# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import math from . import framework from . import core from .framework import in_dygraph_mode, default_main_program import numpy as np from .core import VarDesc from . import unique_name from .data_feeder import check_variable_and_dtype, check_type, check_dtype from paddle import _C_ops __all__ = [ 'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear', 'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer' ] _global_weight_initializer_ = None _global_bias_initializer_ = None class Initializer(object): """Base class for variable initializers Defines the common interface of variable initializers. They add operations to the init program that are used to initialize variables. Users should not use this class directly, but need to use one of its implementations. """ def __init__(self): pass def __call__(self, param, block=None): """Add corresponding initialization operations to the network """ raise NotImplementedError() def _check_block(self, block): if block is None: block = default_main_program().global_block() return block def _compute_fans(self, var): """Compute the fan_in and the fan_out for layers This method computes the fan_in and the fan_out for neural network layers, if not specified. It is not possible to perfectly estimate fan_in and fan_out. This method will estimate it correctly for matrix multiply and convolutions. Args: var: variable for which fan_in and fan_out have to be computed Returns: tuple of two integers (fan_in, fan_out) """ shape = var.shape if not shape or len(shape) == 0: fan_in = fan_out = 1 elif len(shape) == 1: fan_in = fan_out = shape[0] elif len(shape) == 2: # This is the case for simple matrix multiply fan_in = shape[0] fan_out = shape[1] else: # Assume this to be a convolutional kernel # In PaddlePaddle, the shape of the kernel is like: # [num_filters, num_filter_channels, ...] where the remaining # dimensions are the filter_size receptive_field_size = np.prod(shape[2:]) fan_in = shape[1] * receptive_field_size fan_out = shape[0] * receptive_field_size return (fan_in, fan_out) class ConstantInitializer(Initializer): """Implements the constant initializer Args: value (float32): constant value to initialize the variable Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32") fc = fluid.layers.fc( input=x, size=10, param_attr=fluid.initializer.Constant(value=2.0)) """ def __init__(self, value=0.0, force_cpu=False): assert value is not None super(ConstantInitializer, self).__init__() self._value = value self._force_cpu = force_cpu def __call__(self, var, block=None): """Initialize the input tensor with constant. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert (isinstance(var, framework.Variable) or isinstance(var, framework.EagerParamBase)) assert isinstance(block, framework.Block) # to be compatible of fp16 initializers if var.dtype == VarDesc.VarType.FP16: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['constant_init', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): out_var = _C_ops.fill_constant( out_var, 'value', float(self._value), 'force_cpu', self._force_cpu, 'dtype', int(out_dtype), 'str_value', str(float(self._value)), 'shape', var.shape) if var.dtype == VarDesc.VarType.FP16: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: # fill constant should set the "str_value" to preserve precision op = block.append_op( type="fill_constant", outputs={"Out": out_var}, attrs={ "shape": var.shape, "dtype": int(out_dtype), "value": float(self._value), 'str_value': str(float(self._value)), 'force_cpu': self._force_cpu }, stop_gradient=True) if var.dtype == VarDesc.VarType.FP16: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class UniformInitializer(Initializer): """Implements the random uniform distribution initializer Args: low (float): lower boundary of the uniform distribution high (float): upper boundary of the uniform distribution seed (int): random seed diag_num (int): the number of diagonal elements to initialize. If set to 0, diagonal initialization will be not performed. diag_step (int): Step size between two diagonal elements, which is generally the width of the square matrix. diag_val (float): the value of the diagonal element to be initialized, default 1.0. It takes effect only if the diag_num is greater than 0. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 1], dtype='float32') fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5)) """ def __init__(self, low=-1.0, high=1.0, seed=0, diag_num=0, diag_step=0, diag_val=1.0): assert low is not None assert high is not None assert high >= low assert seed is not None assert diag_num is not None assert diag_step is not None assert diag_val is not None if diag_num > 0 or diag_step > 0: assert (diag_num > 0 and diag_step > 0) super(UniformInitializer, self).__init__() self._low = low self._high = high self._seed = seed self._diag_num = diag_num self._diag_step = diag_step self._diag_val = diag_val def __call__(self, var, block=None): """Initialize the input tensor with Uniform distribution. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(block, framework.Block) check_variable_and_dtype(var, "Out", ["uint16", "float16", "float32", "float64"], "uniform_random") if self._seed == 0: self._seed = block.program.random_seed # to be compatible of fp16 initializers if var.dtype == VarDesc.VarType.FP16: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['uniform_random', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): out_var = _C_ops.uniform_random( 'shape', var.shape, 'min', self._low, 'max', self._high, 'seed', self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num, 'diag_step', self._diag_step, 'diag_val', self._diag_val) if var.dtype == VarDesc.VarType.FP16: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: op = block.append_op( type="uniform_random", inputs={}, outputs={"Out": out_var}, attrs={ "shape": var.shape, "dtype": out_dtype, "min": self._low, "max": self._high, "seed": self._seed, "diag_num": self._diag_num, "diag_step": self._diag_step, "diag_val": self._diag_val }, stop_gradient=True) if var.dtype == VarDesc.VarType.FP16: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class NormalInitializer(Initializer): """Implements the Random Normal(Gaussian) distribution initializer Args: loc (float): mean of the normal distribution scale (float): standard deviation of the normal distribution seed (int): random seed Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32") fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0)) """ def __init__(self, loc=0.0, scale=1.0, seed=0): assert loc is not None assert scale is not None assert seed is not None super(NormalInitializer, self).__init__() self._mean = loc self._std_dev = scale self._seed = seed def __call__(self, var, block=None): """Initialize the input tensor with Normal distribution. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(block, framework.Block) check_variable_and_dtype(var, "Out", ["uint16", "float16", "float32", "float64"], "guassian_random") if self._seed == 0: self._seed = block.program.random_seed # to be compatible of fp16 initalizers if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['gaussian_random', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): out_var = _C_ops.gaussian_random( 'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean, 'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: op = block.append_op( type="gaussian_random", outputs={"Out": out_var}, attrs={ "shape": var.shape, "dtype": out_dtype, "mean": self._mean, "std": self._std_dev, "seed": self._seed, "use_mkldnn": False }, stop_gradient=True) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class TruncatedNormalInitializer(Initializer): """Implements the Random TruncatedNormal(Gaussian) distribution initializer Args: loc (float): mean of the normal distribution scale (float): standard deviation of the normal distribution seed (int): random seed Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 1], dtype='float32') fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0)) """ def __init__(self, loc=0.0, scale=1.0, seed=0): assert loc is not None assert scale is not None assert seed is not None super(TruncatedNormalInitializer, self).__init__() self._mean = loc self._std_dev = scale self._seed = seed def __call__(self, var, block=None): """Initialize the input tensor with TruncatedNormal distribution. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(var, framework.Variable) assert isinstance(block, framework.Block) if self._seed == 0: self._seed = block.program.random_seed # to be compatible of fp16 initalizers if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['truncated_gaussian_random', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): out_var = _C_ops.truncated_gaussian_random( 'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean, 'std', self._std_dev, 'seed', self._seed) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: op = block.append_op( type="truncated_gaussian_random", outputs={"Out": out_var}, attrs={ "shape": var.shape, "dtype": out_dtype, "mean": self._mean, "std": self._std_dev, "seed": self._seed }, stop_gradient=True) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class XavierInitializer(Initializer): r""" This class implements the Xavier weight initializer from the paper `Understanding the difficulty of training deep feedforward neural networks `_ by Xavier Glorot and Yoshua Bengio. This initializer is designed to keep the scale of the gradients approximately same in all the layers. In case of Uniform distribution, the range is [-x, x], where .. math:: x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}} In case of Normal distribution, the mean is 0 and the standard deviation is .. math:: \sqrt{\\frac{2.0}{fan\_in + fan\_out}} Args: uniform (bool,default True): whether to use uniform ,if False use normal distribution fan_in (float,default None): fan_in for Xavier initialization. If None, it is inferred from the variable. fan_out (float,default None): fan_out for Xavier initialization. If None, it is inferred from the variable. seed (int): random seed Note: It is recommended to set fan_in and fan_out to None for most cases. Examples: .. code-block:: python import paddle.fluid as fluid queries = fluid.data(name='x', shape=[None,1], dtype='float32') fc = fluid.layers.fc( input=queries, size=10, param_attr=fluid.initializer.Xavier(uniform=False)) """ def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0): assert uniform is not None assert seed is not None super(XavierInitializer, self).__init__() self._uniform = uniform self._fan_in = fan_in self._fan_out = fan_out self._seed = seed def __call__(self, var, block=None): """Initialize the input tensor with Xavier initialization. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(block, framework.Block) check_variable_and_dtype(var, "Out", ["uint16", "float16", "float32", "float64"], "xavier_init") f_in, f_out = self._compute_fans(var) # If fan_in and fan_out are passed, use them fan_in = f_in if self._fan_in is None else self._fan_in fan_out = f_out if self._fan_out is None else self._fan_out if self._seed == 0: self._seed = block.program.random_seed # to be compatible of fp16 initalizers if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['xavier_init', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): if self._uniform: limit = np.sqrt(6.0 / float(fan_in + fan_out)) out_var = _C_ops.uniform_random('shape', var.shape, 'min', -limit, 'max', limit, 'seed', self._seed, 'dtype', out_dtype) else: std = np.sqrt(2.0 / float(fan_in + fan_out)) out_var = _C_ops.gaussian_random( 'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0, 'std', std, 'seed', self._seed) if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: if self._uniform: limit = np.sqrt(6.0 / float(fan_in + fan_out)) op = block.append_op( type="uniform_random", inputs={}, outputs={"Out": out_var}, attrs={ "shape": out_var.shape, "dtype": out_dtype, "min": -limit, "max": limit, "seed": self._seed }, stop_gradient=True) else: std = np.sqrt(2.0 / float(fan_in + fan_out)) op = block.append_op( type="gaussian_random", outputs={"Out": out_var}, attrs={ "shape": out_var.shape, "dtype": out_dtype, "mean": 0.0, "std": std, "seed": self._seed }, stop_gradient=True) if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class MSRAInitializer(Initializer): r"""Implements the MSRA initializer a.k.a. Kaiming Initializer This class implements the weight initialization from the paper `Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification `_ by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a robust initialization method that particularly considers the rectifier nonlinearities. In case of Uniform distribution, the range is [-x, x], where .. math:: x = \sqrt{\\frac{6.0}{fan\_in}} In case of Normal distribution, the mean is 0 and the standard deviation is .. math:: \sqrt{\\frac{2.0}{fan\_in}} Args: uniform (bool): whether to use uniform or normal distribution fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\ inferred from the variable. default is None. seed (int32): random seed Note: It is recommended to set fan_in to None for most cases. Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32") fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.MSRA(uniform=False)) """ def __init__(self, uniform=True, fan_in=None, seed=0): """Constructor for MSRAInitializer """ assert uniform is not None assert seed is not None super(MSRAInitializer, self).__init__() self._uniform = uniform self._fan_in = fan_in self._seed = seed def __call__(self, var, block=None): """Initialize the input tensor with MSRA initialization. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(var, framework.Variable) assert isinstance(block, framework.Block) f_in, f_out = self._compute_fans(var) # If fan_in is passed, use it fan_in = f_in if self._fan_in is None else self._fan_in if self._seed == 0: self._seed = block.program.random_seed # to be compatible of fp16 initalizers if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['masra_init', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if framework.in_dygraph_mode(): if self._uniform: limit = np.sqrt(6.0 / float(fan_in)) out_var = _C_ops.uniform_random('shape', out_var.shape, 'min', -limit, 'max', limit, 'seed', self._seed, 'dtype', int(out_dtype)) else: std = np.sqrt(2.0 / float(fan_in)) out_var = _C_ops.gaussian_random( 'shape', out_var.shape, 'dtype', int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed) if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: if self._uniform: limit = np.sqrt(6.0 / float(fan_in)) op = block.append_op( type="uniform_random", inputs={}, outputs={"Out": out_var}, attrs={ "shape": out_var.shape, "dtype": int(out_dtype), "min": -limit, "max": limit, "seed": self._seed }, stop_gradient=True) else: std = np.sqrt(2.0 / float(fan_in)) op = block.append_op( type="gaussian_random", outputs={"Out": out_var}, attrs={ "shape": out_var.shape, "dtype": int(out_dtype), "mean": 0.0, "std": std, "seed": self._seed }, stop_gradient=True) if var.dtype == VarDesc.VarType.FP16 or ( var.dtype == VarDesc.VarType.BF16 and not self._uniform): block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class BilinearInitializer(Initializer): """ This initializer can be used in transposed convolution operator to act as upsampling. Users can upsample a feature map with shape of (B, C, H, W) by any integer factor. The usage is: Examples: .. code-block:: python import math import paddle import paddle.nn as nn from paddle.regularizer import L2Decay factor = 2 C = 2 B = 8 H = W = 32 w_attr = paddle.ParamAttr(learning_rate=0., regularizer=L2Decay(0.), initializer=nn.initializer.Bilinear()) data = paddle.rand([B, 3, H, W], dtype='float32') conv_up = nn.Conv2DTranspose(3, out_channels=C, kernel_size=2 * factor - factor % 2, padding=int( math.ceil((factor - 1) / 2.)), stride=factor, weight_attr=w_attr, bias_attr=False) x = conv_up(data) Where, `out_channels=C` and `groups=C` means this is channel-wise transposed convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`, This initializer will set a (K, K) interpolation kernel for every channel of the filter identically. The resulting shape of the output feature map will be (B, C, factor * H, factor * W). Note that the learning rate and the weight decay are set to 0 in order to keep coefficient values of bilinear interpolation unchanged during training. """ def __init__(self): """Constructor for BilinearInitializer. """ super(BilinearInitializer, self).__init__() def __call__(self, var, block=None): """Initialize the input tensor with Bilinear initialization. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) if not isinstance(var, framework.Variable): raise ValueError("var must be framework.Variable.") if not isinstance(block, framework.Block): raise ValueError("block must be framework.Block.") shape = var.shape if len(shape) != 4: raise ValueError("the length of shape must be 4.") if shape[2] != shape[3]: raise ValueError("shape[2] must be equal to shape[3].") weight = np.zeros(np.prod(var.shape), dtype='float32') size = shape[3] # factor f = np.ceil(size / 2.) # center c = (2 * f - 1 - f % 2) / (2. * f) for i in range(np.prod(shape)): x = i % size y = (i / size) % size weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c)) weight = np.reshape(weight, shape) # to be compatible of fp16 initalizers if var.dtype in [ VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64 ]: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( ['bilinear_init', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_dtype = var.dtype out_var = var if out_dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in weight.flat] else: raise TypeError("Unsupported dtype %s", var.dtype) if np.prod(shape) > 1024 * 1024: raise ValueError("The size of input is too big. ") if framework.in_dygraph_mode(): out_var = _C_ops.assign_value('shape', list(shape), 'dtype', out_dtype, value_name, values) if var.dtype in [ VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64 ]: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: op = block.append_op( type='assign_value', outputs={'Out': [out_var]}, attrs={ 'dtype': out_dtype, 'shape': list(shape), value_name: values }) if var.dtype in [ VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64 ]: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op class NumpyArrayInitializer(Initializer): """Init an parameter with an numpy array This op initialize the variable by numpy array. Args: value (numpy): numpy array to initialize the variable Returns: A Tensor variable initialized by numpy. Examples: .. code-block:: python import paddle.fluid as fluid import numpy x = fluid.data(name="x", shape=[2, 1], dtype='float32') fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2]))) """ def __init__(self, value): import numpy assert isinstance(value, numpy.ndarray) super(NumpyArrayInitializer, self).__init__() self._value = value def __call__(self, var, block=None): """Initialize the input tensor with Numpy array. Args: var(Tensor): Tensor that needs to be initialized. block(Block, optional): The block in which initialization ops should be added. Used in static graph only, default None. Returns: The initialization op """ block = self._check_block(block) assert isinstance(var, framework.Variable) assert isinstance(block, framework.Block) # to be compatible of fp16 initalizers if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: out_dtype = VarDesc.VarType.FP32 np_value = self._value.astype("float32") out_var = block.create_var( name=unique_name.generate(".".join( ['numpy_array_init', var.name, 'tmp'])), shape=var.shape, dtype=out_dtype, type=VarDesc.VarType.LOD_TENSOR, persistable=False) else: out_var = var out_dtype = var.dtype np_value = self._value if out_dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in np_value.flat] elif out_dtype == VarDesc.VarType.INT32: value_name = "int32_values" values = [int(v) for v in np_value.flat] else: raise ValueError("Unsupported dtype %s", self._value.dtype) if self._value.size > 1024 * 1024 * 1024: raise ValueError("The size of input is too big. Please consider " "saving it to file and 'load_op' to load it") if framework.in_dygraph_mode(): out_var = _C_ops.assign_value('shape', list(self._value.shape), 'dtype', out_dtype, value_name, values) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype, 'out_dtype', var.dtype) var.copy_(var_tmp, True) else: var.copy_(out_var, True) return None else: op = block.append_op( type='assign_value', outputs={'Out': out_var}, attrs={ 'dtype': out_dtype, 'shape': list(self._value.shape), value_name: values }, stop_gradient=True) if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: block.append_op( type="cast", inputs={"X": out_var}, outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) var.op = op return op def set_global_initializer(weight_init, bias_init=None): """ This API is used to set up global model parameter initializer in framework. After this API is invoked, the global initializer will takes effect in subsequent code. The model parameters include ``weight`` and ``bias`` . In the framework, they correspond to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable. This API only takes effect for model parameters, not for variables created through apis such as :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`. If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer, the global initializer setting here will not take effect because it has a lower priority. If you want to cancel the global initializer in framework, please set global initializer to ``None`` . Args: weight_init (Initializer): set the global initializer for ``weight`` of model parameters. bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. Default: None. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant()) x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.) # The weight of conv1 is initialized by Uniform # The bias of conv1 is initialized by Constant conv1 = nn.Conv2D(4, 6, (3, 3)) y_var1 = conv1(x_var) # If set param_attr/bias_attr too, global initializer will not take effect # The weight of conv2 is initialized by Xavier # The bias of conv2 is initialized by Normal conv2 = nn.Conv2D(4, 6, (3, 3), weight_attr=nn.initializer.XavierUniform(), bias_attr=nn.initializer.Normal()) y_var2 = conv2(x_var) # Cancel the global initializer in framework, it will takes effect in subsequent code nn.initializer.set_global_initializer(None) """ check_type(weight_init, 'weight_init', (Initializer, type(None)), 'set_global_initializer') global _global_weight_initializer_ _global_weight_initializer_ = weight_init check_type(bias_init, 'bias_init', (Initializer, type(None)), 'set_global_initializer') global _global_bias_initializer_ _global_bias_initializer_ = bias_init def _global_weight_initializer(): """ Return the global weight initializer, The user doesn't need to use it. """ return _global_weight_initializer_ def _global_bias_initializer(): """ Return the global weight initializer, The user doesn't need to use it. """ return _global_bias_initializer_ def calculate_gain(nonlinearity, param=None): """ Get the recommended gain value of some nonlinearity function. Args: nonlinearity(str): name of nonlinearity activation function. If it is a linear function, which is one of "linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose" , will return 1.0 param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula. Returns: The recommended gain value for nonlinearity function. Examples: .. code-block:: python import paddle gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3 gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2)) """ if param is None: param = 0.01 else: assert isinstance(param, (bool, int, float)) param = float(param) recommended_gain = { 'sigmoid': 1, 'linear': 1, 'conv1d': 1, 'conv2d': 1, 'conv3d': 1, 'conv1d_transpose': 1, 'conv2d_transpose': 1, 'conv3d_transpose': 1, 'tanh': 5.0 / 3, 'relu': math.sqrt(2.0), 'leaky_relu': math.sqrt(2.0 / (1 + param**2)), 'selu': 3.0 / 4 } if nonlinearity in recommended_gain.keys(): return recommended_gain[nonlinearity] else: raise ValueError("nonlinearity function {} is not suppported now.". format(nonlinearity)) # We short the class name, since users will use the initializer with the package # name. The sample code: # # import paddle.fluid as fluid # # hidden = fluid.layers.fc(..., # param_attr=ParamAttr(fluid.initializer.Xavier())) # # It is no need to add an `Initializer` as the class suffix Constant = ConstantInitializer Uniform = UniformInitializer Normal = NormalInitializer TruncatedNormal = TruncatedNormalInitializer Xavier = XavierInitializer MSRA = MSRAInitializer Bilinear = BilinearInitializer