) and (j) re-
ceive more improvement than (h), which proves the effectiveness
of an orderly learning strategy. Method (j) gets higher AP than
(i), which further demonstrates the superiority of firstly learning
segmentation information. Comparisons of methods in different
groups are shown as follows. Compared with group 1, all of the
other groups achieve performance improvements, which shows the
advantage of knowledge distillation. Group 2 and 3 achieve similar
performance. By adding a path on the basis of group 3, group 4 can
be obtained, which receives a better performance than the origi-
nal, which demonstrates that it is necessary to introduce PT as a
teacher assistant to narrow the gap between ST and S. Compared
to Method (c), Method (j) obtains 0.2 AP improvement, which is
not obvious. The main reason is the insufficient learning ability
of a student, rather than an orderly dual-teacher learning strategy.
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Highlight
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Underline
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Table 3: Comparisons on the COCO validation set. The result of 8-stage Hourglass is cited from [19]. 8-stage Hourglass∗ and
4-stage Hourglass∗: models reproduced by ourselves using the COCO dataset.

Method Backbone Pretrain Input size #Params FLOPs FPS AP AP50 AP75 APM APL AR

Large networks
8-stage Hourglass [19] 8-stage Hourglass N 256 × 192 25.1M 14.3G - 66.9 - - - - -
HRNet-W32 [26] HRNet-W32 N 256 × 192 28.5M 7.1G 140 73.4 89.5 80.7 70.2 80.1 78.9
8-stage Hourglass∗ [32] 8-stage Hourglass N 256 × 192 25.6M 21.3G 49 73.7 89.3 80.7 70.4 80.4 79.2
CPN [6] ResNet-50 Y 256 × 192 27.0M 6.2G 77 69.4 - - - - -
SimpleBaseline [28] ResNet-50 Y 256 × 192 34.0M 8.9G 187 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [28] ResNet-101 Y 256 × 192 53.0M 12.4G 155 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [28] ResNet-152 Y 256 × 192 68.6M 15.7G 124 72.0 89.3 79.8 68.7 78.9 77.8
HRNet-W32 [26] HRNet-W32 Y 256 × 192 28.5M 7.1G 140 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [26] HRNet-W48 Y 256 × 192 63.6M 14.6G 103 75.1 90.6 82.2 71.5 81.8 80.4

Small networks
Lite-HRNet [30] Lite-HRNet-18 N 256 × 192 1.1M 0.2G - 64.8 86.7 73.0 62.1 70.5 71.2
Lite-HRNet [30] Lite-HRNet-30 N 256 × 192 1.8M 0.3G - 67.2 88.0 75.0 64.3 73.1 73.3
LPN50 [34] ResNet-50 N 256 × 192 2.7M 1.1G 243 64.5 86.3 71.8 61.1 71.1 70.7
+ODKD ResNet-50 N 256 × 192 2.7M 1.1G 243 65.9(+1.4) 86.9 73.1 62.5 72.8 72.0
4-stage Hourglass∗ [32] 4-stage Hourglass N 256 × 192 3.3M 3.0G 158 68.3 87.1 75.4 65.3 74.3 74.1
+ODKD 4-stage Hourglass N 256 × 192 3.3M 3.0G 158 69.3(+1.0) 87.4 76.6 66.2 75.8 75.1
HRNet-W16 [26] HRNet-W16 N 256 × 192 7.5M 2.6G 163 68.4 88.3 76.7 65.2 74.7 74.7
+ODKD HRNet-W16 N 256 × 192 7.5M 2.6G 163 71.7(+3.3) 89.3 79.1 68.7 78.0 77.5

Among all methods, Method (j) achieves the best 65.2 AP. Therefore,
this setting is selected finally.

The binarization thresholds of heatmaps from teachers.
We compare the effects of the heatmaps with different binarization
thresholds on the COCO validation set. As shown in Table 2, with
increasing 𝛽 , the performance first increases and then decreases.
The binarization thresholds represent the degree of reducing noise.
The larger it is, the stronger the degree of reducing noise is. When
𝛽 is set to 0.3, lots of noise is removed and a model achieves the
best 65.9 AP. When it is large enough such as 0.6, part of the learn-
ing signal in heatmaps will be eliminated, which leads to model
degradation. Finally, 𝛽 is set as 0.3. A binarization operation can
reduce GPU memory usage, which is friendly to resource-limited
devices. Moreover, a binarization operation can effectively improve
the model performance as illustrated in Figure 4.

4.3 Experimental Results
Results on the COCO validation set. We report the results of
our method and other state-of-the-art methods in Table 3. (I) When
ODKD is applied to lightweight models such as LPN50, 4-stage
Hourglass and HRNet-W16, performance can be consistently im-
proved, which demonstrates the superiority of the proposed ODKD.
However, the improvements on different baseline models are dis-
crepant. The reason for this is that the gaps between a student
and teacher within each combination are different. The difference
between LPN50 and SimpleBaseline [28] is that LPN50 employs a
depth-wise separable convolution while SimpleBaseline uses an
ordinary convolution. There are two differences between 4-stage
Hourglass and 8-stage Hourglass. One is different numbers of stages,
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Figure 4: Illustration of performance with or without a bina-
rization operation.

the other is different numbers of channels. The only difference be-
tween HRNet-W16 and HRNet-W32 is the number of channels. The
model similarity between HRNet-W16 and HRNet-W32 is higher
than other combinations, which yields higher performance im-
provement. (II) Compared to 8-stage Hourglass and CPN [6], LPN50
and 4-stage Hourglass based on ODKD achieve comparable perfor-
mance, while the parameters and calculation are much less than
them. (III) HRNet-W16 trained with ODKD obtains better perfor-
mance than SimpleBaseline with ResNet-50 and ResNet-101. And
we can find that HRNet-W16 with 2.6GFLOPs runs slower than
SimpleBaseline-ResNet50 with 8.9GFLOPs because there are lots
of parallel convolutions in HRNet and PyTorch framework is not
friendly to parallel convolutions. (IV) Although HRNet-W32 and
HRNet-W48 achieve top accuracy, inference time is longer than
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Figure 5: Illustration of the complexity and accuracy comparison on the COCO validation set.

Table 4: Comparisons on the COCO test-dev set. 4-stage Hourglass∗ and 8-stage Hourglass∗: models reproduced by ourselves
using the COCO dataset.

Method Backbone Input size #Params FLOPs AP AP50 AP75 APM APL AR

Large networks
OpenPose [3] - - - - 61.8 84.9 67.5 57.1 68.2 66.5
Associative Embedding [18] - - - - 65.5 86.8 72.3 60.6 72.6 70.2
PersonLab[21] - - - - 68.7 89.0 75.4 64.1 75.5 75.4
HigherHRNet[7] (multi-scale test) HRNet-W48 640 × 640 63.8M 154.3G 70.5 89.3 77.2 66.6 75.8 74.9
Mask-RCNN[10] ResNet-50-FPN - - - 63.1 87.3 68.7 57.8 71.4 -
G-RMI[22] ResNet-101 353 × 257 42.6M 57.0G 64.9 85.5 71.3 62.3 70.0 69.7
CPN [6] ResNet-50 256 × 192 27.0M 6.2G 68.6 89.5 76.6 65.6 74.2 75.6
RMPE [9] PyraNet 320 × 256 28.1M 26.7G 72.3 89.2 79.1 68.0 78.6 -
SimpleBaseline [28] ResNet-50 256 × 192 34.0M 8.9G 70.0 90.9 77.9 66.8 75.8 75.6
HRNet-W32 [26] HRNet-W32 256 × 192 28.5M 7.1G 73.5 92.2 81.9 70.2 79.2 79.0
HRNet-W48 [26] HRNet-W48 256 × 192 63.6M 14.6G 74.2 92.4 82.4 70.9 79.7 79.5
8-stage Hourglass∗ [32] 8-stage Hourglass 256 × 192 25.6M 21.3G 73.2 91.3 81.1 70.2 79.0 78.7

Small networks
Lite-HRNet [30] Lite-HRNet-18 384 × 288 1.1M 0.45G 66.9 89.4 74.4 64.0 72.2 72.6
Lite-HRNet [30] Lite-HRNet-30 384 × 288 1.8M 0.7G 69.7 90.7 77.5 66.9 75.0 75.4
LPN50 [34] ResNet-50 256 × 192 2.7M 1.1G 64.2 88.6 71.2 61.0 69.8 70.1
+ODKD ResNet-50 256 × 192 2.7M 1.1G 65.5(+1.3) 89.2 72.8 62.4 71.1 71.4
4-stage Hourglass∗ [32] 4-stage Hourglass 256 × 192 3.3M 3.0G 67.8 89.1 75.4 64.9 73.2 73.4
+ODKD 4-stage Hourglass 256 × 192 3.3M 3.0G 69.1(+1.3) 89.9 76.7 66.0 74.7 74.7
HRNet-W16 [26] HRNet-W16 256 × 192 7.5M 2.6G 67.6 90.2 76.1 64.7 73.0 73.7
+ODKD HRNet-W16 256 × 192 7.5M 2.6G 71.0(+3.4) 91.1 79.5 67.9 76.6 76.6

our models. (V) Compared to the latest Lite-HRNet1, our models
based on ODKD achieve a better balance between accuracy and
computational complexity, as shown in Figure 5. We think that
the proposed ODKD is a general framework and can be applied
to Lite-HRNet to further improve the performance of the model.
Some results generated by baseline models and our models are

1Available from https://github.com/HRNet/Lite-HRNet. Because this paper and the
corresponding code have just been published for few days, the experiments of adding
ODKD to Lite-HRNet are not finished and the results are not displayed.

illustrated in Figure 6. We can see that our models can work well
in challenging situations.

Results on the COCO test-dev set. Table 4 shows the results
of our method and other state-of-the-art methods. Our proposed
ODKD can promote LPN50 and 4-stage Hourglass by 1.3 AP. For
HRNet-W16, the improvement is 3.4 AP. Compared to the bottom-
up approaches, our models achieve acceptable results with fewer
parameters and FLOPs. HRNet-W16 based on ODKD is significantly
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Figure 6: Qualitative results on COCO validation set.

Table 5: Comparisons on the OCHuman test set. 4-stage Hourglass∗ and 8-stage Hourglass∗: models reproduced by ourselves
using the COCO dataset. There is no medium person instances, so APM denotes as -.

Method Backbone Input size #Params FLOPs AP AP50 AP75 APM APL AR

Large networks
CPN [6] ResNet-50 256 × 192 27.0M 6.2G 52.8 75.8 55.2 - 52.8 61.6
SimpleBaseline [28] ResNet-50 256 × 192 34.0M 8.9G 55.8 73.9 61.3 - 55.8 60.4
SimpleBaseline [28] ResNet-101 256 × 192 53.0M 12.4G 60.0 76.0 66.1 - 60.0 63.9
SimpleBaseline [28] ResNet-152 256 × 192 68.6M 15.7G 61.9 77.0 67.8 - 61.9 66.1
HRNet-W32 [26] HRNet-W32 256 × 192 28.5M 7.1G 63.0 79.2 68.5 - 63.0 66.9
HRNet-W48 [26] HRNet-W48 256 × 192 63.6M 14.6G 64.6 79.6 70.7 - 64.6 68.1
8-stage Hourglass∗ [32] 8-stage Hourglass 256 × 192 25.6M 21.3G 64.7 79.6 69.9 - 64.7 68.3

Small networks
LPN50 [34] ResNet-50 256 × 192 2.7M 1.1G 49.6 73.4 54.2 - 49.6 54.9
+ODKD ResNet-50 256 × 192 2.7M 1.1G 50.3(+0.7) 72.1 54.6 - 50.3 55.9
4-stage Hourglass∗ [32] 4-stage Hourglass 256 × 192 3.3M 3.0G 56.3 75.0 62.6 - 56.3 60.9
+ODKD 4-stage Hourglass 256 × 192 3.3M 3.0G 58.6(+2.3) 77.0 64.6 - 58.6 63.0
HRNet-W16 [26] HRNet-W16 256 × 192 7.5M 2.6G 56.9 76.9 63.3 - 56.9 61.4
+ODKD HRNet-W16 256 × 192 7.5M 2.6G 60.5(+3.6) 79.3 66.7 - 60.5 64.9

better than CPN [6] and SimpleBaseline [28]. Compared to HRNet-
W32 and HRNet-W48, HRNet-W16 trained with ODKD obtains
close performance without pre-training. Compared to Lite-HRNet,
our models achieve better performance with similar parameters and
smaller input size. Moreover, HRNet-W16 equipped with ODKD
sets a new state-of-the-art for lightweight human pose estimation.

Results on the OCHuman test set. We show the results of
our methods and other state-of-the-art methods in Table 5. We use
the models trained on COCO dataset to evaluate on OCHuman test
set. As OCHuman dataset is more challenging than COCO dataset,
the performance of all methods drops sharply. Different baseline
models can benefit from ODKD, which proves the effectiveness and

extensibility of ODKD. Moreover, our models based on ODKD use
fewer parameters achieve comparable accuracy with large models,
which is more suitable for mobile devices.

5 CONCLUSION
In this paper, we propose an orderly dual-teacher knowledge distil-
lation (ODKD) framework for human pose estimation. Dual-teacher
is introduced, where one is used to teach keypoints information to
a student, the other is utilized to transfer segmentation and key-
points information. To improve the learning ability of a student, an
orderly learning strategy is adopted where a student learns from
dual-teacher successively. Moreover, a binarization operation is
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employed to stimulate more efficient learning of the a student and
reduce noise in heatmaps generated by teachers. The experimental
results on COCO and OCHuman keypoints dataset demonstrate
the effectiveness and extensibility of our proposed ODKD.
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