/** * @author Kyle-Larson https://github.com/Kyle-Larson * @author Takahiro https://github.com/takahirox * * Loader loads FBX file and generates Group representing FBX scene. * Requires FBX file to be >= 7.0 and in ASCII or to be any version in Binary format. * * Supports: * Mesh Generation (Positional Data) * Normal Data (Per Vertex Drawing Instance) * UV Data (Per Vertex Drawing Instance) * Skinning * Animation * - Separated Animations based on stacks. * - Skeletal & Non-Skeletal Animations * NURBS (Open, Closed and Periodic forms) * * Needs Support: * Indexed Buffers * PreRotation support. * Euler rotation order * * FBX format references: * https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure * * Binary format specification: * https://code.blender.org/2013/08/fbx-binary-file-format-specification/ * https://wiki.rogiken.org/specifications/file-format/fbx/ (more detail but Japanese) */ ( function () { THREE.FBXLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; Object.assign( THREE.FBXLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var self = this; var resourceDirectory = THREE.Loader.prototype.extractUrlBase( url ); var loader = new THREE.FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { try { var scene = self.parse( buffer, resourceDirectory ); onLoad( scene ); } catch ( error ) { window.setTimeout( function () { if ( onError ) onError( error ); self.manager.itemError( url ); }, 0 ); } }, onProgress, onError ); }, parse: function ( FBXBuffer, resourceDirectory ) { var FBXTree; if ( isFbxFormatBinary( FBXBuffer ) ) { FBXTree = new BinaryParser().parse( FBXBuffer ); } else { var FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'THREE.FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } FBXTree = new TextParser().parse( FBXText ); } // console.log( FBXTree ); var connections = parseConnections( FBXTree ); var images = parseImages( FBXTree ); var textures = parseTextures( FBXTree, new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ), images, connections ); var materials = parseMaterials( FBXTree, textures, connections ); var deformers = parseDeformers( FBXTree, connections ); var geometryMap = parseGeometries( FBXTree, connections, deformers ); var sceneGraph = parseScene( FBXTree, connections, deformers, geometryMap, materials ); return sceneGraph; } } ); // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type function parseConnections( FBXTree ) { var connectionMap = new Map(); if ( 'Connections' in FBXTree ) { var connectionArray = FBXTree.Connections.properties.connections; for ( var connectionArrayIndex = 0, connectionArrayLength = connectionArray.length; connectionArrayIndex < connectionArrayLength; ++ connectionArrayIndex ) { var connection = connectionArray[ connectionArrayIndex ]; if ( ! connectionMap.has( connection[ 0 ] ) ) { connectionMap.set( connection[ 0 ], { parents: [], children: [] } ); } var parentRelationship = { ID: connection[ 1 ], relationship: connection[ 2 ] }; connectionMap.get( connection[ 0 ] ).parents.push( parentRelationship ); if ( ! connectionMap.has( connection[ 1 ] ) ) { connectionMap.set( connection[ 1 ], { parents: [], children: [] } ); } var childRelationship = { ID: connection[ 0 ], relationship: connection[ 2 ] }; connectionMap.get( connection[ 1 ] ).children.push( childRelationship ); } } return connectionMap; } // Parses map of images referenced in FBXTree.Objects.subNodes.Video // Images can either be referenced externally or embedded in the file // These images are connected to textures in FBXTree.Objects.subNodes.Textures // via FBXTree.Connections. Note that images can be duplicated here, in which case only one // will will have a .Content field function parseImages( FBXTree ) { var imageMap = new Map(); if ( 'Video' in FBXTree.Objects.subNodes ) { var videoNodes = FBXTree.Objects.subNodes.Video; for ( var nodeID in videoNodes ) { var videoNode = videoNodes[ nodeID ]; // raw image data is in videoNode.properties.Content if ( 'Content' in videoNode.properties ) { var image = parseImage( videoNodes[ nodeID ] ); imageMap.set( parseInt( nodeID ), image ); } } } return imageMap; } // Parse embedded image data in FBXTree.Video.properties.Content function parseImage( videoNode ) { var content = videoNode.properties.Content; var fileName = videoNode.properties.RelativeFilename || videoNode.properties.Filename; var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); var type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; default: console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); return; } if ( typeof content === 'string' ) { return 'data:' + type + ';base64,' + content; } else { var array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } // Parse nodes in FBXTree.Objects.subNodes.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.subNodes.Video function parseTextures( FBXTree, loader, imageMap, connections ) { var textureMap = new Map(); if ( 'Texture' in FBXTree.Objects.subNodes ) { var textureNodes = FBXTree.Objects.subNodes.Texture; for ( var nodeID in textureNodes ) { var texture = parseTexture( textureNodes[ nodeID ], loader, imageMap, connections ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } // Parse individual node in FBXTree.Objects.subNodes.Texture function parseTexture( textureNode, loader, imageMap, connections ) { var FBX_ID = textureNode.id; var name = textureNode.attrName; var fileName; var filePath = textureNode.properties.FileName; var relativeFilePath = textureNode.properties.RelativeFilename; var children = connections.get( FBX_ID ).children; if ( children !== undefined && children.length > 0 && imageMap.has( children[ 0 ].ID ) ) { fileName = imageMap.get( children[ 0 ].ID ); } else if ( relativeFilePath !== undefined && relativeFilePath[ 0 ] !== '/' && relativeFilePath.match( /^[a-zA-Z]:/ ) === null ) { // use textureNode.properties.RelativeFilename // if it exists and it doesn't seem an absolute path fileName = relativeFilePath; } else { var split = filePath.split( /[\\\/]/ ); if ( split.length > 0 ) { fileName = split[ split.length - 1 ]; } else { fileName = filePath; } } var currentPath = loader.path; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { loader.setPath( undefined ); } var texture = loader.load( fileName ); texture.name = name; texture.FBX_ID = FBX_ID; var wrapModeU = textureNode.properties.WrapModeU; var wrapModeV = textureNode.properties.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; if ( 'Scaling' in textureNode.properties ) { var values = textureNode.properties.Scaling.value; texture.repeat.x = values[ 0 ]; texture.repeat.y = values[ 1 ]; } loader.setPath( currentPath ); return texture; } // Parse nodes in FBXTree.Objects.subNodes.Material function parseMaterials( FBXTree, textureMap, connections ) { var materialMap = new Map(); if ( 'Material' in FBXTree.Objects.subNodes ) { var materialNodes = FBXTree.Objects.subNodes.Material; for ( var nodeID in materialNodes ) { var material = parseMaterial( materialNodes[ nodeID ], textureMap, connections ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } // Parse single node in FBXTree.Objects.subNodes.Material // Materials are connected to texture maps in FBXTree.Objects.subNodes.Textures // FBX format currently only supports Lambert and Phong shading models function parseMaterial( materialNode, textureMap, connections ) { var FBX_ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.properties.ShadingModel; //Case where FBX wraps shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Ignore unused materials which don't have any connections. if ( ! connections.has( FBX_ID ) ) return null; var children = connections.get( FBX_ID ).children; var parameters = parseParameters( materialNode.properties, textureMap, children ); var material; switch ( type.toLowerCase() ) { case 'phong': material = new THREE.MeshPhongMaterial(); break; case 'lambert': material = new THREE.MeshLambertMaterial(); break; default: console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); material = new THREE.MeshPhongMaterial( { color: 0x3300ff } ); break; } material.setValues( parameters ); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material function parseParameters( properties, textureMap, childrenRelationships ) { var parameters = {}; if ( properties.BumpFactor ) { parameters.bumpScale = properties.BumpFactor.value; } if ( properties.Diffuse ) { parameters.color = parseColor( properties.Diffuse ); } if ( properties.DisplacementFactor ) { parameters.displacementScale = properties.DisplacementFactor.value; } if ( properties.ReflectionFactor ) { parameters.reflectivity = properties.ReflectionFactor.value; } if ( properties.Specular ) { parameters.specular = parseColor( properties.Specular ); } if ( properties.Shininess ) { parameters.shininess = properties.Shininess.value; } if ( properties.Emissive ) { parameters.emissive = parseColor( properties.Emissive ); } if ( properties.EmissiveFactor ) { parameters.emissiveIntensity = parseFloat( properties.EmissiveFactor.value ); } if ( properties.Opacity ) { parameters.opacity = parseFloat( properties.Opacity.value ); } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } for ( var childrenRelationshipsIndex = 0, childrenRelationshipsLength = childrenRelationships.length; childrenRelationshipsIndex < childrenRelationshipsLength; ++ childrenRelationshipsIndex ) { var relationship = childrenRelationships[ childrenRelationshipsIndex ]; var type = relationship.relationship; switch ( type ) { case 'Bump': parameters.bumpMap = textureMap.get( relationship.ID ); break; case 'DiffuseColor': parameters.map = textureMap.get( relationship.ID ); break; case 'DisplacementColor': parameters.displacementMap = textureMap.get( relationship.ID ); break; case 'EmissiveColor': parameters.emissiveMap = textureMap.get( relationship.ID ); break; case 'NormalMap': parameters.normalMap = textureMap.get( relationship.ID ); break; case 'ReflectionColor': parameters.envMap = textureMap.get( relationship.ID ); parameters.envMap.mapping = THREE.EquirectangularReflectionMapping; break; case 'SpecularColor': parameters.specularMap = textureMap.get( relationship.ID ); break; case 'TransparentColor': parameters.alphaMap = textureMap.get( relationship.ID ); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type ); break; } } return parameters; } // Parse nodes in FBXTree.Objects.subNodes.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. function parseDeformers( FBXTree, connections ) { var deformers = {}; if ( 'Deformer' in FBXTree.Objects.subNodes ) { var DeformerNodes = FBXTree.Objects.subNodes.Deformer; for ( var nodeID in DeformerNodes ) { var deformerNode = DeformerNodes[ nodeID ]; if ( deformerNode.attrType === 'Skin' ) { var conns = connections.get( parseInt( nodeID ) ); var skeleton = parseSkeleton( conns, DeformerNodes ); skeleton.FBX_ID = parseInt( nodeID ); deformers[ nodeID ] = skeleton; } } } return deformers; } // Parse single nodes in FBXTree.Objects.subNodes.Deformer // Generates a "Skeleton Representation" of FBX nodes based on an FBX Skin Deformer's connections // and an object containing SubDeformer nodes. function parseSkeleton( connections, DeformerNodes ) { var subDeformers = {}; var children = connections.children; for ( var i = 0, l = children.length; i < l; ++ i ) { var child = children[ i ]; var subDeformerNode = DeformerNodes[ child.ID ]; var subDeformer = { FBX_ID: child.ID, index: i, indices: [], weights: [], transform: new THREE.Matrix4().fromArray( subDeformerNode.subNodes.Transform.properties.a ), transformLink: new THREE.Matrix4().fromArray( subDeformerNode.subNodes.TransformLink.properties.a ), linkMode: subDeformerNode.properties.Mode }; if ( 'Indexes' in subDeformerNode.subNodes ) { subDeformer.indices = subDeformerNode.subNodes.Indexes.properties.a; subDeformer.weights = subDeformerNode.subNodes.Weights.properties.a; } subDeformers[ child.ID ] = subDeformer; } return { map: subDeformers, bones: [] }; } // Parse nodes in FBXTree.Objects.subNodes.Geometry function parseGeometries( FBXTree, connections, deformers ) { var geometryMap = new Map(); if ( 'Geometry' in FBXTree.Objects.subNodes ) { var geometryNodes = FBXTree.Objects.subNodes.Geometry; for ( var nodeID in geometryNodes ) { var relationships = connections.get( parseInt( nodeID ) ); var geo = parseGeometry( geometryNodes[ nodeID ], relationships, deformers ); geometryMap.set( parseInt( nodeID ), geo ); } } return geometryMap; } // Parse single node in FBXTree.Objects.subNodes.Geometry function parseGeometry( geometryNode, relationships, deformers ) { switch ( geometryNode.attrType ) { case 'Mesh': return parseMeshGeometry( geometryNode, relationships, deformers ); break; case 'NurbsCurve': return parseNurbsGeometry( geometryNode ); break; } } // Parse single node mesh geometry in FBXTree.Objects.subNodes.Geometry function parseMeshGeometry( geometryNode, relationships, deformers ) { for ( var i = 0; i < relationships.children.length; ++ i ) { var deformer = deformers[ relationships.children[ i ].ID ]; if ( deformer !== undefined ) break; } return genGeometry( geometryNode, deformer ); } // Generate a THREE.BufferGeometry from a node in FBXTree.Objects.subNodes.Geometry function genGeometry( geometryNode, deformer ) { var subNodes = geometryNode.subNodes; var vertexPositions = subNodes.Vertices.properties.a; var vertexIndices = subNodes.PolygonVertexIndex.properties.a; // create arrays to hold the final data used to build the buffergeometry var vertexBuffer = []; var normalBuffer = []; var colorsBuffer = []; var uvsBuffer = []; var materialIndexBuffer = []; var vertexWeightsBuffer = []; var weightsIndicesBuffer = []; if ( subNodes.LayerElementColor ) { var colorInfo = getColors( subNodes.LayerElementColor[ 0 ] ); } if ( subNodes.LayerElementMaterial ) { var materialInfo = getMaterials( subNodes.LayerElementMaterial[ 0 ] ); } if ( subNodes.LayerElementNormal ) { var normalInfo = getNormals( subNodes.LayerElementNormal[ 0 ] ); } if ( subNodes.LayerElementUV ) { var uvInfo = []; var i = 0; while ( subNodes.LayerElementUV[ i ] ) { uvInfo.push( getUVs( subNodes.LayerElementUV[ i ] ) ); i ++; } } var weightTable = {}; if ( deformer ) { var subDeformers = deformer.map; for ( var key in subDeformers ) { var subDeformer = subDeformers[ key ]; var indices = subDeformer.indices; for ( var j = 0; j < indices.length; j ++ ) { var index = indices[ j ]; var weight = subDeformer.weights[ j ]; if ( weightTable[ index ] === undefined ) weightTable[ index ] = []; weightTable[ index ].push( { id: subDeformer.index, weight: weight } ); } } } var polygonIndex = 0; var faceLength = 0; var displayedWeightsWarning = false; // these will hold data for a single face var vertexPositionIndexes = []; var faceNormals = []; var faceColors = []; var faceUVs = []; var faceWeights = []; var faceWeightIndices = []; for ( var polygonVertexIndex = 0; polygonVertexIndex < vertexIndices.length; polygonVertexIndex ++ ) { var vertexIndex = vertexIndices[ polygonVertexIndex ]; var endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex multiply by -1 and subtract 1: -3 * - 1 - 1 = 2 if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 vertexIndices[ polygonVertexIndex ] = vertexIndex; endOfFace = true; } var weightIndices = []; var weights = []; vertexPositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); if ( colorInfo ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, colorInfo ); faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( deformer ) { if ( weightTable[ vertexIndex ] !== undefined ) { var array = weightTable[ vertexIndex ]; for ( var j = 0, jl = array.length; j < jl; j ++ ) { weights.push( array[ j ].weight ); weightIndices.push( array[ j ].id ); } } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } var WIndex = [ 0, 0, 0, 0 ]; var Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { var currentWeight = weight; var currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; var tmp = WIndex[ comparedWeightIndex ]; WIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = WIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s for ( var i = weights.length; i < 4; ++ i ) { weights[ i ] = 0; weightIndices[ i ] = 0; } for ( var i = 0; i < 4; ++ i ) { faceWeights.push( weights[ i ] ); faceWeightIndices.push( weightIndices[ i ] ); } } if ( normalInfo ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, normalInfo ); faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( uvInfo ) { for ( var i = 0; i < uvInfo.length; i ++ ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uvInfo[ i ] ); if ( faceUVs[ i ] === undefined ) { faceUVs[ i ] = []; } faceUVs[ i ].push( data[ 0 ], data[ 1 ] ); } } faceLength ++; // we have reached the end of a face - it may have 4 sides though // in which case the data is split into to represent 3 sides faces if ( endOfFace ) { for ( var i = 2; i < faceLength; i ++ ) { vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 0 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 2 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 2 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 2 ] ] ); } if ( deformer ) { for ( var i = 2; i < faceLength; i ++ ) { vertexWeightsBuffer.push( faceWeights[ 0 ] ); vertexWeightsBuffer.push( faceWeights[ 1 ] ); vertexWeightsBuffer.push( faceWeights[ 2 ] ); vertexWeightsBuffer.push( faceWeights[ 3 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 1 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 2 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 3 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 1 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 2 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 0 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 3 ] ); } } if ( normalInfo ) { for ( var i = 2; i < faceLength; i ++ ) { normalBuffer.push( faceNormals[ 0 ] ); normalBuffer.push( faceNormals[ 1 ] ); normalBuffer.push( faceNormals[ 2 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 1 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 2 ] ); normalBuffer.push( faceNormals[ i * 3 ] ); normalBuffer.push( faceNormals[ i * 3 + 1 ] ); normalBuffer.push( faceNormals[ i * 3 + 2 ] ); } } if ( uvInfo ) { for ( var j = 0; j < uvInfo.length; j ++ ) { if ( uvsBuffer[ j ] === undefined ) uvsBuffer[ j ] = []; for ( var i = 2; i < faceLength; i ++ ) { uvsBuffer[ j ].push( faceUVs[ j ][ 0 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ 1 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 + 1 ] ); } } } if ( colorInfo ) { for ( var i = 2; i < faceLength; i ++ ) { colorsBuffer.push( faceColors[ 0 ] ); colorsBuffer.push( faceColors[ 1 ] ); colorsBuffer.push( faceColors[ 2 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 1 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 2 ] ); colorsBuffer.push( faceColors[ i * 3 ] ); colorsBuffer.push( faceColors[ i * 3 + 1 ] ); colorsBuffer.push( faceColors[ i * 3 + 2 ] ); } } if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) { var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, materialInfo )[ 0 ]; for ( var i = 2; i < faceLength; i ++ ) { materialIndexBuffer.push( materialIndex ); materialIndexBuffer.push( materialIndex ); materialIndexBuffer.push( materialIndex ); } } polygonIndex ++; endOfFace = false; faceLength = 0; // reset arrays for the next face vertexPositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } } var geo = new THREE.BufferGeometry(); geo.name = geometryNode.name; geo.addAttribute( 'position', new THREE.Float32BufferAttribute( vertexBuffer, 3 ) ); if ( colorsBuffer.length > 0 ) { geo.addAttribute( 'color', new THREE.Float32BufferAttribute( colorsBuffer, 3 ) ); } if ( deformer ) { geo.addAttribute( 'skinIndex', new THREE.Float32BufferAttribute( weightsIndicesBuffer, 4 ) ); geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( vertexWeightsBuffer, 4 ) ); // used later to bind the skeleton to the model geo.FBX_Deformer = deformer; } if ( normalBuffer.length > 0 ) { geo.addAttribute( 'normal', new THREE.Float32BufferAttribute( normalBuffer, 3 ) ); } if ( uvsBuffer.length > 0 ) { for ( var i = 0; i < uvsBuffer.length; i ++ ) { var name = 'uv' + ( i + 1 ).toString(); if ( i == 0 ) { name = 'uv'; } geo.addAttribute( name, new THREE.Float32BufferAttribute( uvsBuffer[ i ], 2 ) ); } } if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) { // Convert the material indices of each vertex into rendering groups on the geometry. var prevMaterialIndex = materialIndexBuffer[ 0 ]; var startIndex = 0; for ( var i = 0; i < materialIndexBuffer.length; ++ i ) { if ( materialIndexBuffer[ i ] !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = materialIndexBuffer[ i ]; startIndex = i; } } // the loop above doesn't add the last group, do that here. if ( geo.groups.length > 0 ) { var lastGroup = geo.groups[ geo.groups.length - 1 ]; var lastIndex = lastGroup.start + lastGroup.count; if ( lastIndex !== materialIndexBuffer.length ) { geo.addGroup( lastIndex, materialIndexBuffer.length - lastIndex, prevMaterialIndex ); } } // case where there are multiple materials but the whole geometry is only // using one of them if ( geo.groups.length === 0 ) { geo.addGroup( 0, materialIndexBuffer.length, materialIndexBuffer[ 0 ] ); } } return geo; } // Parse normal from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementNormal if it exists function getNormals( NormalNode ) { var mappingType = NormalNode.properties.MappingInformationType; var referenceType = NormalNode.properties.ReferenceInformationType; var buffer = NormalNode.subNodes.Normals.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { if ( 'NormalIndex' in NormalNode.subNodes ) { indexBuffer = NormalNode.subNodes.NormalIndex.properties.a; } else if ( 'NormalsIndex' in NormalNode.subNodes ) { indexBuffer = NormalNode.subNodes.NormalsIndex.properties.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementUV if it exists function getUVs( UVNode ) { var mappingType = UVNode.properties.MappingInformationType; var referenceType = UVNode.properties.ReferenceInformationType; var buffer = UVNode.subNodes.UV.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = UVNode.subNodes.UVIndex.properties.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementColor if it exists function getColors( ColorNode ) { var mappingType = ColorNode.properties.MappingInformationType; var referenceType = ColorNode.properties.ReferenceInformationType; var buffer = ColorNode.subNodes.Colors.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = ColorNode.subNodes.ColorIndex.properties.a; } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementMaterial if it exists function getMaterials( MaterialNode ) { var mappingType = MaterialNode.properties.MappingInformationType; var referenceType = MaterialNode.properties.ReferenceInformationType; if ( mappingType === 'NoMappingInformation' ) { return { dataSize: 1, buffer: [ 0 ], indices: [ 0 ], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = MaterialNode.subNodes.Materials.properties.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. var materialIndices = []; for ( var materialIndexBufferIndex = 0, materialIndexBufferLength = materialIndexBuffer.length; materialIndexBufferIndex < materialIndexBufferLength; ++ materialIndexBufferIndex ) { materialIndices.push( materialIndexBufferIndex ); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } // Functions use the infoObject and given indices to return value array of geometry. // infoObject can be materialInfo, normalInfo, UVInfo or colorInfo // polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). // polygonIndex - Index of polygon in geometry. // vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). var dataArray = []; var GetData = { ByPolygonVertex: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( polygonVertexIndex * infoObject.dataSize ); var to = ( polygonVertexIndex * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); }, IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonVertexIndex ]; var from = ( index * infoObject.dataSize ); var to = ( index * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, ByPolygon: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = polygonIndex * infoObject.dataSize; var to = polygonIndex * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); }, IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonIndex ]; var from = index * infoObject.dataSize; var to = index * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, ByVertice: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( vertexIndex * infoObject.dataSize ); var to = ( vertexIndex * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, AllSame: { IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = infoObject.indices[ 0 ] * infoObject.dataSize; var to = infoObject.indices[ 0 ] * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } } }; function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { return GetData[ infoObject.mappingType ][ infoObject.referenceType ]( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ); } // Generate a NurbGeometry from a node in FBXTree.Objects.subNodes.Geometry function parseNurbsGeometry( geometryNode ) { if ( THREE.NURBSCurve === undefined ) { console.error( 'THREE.FBXLoader: The loader relies on THREE.NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' ); return new THREE.BufferGeometry(); } var order = parseInt( geometryNode.properties.Order ); if ( isNaN( order ) ) { console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geometryNode.properties.Order, geometryNode.id ); return new THREE.BufferGeometry(); } var degree = order - 1; var knots = geometryNode.subNodes.KnotVector.properties.a; var controlPoints = []; var pointsValues = geometryNode.subNodes.Points.properties.a; for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) { controlPoints.push( new THREE.Vector4().fromArray( pointsValues, i ) ); } var startKnot, endKnot; if ( geometryNode.properties.Form === 'Closed' ) { controlPoints.push( controlPoints[ 0 ] ); } else if ( geometryNode.properties.Form === 'Periodic' ) { startKnot = degree; endKnot = knots.length - 1 - startKnot; for ( var i = 0; i < degree; ++ i ) { controlPoints.push( controlPoints[ i ] ); } } var curve = new THREE.NURBSCurve( degree, knots, controlPoints, startKnot, endKnot ); var vertices = curve.getPoints( controlPoints.length * 7 ); var positions = new Float32Array( vertices.length * 3 ); for ( var i = 0, l = vertices.length; i < l; ++ i ) { vertices[ i ].toArray( positions, i * 3 ); } var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); return geometry; } // parse nodes in FBXTree.Objects.subNodes.Model and generate a THREE.Group function parseScene( FBXTree, connections, deformers, geometryMap, materialMap ) { var sceneGraph = new THREE.Group(); var ModelNode = FBXTree.Objects.subNodes.Model; var modelArray = []; var modelMap = new Map(); for ( var nodeID in ModelNode ) { var id = parseInt( nodeID ); var node = ModelNode[ nodeID ]; var conns = connections.get( id ); var model = null; for ( var i = 0; i < conns.parents.length; ++ i ) { for ( var FBX_ID in deformers ) { var deformer = deformers[ FBX_ID ]; var subDeformers = deformer.map; var subDeformer = subDeformers[ conns.parents[ i ].ID ]; if ( subDeformer ) { var model2 = model; model = new THREE.Bone(); deformer.bones[ subDeformer.index ] = model; // seems like we need this not to make non-connected bone, maybe? // TODO: confirm if ( model2 !== null ) model.add( model2 ); } } } if ( ! model ) { switch ( node.attrType ) { // create a THREE.PerspectiveCamera or THREE.OrthographicCamera case 'Camera': var cameraAttribute; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var childID = conns.children[ childrenIndex ].ID; var attr = FBXTree.Objects.subNodes.NodeAttribute[ childID ]; if ( attr !== undefined && attr.properties !== undefined ) { cameraAttribute = attr.properties; } } if ( cameraAttribute === undefined ) { model = new THREE.Object3D(); } else { var type = 0; if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) { type = 1; } var nearClippingPlane = 1; if ( cameraAttribute.NearPlane !== undefined ) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } var farClippingPlane = 1000; if ( cameraAttribute.FarPlane !== undefined ) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } var width = window.innerWidth; var height = window.innerHeight; if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } var aspect = width / height; var fov = 45; if ( cameraAttribute.FieldOfView !== undefined ) { fov = cameraAttribute.FieldOfView.value; } switch ( type ) { case 0: // Perspective model = new THREE.PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane ); break; case 1: // Orthographic model = new THREE.OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane ); break; default: console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' ); model = new THREE.Object3D(); break; } } break; // Create a THREE.DirectionalLight, THREE.PointLight or THREE.SpotLight case 'Light': var lightAttribute; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var childID = conns.children[ childrenIndex ].ID; var attr = FBXTree.Objects.subNodes.NodeAttribute[ childID ]; if ( attr !== undefined && attr.properties !== undefined ) { lightAttribute = attr.properties; } } if ( lightAttribute === undefined ) { model = new THREE.Object3D(); } else { var type; // LightType can be undefined for Point lights if ( lightAttribute.LightType === undefined ) { type = 0; } else { type = lightAttribute.LightType.value; } var color = 0xffffff; if ( lightAttribute.Color !== undefined ) { color = parseColor( lightAttribute.Color.value ); } var intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100; // light disabled if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) { intensity = 0; } var distance = 0; if ( lightAttribute.FarAttenuationEnd !== undefined ) { if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value / 1000; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? var decay = 1; switch ( type ) { case 0: // Point model = new THREE.PointLight( color, intensity, distance, decay ); break; case 1: // Directional model = new THREE.DirectionalLight( color, intensity ); break; case 2: // Spot var angle = Math.PI / 3; if ( lightAttribute.InnerAngle !== undefined ) { angle = THREE.Math.degToRad( lightAttribute.InnerAngle.value ); } var penumbra = 0; if ( lightAttribute.OuterAngle !== undefined ) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = THREE.Math.degToRad( lightAttribute.OuterAngle.value ); penumbra = Math.max( penumbra, 1 ); } model = new THREE.SpotLight( color, intensity, distance, angle, penumbra, decay ); break; default: console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a THREE.PointLight.' ); model = new THREE.PointLight( color, intensity ); break; } if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) { model.castShadow = true; } } break; case 'Mesh': var geometry = null; var material = null; var materials = []; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var child = conns.children[ childrenIndex ]; if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } if ( materialMap.has( child.ID ) ) { materials.push( materialMap.get( child.ID ) ); } } if ( materials.length > 1 ) { material = materials; } else if ( materials.length > 0 ) { material = materials[ 0 ]; } else { material = new THREE.MeshPhongMaterial( { color: 0xcccccc } ); materials.push( material ); } if ( 'color' in geometry.attributes ) { for ( var materialIndex = 0, numMaterials = materials.length; materialIndex < numMaterials; ++ materialIndex ) { materials[ materialIndex ].vertexColors = THREE.VertexColors; } } if ( geometry.FBX_Deformer ) { for ( var materialsIndex = 0, materialsLength = materials.length; materialsIndex < materialsLength; ++ materialsIndex ) { materials[ materialsIndex ].skinning = true; } model = new THREE.SkinnedMesh( geometry, material ); } else { model = new THREE.Mesh( geometry, material ); } break; case 'NurbsCurve': var geometry = null; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var child = conns.children[ childrenIndex ]; if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } } // FBX does not list materials for Nurbs lines, so we'll just put our own in here. material = new THREE.LineBasicMaterial( { color: 0x3300ff, linewidth: 5 } ); model = new THREE.Line( geometry, material ); break; default: model = new THREE.Group(); break; } } model.name = THREE.PropertyBinding.sanitizeNodeName( node.attrName ); model.FBX_ID = id; modelArray.push( model ); modelMap.set( id, model ); } for ( var modelArrayIndex = 0, modelArrayLength = modelArray.length; modelArrayIndex < modelArrayLength; ++ modelArrayIndex ) { var model = modelArray[ modelArrayIndex ]; var node = ModelNode[ model.FBX_ID ]; if ( 'Lcl_Translation' in node.properties ) { model.position.fromArray( node.properties.Lcl_Translation.value ); } if ( 'Lcl_Rotation' in node.properties ) { var rotation = node.properties.Lcl_Rotation.value.map( THREE.Math.degToRad ); rotation.push( 'ZYX' ); model.rotation.fromArray( rotation ); } if ( 'Lcl_Scaling' in node.properties ) { model.scale.fromArray( node.properties.Lcl_Scaling.value ); } if ( 'PreRotation' in node.properties ) { var array = node.properties.PreRotation.value.map( THREE.Math.degToRad ); array[ 3 ] = 'ZYX'; var preRotations = new THREE.Euler().fromArray( array ); preRotations = new THREE.Quaternion().setFromEuler( preRotations ); var currentRotation = new THREE.Quaternion().setFromEuler( model.rotation ); preRotations.multiply( currentRotation ); model.rotation.setFromQuaternion( preRotations, 'ZYX' ); } // allow transformed pivots - see https://github.com/mrdoob/three.js/issues/11895 if ( 'GeometricTranslation' in node.properties ) { var array = node.properties.GeometricTranslation.value; model.traverse( function ( child ) { if ( child.geometry ) { child.geometry.translate( array[ 0 ], array[ 1 ], array[ 2 ] ); } } ); } if ( 'LookAtProperty' in node.properties ) { var conns = connections.get( model.FBX_ID ); for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var child = conns.children[ childrenIndex ]; if ( child.relationship === 'LookAtProperty' ) { var lookAtTarget = FBXTree.Objects.subNodes.Model[ child.ID ]; if ( 'Lcl_Translation' in lookAtTarget.properties ) { var pos = lookAtTarget.properties.Lcl_Translation.value; // DirectionalLight, SpotLight if ( model.target !== undefined ) { model.target.position.set( pos[ 0 ], pos[ 1 ], pos[ 2 ] ); sceneGraph.add( model.target ); } else { // Cameras and other Object3Ds model.lookAt( new THREE.Vector3( pos[ 0 ], pos[ 1 ], pos[ 2 ] ) ); } } } } } var conns = connections.get( model.FBX_ID ); for ( var parentIndex = 0; parentIndex < conns.parents.length; parentIndex ++ ) { var pIndex = findIndex( modelArray, function ( mod ) { return mod.FBX_ID === conns.parents[ parentIndex ].ID; } ); if ( pIndex > - 1 ) { modelArray[ pIndex ].add( model ); break; } } if ( model.parent === null ) { sceneGraph.add( model ); } } // Now with the bones created, we can update the skeletons and bind them to the skinned meshes. sceneGraph.updateMatrixWorld( true ); var worldMatrices = new Map(); // Put skeleton into bind pose. if ( 'Pose' in FBXTree.Objects.subNodes ) { var BindPoseNode = FBXTree.Objects.subNodes.Pose; for ( var nodeID in BindPoseNode ) { if ( BindPoseNode[ nodeID ].attrType === 'BindPose' ) { BindPoseNode = BindPoseNode[ nodeID ]; break; } } var PoseNode = BindPoseNode.subNodes.PoseNode; for ( var PoseNodeIndex = 0, PoseNodeLength = PoseNode.length; PoseNodeIndex < PoseNodeLength; ++ PoseNodeIndex ) { var node = PoseNode[ PoseNodeIndex ]; var rawMatWrd = new THREE.Matrix4().fromArray( node.subNodes.Matrix.properties.a ); worldMatrices.set( parseInt( node.properties.Node ), rawMatWrd ); } } for ( var FBX_ID in deformers ) { var deformer = deformers[ FBX_ID ]; var subDeformers = deformer.map; for ( var key in subDeformers ) { var subDeformer = subDeformers[ key ]; var subDeformerIndex = subDeformer.index; var bone = deformer.bones[ subDeformerIndex ]; if ( ! worldMatrices.has( bone.FBX_ID ) ) { break; } var mat = worldMatrices.get( bone.FBX_ID ); bone.matrixWorld.copy( mat ); } // Now that skeleton is in bind pose, bind to model. deformer.skeleton = new THREE.Skeleton( deformer.bones ); var conns = connections.get( deformer.FBX_ID ); var parents = conns.parents; for ( var parentsIndex = 0, parentsLength = parents.length; parentsIndex < parentsLength; ++ parentsIndex ) { var parent = parents[ parentsIndex ]; if ( geometryMap.has( parent.ID ) ) { var geoID = parent.ID; var geoConns = connections.get( geoID ); for ( var i = 0; i < geoConns.parents.length; ++ i ) { if ( modelMap.has( geoConns.parents[ i ].ID ) ) { var model = modelMap.get( geoConns.parents[ i ].ID ); model.bind( deformer.skeleton, model.matrixWorld ); break; } } } } } //Skeleton is now bound, return objects to starting world positions. sceneGraph.updateMatrixWorld( true ); // Silly hack with the animation parsing. We're gonna pretend the scene graph has a skeleton // to attach animations to, since FBX treats animations as animations for the entire scene, // not just for individual objects. sceneGraph.skeleton = { bones: modelArray }; var animations = parseAnimations( FBXTree, connections, sceneGraph ); addAnimations( sceneGraph, animations ); // Parse ambient color - if it's not set to black (default), create an ambient light if ( 'GlobalSettings' in FBXTree && 'AmbientColor' in FBXTree.GlobalSettings.properties ) { var ambientColor = FBXTree.GlobalSettings.properties.AmbientColor.value; var r = ambientColor[ 0 ]; var g = ambientColor[ 1 ]; var b = ambientColor[ 2 ]; if ( r !== 0 || g !== 0 || b !== 0 ) { var color = new THREE.Color( r, g, b ); sceneGraph.add( new THREE.AmbientLight( color, 1 ) ); } } return sceneGraph; } // Parses animation information from nodes in // FBXTree.Objects.subNodes.AnimationCurve ( connected to AnimationCurveNode ) // FBXTree.Objects.subNodes.AnimationCurveNode ( connected to AnimationLayer and an animated property in some other node ) // FBXTree.Objects.subNodes.AnimationLayer ( connected to AnimationStack ) // FBXTree.Objects.subNodes.AnimationStack function parseAnimations( FBXTree, connections, sceneGraph ) { var rawNodes = FBXTree.Objects.subNodes.AnimationCurveNode; var rawCurves = FBXTree.Objects.subNodes.AnimationCurve; var rawLayers = FBXTree.Objects.subNodes.AnimationLayer; var rawStacks = FBXTree.Objects.subNodes.AnimationStack; var fps = 30; // default framerate if ( 'GlobalSettings' in FBXTree && 'TimeMode' in FBXTree.GlobalSettings.properties ) { /* Autodesk time mode documentation can be found here: * http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/class_fbx_time.html,topicNumber=cpp_ref_class_fbx_time_html */ var timeModeEnum = [ 30, // 0: eDefaultMode 120, // 1: eFrames120 100, // 2: eFrames100 60, // 3: eFrames60 50, // 4: eFrames50 48, // 5: eFrames48 30, // 6: eFrames30 (black and white NTSC ) 30, // 7: eFrames30Drop 29.97, // 8: eNTSCDropFrame 29.97, // 90: eNTSCFullFrame 25, // 10: ePal ( PAL/SECAM ) 24, // 11: eFrames24 (Film/Cinema) 1, // 12: eFrames1000 (use for date time)) 23.976, // 13: eFilmFullFrame 30, // 14: eCustom: use GlobalSettings.properties.CustomFrameRate.value 96, // 15: eFrames96 72, // 16: eFrames72 59.94, // 17: eFrames59dot94 ]; var eMode = FBXTree.GlobalSettings.properties.TimeMode.value; if ( eMode === 14 ) { if ( 'CustomFrameRate' in FBXTree.GlobalSettings.properties ) { fps = FBXTree.GlobalSettings.properties.CustomFrameRate.value; fps = ( fps === - 1 ) ? 30 : fps; } } else if ( eMode <= 17 ) { // for future proofing - if more eModes get added, they will default to 30fps fps = timeModeEnum[ eMode ]; } } var returnObject = { curves: new Map(), layers: {}, stacks: {}, length: 0, fps: fps, frames: 0 }; var animationCurveNodes = []; for ( var nodeID in rawNodes ) { if ( nodeID.match( /\d+/ ) ) { var animationNode = parseAnimationNode( FBXTree, rawNodes[ nodeID ], connections, sceneGraph ); animationCurveNodes.push( animationNode ); } } var tmpMap = new Map(); for ( var animationCurveNodeIndex = 0; animationCurveNodeIndex < animationCurveNodes.length; ++ animationCurveNodeIndex ) { if ( animationCurveNodes[ animationCurveNodeIndex ] === null ) { continue; } tmpMap.set( animationCurveNodes[ animationCurveNodeIndex ].id, animationCurveNodes[ animationCurveNodeIndex ] ); } var animationCurves = []; for ( nodeID in rawCurves ) { if ( nodeID.match( /\d+/ ) ) { var animationCurve = parseAnimationCurve( rawCurves[ nodeID ] ); // seems like this check would be necessary? if ( ! connections.has( animationCurve.id ) ) continue; animationCurves.push( animationCurve ); var firstParentConn = connections.get( animationCurve.id ).parents[ 0 ]; var firstParentID = firstParentConn.ID; var firstParentRelationship = firstParentConn.relationship; var axis = ''; if ( firstParentRelationship.match( /X/ ) ) { axis = 'x'; } else if ( firstParentRelationship.match( /Y/ ) ) { axis = 'y'; } else if ( firstParentRelationship.match( /Z/ ) ) { axis = 'z'; } else { continue; } tmpMap.get( firstParentID ).curves[ axis ] = animationCurve; } } tmpMap.forEach( function ( curveNode ) { var id = curveNode.containerBoneID; if ( ! returnObject.curves.has( id ) ) { returnObject.curves.set( id, { T: null, R: null, S: null } ); } returnObject.curves.get( id )[ curveNode.attr ] = curveNode; if ( curveNode.attr === 'R' ) { var curves = curveNode.curves; // Some FBX files have an AnimationCurveNode // which isn't any connected to any AnimationCurve. // Setting animation parameter for them here. if ( curves.x === null ) { curves.x = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } if ( curves.y === null ) { curves.y = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } if ( curves.z === null ) { curves.z = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } curves.x.values = curves.x.values.map( THREE.Math.degToRad ); curves.y.values = curves.y.values.map( THREE.Math.degToRad ); curves.z.values = curves.z.values.map( THREE.Math.degToRad ); if ( curveNode.preRotations !== null ) { var preRotations = new THREE.Euler().setFromVector3( curveNode.preRotations, 'ZYX' ); preRotations = new THREE.Quaternion().setFromEuler( preRotations ); var frameRotation = new THREE.Euler(); var frameRotationQuaternion = new THREE.Quaternion(); for ( var frame = 0; frame < curves.x.times.length; ++ frame ) { frameRotation.set( curves.x.values[ frame ], curves.y.values[ frame ], curves.z.values[ frame ], 'ZYX' ); frameRotationQuaternion.setFromEuler( frameRotation ).premultiply( preRotations ); frameRotation.setFromQuaternion( frameRotationQuaternion, 'ZYX' ); curves.x.values[ frame ] = frameRotation.x; curves.y.values[ frame ] = frameRotation.y; curves.z.values[ frame ] = frameRotation.z; } } } } ); for ( var nodeID in rawLayers ) { var layer = []; var children = connections.get( parseInt( nodeID ) ).children; for ( var childIndex = 0; childIndex < children.length; childIndex ++ ) { // Skip lockInfluenceWeights if ( tmpMap.has( children[ childIndex ].ID ) ) { var curveNode = tmpMap.get( children[ childIndex ].ID ); var boneID = curveNode.containerBoneID; if ( layer[ boneID ] === undefined ) { layer[ boneID ] = { T: null, R: null, S: null }; } layer[ boneID ][ curveNode.attr ] = curveNode; } } returnObject.layers[ nodeID ] = layer; } for ( var nodeID in rawStacks ) { var layers = []; var children = connections.get( parseInt( nodeID ) ).children; var timestamps = { max: 0, min: Number.MAX_VALUE }; for ( var childIndex = 0; childIndex < children.length; ++ childIndex ) { var currentLayer = returnObject.layers[ children[ childIndex ].ID ]; if ( currentLayer !== undefined ) { layers.push( currentLayer ); for ( var currentLayerIndex = 0, currentLayerLength = currentLayer.length; currentLayerIndex < currentLayerLength; ++ currentLayerIndex ) { var layer = currentLayer[ currentLayerIndex ]; if ( layer ) { getCurveNodeMaxMinTimeStamps( layer, timestamps ); } } } } // Do we have an animation clip with actual length? if ( timestamps.max > timestamps.min ) { returnObject.stacks[ nodeID ] = { name: rawStacks[ nodeID ].attrName, layers: layers, length: timestamps.max - timestamps.min, frames: ( timestamps.max - timestamps.min ) * returnObject.fps }; } } return returnObject; } function parseAnimationNode( FBXTree, animationCurveNode, connections, sceneGraph ) { var rawModels = FBXTree.Objects.subNodes.Model; var returnObject = { id: animationCurveNode.id, attr: animationCurveNode.attrName, internalID: animationCurveNode.id, attrX: false, attrY: false, attrZ: false, containerBoneID: - 1, containerID: - 1, curves: { x: null, y: null, z: null }, preRotations: null }; if ( returnObject.attr.match( /S|R|T/ ) ) { for ( var attributeKey in animationCurveNode.properties ) { if ( attributeKey.match( /X/ ) ) { returnObject.attrX = true; } if ( attributeKey.match( /Y/ ) ) { returnObject.attrY = true; } if ( attributeKey.match( /Z/ ) ) { returnObject.attrZ = true; } } } else { return null; } var conns = connections.get( returnObject.id ); var containerIndices = conns.parents; for ( var containerIndicesIndex = containerIndices.length - 1; containerIndicesIndex >= 0; -- containerIndicesIndex ) { var boneID = findIndex( sceneGraph.skeleton.bones, function ( bone ) { return bone.FBX_ID === containerIndices[ containerIndicesIndex ].ID; } ); if ( boneID > - 1 ) { returnObject.containerBoneID = boneID; returnObject.containerID = containerIndices[ containerIndicesIndex ].ID; var model = rawModels[ returnObject.containerID.toString() ]; if ( 'PreRotation' in model.properties ) { returnObject.preRotations = parseVector3( model.properties.PreRotation ).multiplyScalar( Math.PI / 180 ); } break; } } return returnObject; } function parseAnimationCurve( animationCurve ) { return { version: null, id: animationCurve.id, internalID: animationCurve.id, times: animationCurve.subNodes.KeyTime.properties.a.map( convertFBXTimeToSeconds ), values: animationCurve.subNodes.KeyValueFloat.properties.a, attrFlag: animationCurve.subNodes.KeyAttrFlags.properties.a, attrData: animationCurve.subNodes.KeyAttrDataFloat.properties.a, }; } // Sets the maxTimeStamp and minTimeStamp variables if it has timeStamps that are either larger or smaller // than the max or min respectively. function getCurveNodeMaxMinTimeStamps( layer, timestamps ) { if ( layer.R ) { getCurveMaxMinTimeStamp( layer.R.curves, timestamps ); } if ( layer.S ) { getCurveMaxMinTimeStamp( layer.S.curves, timestamps ); } if ( layer.T ) { getCurveMaxMinTimeStamp( layer.T.curves, timestamps ); } } // Sets the maxTimeStamp and minTimeStamp if one of the curve's time stamps // exceeds the maximum or minimum. function getCurveMaxMinTimeStamp( curve, timestamps ) { if ( curve.x ) { getCurveAxisMaxMinTimeStamps( curve.x, timestamps ); } if ( curve.y ) { getCurveAxisMaxMinTimeStamps( curve.y, timestamps ); } if ( curve.z ) { getCurveAxisMaxMinTimeStamps( curve.z, timestamps ); } } // Sets the maxTimeStamp and minTimeStamp if one of its timestamps exceeds the maximum or minimum. function getCurveAxisMaxMinTimeStamps( axis, timestamps ) { timestamps.max = axis.times[ axis.times.length - 1 ] > timestamps.max ? axis.times[ axis.times.length - 1 ] : timestamps.max; timestamps.min = axis.times[ 0 ] < timestamps.min ? axis.times[ 0 ] : timestamps.min; } function addAnimations( group, animations ) { if ( group.animations === undefined ) { group.animations = []; } var stacks = animations.stacks; for ( var key in stacks ) { var stack = stacks[ key ]; var animationData = { name: stack.name, fps: animations.fps, length: stack.length, hierarchy: [] }; var bones = group.skeleton.bones; for ( var bonesIndex = 0, bonesLength = bones.length; bonesIndex < bonesLength; ++ bonesIndex ) { var bone = bones[ bonesIndex ]; var name = bone.name.replace( /.*:/, '' ); var parentIndex = findIndex( bones, function ( parentBone ) { return bone.parent === parentBone; } ); animationData.hierarchy.push( { parent: parentIndex, name: name, keys: [] } ); } for ( var frame = 0; frame <= stack.frames; frame ++ ) { for ( var bonesIndex = 0, bonesLength = bones.length; bonesIndex < bonesLength; ++ bonesIndex ) { var bone = bones[ bonesIndex ]; var boneIndex = bonesIndex; var animationNode = stack.layers[ 0 ][ boneIndex ]; for ( var hierarchyIndex = 0, hierarchyLength = animationData.hierarchy.length; hierarchyIndex < hierarchyLength; ++ hierarchyIndex ) { var node = animationData.hierarchy[ hierarchyIndex ]; if ( node.name === bone.name ) { node.keys.push( generateKey( animations, animationNode, bone, frame ) ); } } } } group.animations.push( THREE.AnimationClip.parseAnimation( animationData, bones ) ); } } var euler = new THREE.Euler(); var quaternion = new THREE.Quaternion(); function generateKey( animations, animationNode, bone, frame ) { var key = { time: frame / animations.fps, pos: bone.position.toArray(), rot: bone.quaternion.toArray(), scl: bone.scale.toArray() }; if ( animationNode === undefined ) return key; euler.setFromQuaternion( bone.quaternion, 'ZYX', false ); try { if ( hasCurve( animationNode, 'T' ) && hasKeyOnFrame( animationNode.T, frame ) ) { if ( animationNode.T.curves.x.values[ frame ] ) { key.pos[ 0 ] = animationNode.T.curves.x.values[ frame ]; } if ( animationNode.T.curves.y.values[ frame ] ) { key.pos[ 1 ] = animationNode.T.curves.y.values[ frame ]; } if ( animationNode.T.curves.z.values[ frame ] ) { key.pos[ 2 ] = animationNode.T.curves.z.values[ frame ]; } } if ( hasCurve( animationNode, 'R' ) && hasKeyOnFrame( animationNode.R, frame ) ) { // Only update the euler's values if rotation is defined for the axis on this frame if ( animationNode.R.curves.x.values[ frame ] ) { euler.x = animationNode.R.curves.x.values[ frame ]; } if ( animationNode.R.curves.y.values[ frame ] ) { euler.y = animationNode.R.curves.y.values[ frame ]; } if ( animationNode.R.curves.z.values[ frame ] ) { euler.z = animationNode.R.curves.z.values[ frame ]; } quaternion.setFromEuler( euler ); key.rot = quaternion.toArray(); } if ( hasCurve( animationNode, 'S' ) && hasKeyOnFrame( animationNode.S, frame ) ) { if ( animationNode.T.curves.x.values[ frame ] ) { key.scl[ 0 ] = animationNode.S.curves.x.values[ frame ]; } if ( animationNode.T.curves.y.values[ frame ] ) { key.scl[ 1 ] = animationNode.S.curves.y.values[ frame ]; } if ( animationNode.T.curves.z.values[ frame ] ) { key.scl[ 2 ] = animationNode.S.curves.z.values[ frame ]; } } } catch ( error ) { // Curve is not fully plotted. console.log( 'THREE.FBXLoader: ', bone ); console.log( 'THREE.FBXLoader: ', error ); } return key; } var AXES = [ 'x', 'y', 'z' ]; function hasCurve( animationNode, attribute ) { if ( animationNode === undefined ) { return false; } var attributeNode = animationNode[ attribute ]; if ( ! attributeNode ) { return false; } return AXES.every( function ( key ) { return attributeNode.curves[ key ] !== null; } ); } function hasKeyOnFrame( attributeNode, frame ) { return AXES.every( function ( key ) { return isKeyExistOnFrame( attributeNode.curves[ key ], frame ); } ); } function isKeyExistOnFrame( curve, frame ) { return curve.values[ frame ] !== undefined; } // parse an FBX file in ASCII format function TextParser() {} Object.assign( TextParser.prototype, { getPrevNode: function () { return this.nodeStack[ this.currentIndent - 2 ]; }, getCurrentNode: function () { return this.nodeStack[ this.currentIndent - 1 ]; }, getCurrentProp: function () { return this.currentProp; }, pushStack: function ( node ) { this.nodeStack.push( node ); this.currentIndent += 1; }, popStack: function () { this.nodeStack.pop(); this.currentIndent -= 1; }, setCurrentProp: function ( val, name ) { this.currentProp = val; this.currentPropName = name; }, parse: function ( text ) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ''; var split = text.split( '\n' ); for ( var lineNum = 0, lineLength = split.length; lineNum < lineLength; lineNum ++ ) { var l = split[ lineNum ]; // skip comment line if ( l.match( /^[\s\t]*;/ ) ) { continue; } // skip empty line if ( l.match( /^[\s\t]*$/ ) ) { continue; } // beginning of node var beginningOfNodeExp = new RegExp( '^\\t{' + this.currentIndent + '}(\\w+):(.*){', '' ); var match = l.match( beginningOfNodeExp ); if ( match ) { var nodeName = match[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' ); var nodeAttrs = match[ 2 ].split( ',' ); for ( var i = 0, l = nodeAttrs.length; i < l; i ++ ) { nodeAttrs[ i ] = nodeAttrs[ i ].trim().replace( /^"/, '' ).replace( /"$/, '' ); } this.parseNodeBegin( l, nodeName, nodeAttrs || null ); continue; } // node's property var propExp = new RegExp( '^\\t{' + ( this.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' ); var match = l.match( propExp ); if ( match ) { var propName = match[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); var propValue = match[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); // for special case: base64 image data follows "Content: ," line // Content: , // "iVB..." if ( propName === 'Content' && propValue === ',' ) { propValue = split[ ++ lineNum ].replace( /"/g, '' ).replace( /,$/, '' ).trim(); } this.parseNodeProperty( l, propName, propValue ); continue; } // end of node var endOfNodeExp = new RegExp( '^\\t{' + ( this.currentIndent - 1 ) + '}}' ); if ( l.match( endOfNodeExp ) ) { this.nodeEnd(); continue; } // large arrays are split over multiple lines terminated with a ',' character // if this is encountered the line needs to be joined to the previous line if ( l.match( /^[^\s\t}]/ ) ) { this.parseNodePropertyContinued( l ); } } return this.allNodes; }, parseNodeBegin: function ( line, nodeName, nodeAttrs ) { var node = { 'name': nodeName, properties: {}, 'subNodes': {} }; var attrs = this.parseNodeAttr( nodeAttrs ); var currentNode = this.getCurrentNode(); // a top node if ( this.currentIndent === 0 ) { this.allNodes.add( nodeName, node ); } else { // a subnode // if the subnode already exists, append it if ( nodeName in currentNode.subNodes ) { var tmp = currentNode.subNodes[ nodeName ]; if ( this.isFlattenNode( currentNode.subNodes[ nodeName ] ) ) { if ( attrs.id === '' ) { currentNode.subNodes[ nodeName ] = []; currentNode.subNodes[ nodeName ].push( tmp ); } else { currentNode.subNodes[ nodeName ] = {}; currentNode.subNodes[ nodeName ][ tmp.id ] = tmp; } } if ( attrs.id === '' ) { currentNode.subNodes[ nodeName ].push( node ); } else { currentNode.subNodes[ nodeName ][ attrs.id ] = node; } } else if ( typeof attrs.id === 'number' || attrs.id.match( /^\d+$/ ) ) { currentNode.subNodes[ nodeName ] = {}; currentNode.subNodes[ nodeName ][ attrs.id ] = node; } else { currentNode.subNodes[ nodeName ] = node; } } // for this ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ // NodeAttribute: 1001463072, "NodeAttribute::", "LimbNode" { if ( nodeAttrs ) { node.id = attrs.id; node.attrName = attrs.name; node.attrType = attrs.type; } this.pushStack( node ); }, parseNodeAttr: function ( attrs ) { var id = attrs[ 0 ]; if ( attrs[ 0 ] !== '' ) { id = parseInt( attrs[ 0 ] ); if ( isNaN( id ) ) { id = attrs[ 0 ]; } } var name = '', type = ''; if ( attrs.length > 1 ) { name = attrs[ 1 ].replace( /^(\w+)::/, '' ); type = attrs[ 2 ]; } return { id: id, name: name, type: type }; }, parseNodeProperty: function ( line, propName, propValue ) { var currentNode = this.getCurrentNode(); var parentName = currentNode.name; // special case where the parent node is something like "Properties70" // these children nodes must treated carefully if ( parentName !== undefined ) { var propMatch = parentName.match( /Properties(\d)+/ ); if ( propMatch ) { this.parseNodeSpecialProperty( line, propName, propValue ); return; } } // Connections if ( propName === 'C' ) { var connProps = propValue.split( ',' ).slice( 1 ); var from = parseInt( connProps[ 0 ] ); var to = parseInt( connProps[ 1 ] ); var rest = propValue.split( ',' ).slice( 3 ); rest = rest.map( function ( elem ) { return elem.trim().replace( /^"/, '' ); } ); propName = 'connections'; propValue = [ from, to ]; append( propValue, rest ); if ( currentNode.properties[ propName ] === undefined ) { currentNode.properties[ propName ] = []; } } // Node if ( propName === 'Node' ) { var id = parseInt( propValue ); currentNode.properties.id = id; currentNode.id = id; } // already exists in properties, then append this if ( propName in currentNode.properties ) { if ( Array.isArray( currentNode.properties[ propName ] ) ) { currentNode.properties[ propName ].push( propValue ); } else { currentNode.properties[ propName ] += propValue; } } else { if ( Array.isArray( currentNode.properties[ propName ] ) ) { currentNode.properties[ propName ].push( propValue ); } else { currentNode.properties[ propName ] = propValue; } } this.setCurrentProp( currentNode.properties, propName ); // convert string to array, unless it ends in ',' in which case more will be added to it if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) { currentNode.properties.a = parseNumberArray( propValue ); } }, parseNodePropertyContinued: function ( line ) { this.currentProp[ this.currentPropName ] += line; // if the line doesn't end in ',' we have reached the end of the property value // so convert the string to an array if ( line.slice( - 1 ) !== ',' ) { var currentNode = this.getCurrentNode(); currentNode.properties.a = parseNumberArray( currentNode.properties.a ); } }, parseNodeSpecialProperty: function ( line, propName, propValue ) { // split this // P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 // into array like below // ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] var props = propValue.split( '",' ); for ( var i = 0, l = props.length; i < l; i ++ ) { props[ i ] = props[ i ].trim().replace( /^\"/, '' ).replace( /\s/, '_' ); } var innerPropName = props[ 0 ]; var innerPropType1 = props[ 1 ]; var innerPropType2 = props[ 2 ]; var innerPropFlag = props[ 3 ]; var innerPropValue = props[ 4 ]; // cast value to its type switch ( innerPropType1 ) { case 'int': case 'enum': case 'bool': case 'ULongLong': innerPropValue = parseInt( innerPropValue ); break; case 'double': case 'Number': case 'FieldOfView': innerPropValue = parseFloat( innerPropValue ); break; case 'ColorRGB': case 'Vector3D': case 'Lcl_Translation': case 'Lcl_Rotation': case 'Lcl_Scaling': innerPropValue = parseNumberArray( innerPropValue ); break; } // CAUTION: these props must append to parent's parent this.getPrevNode().properties[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; this.setCurrentProp( this.getPrevNode().properties, innerPropName ); }, nodeEnd: function () { this.popStack(); }, isFlattenNode: function ( node ) { return ( 'subNodes' in node && 'properties' in node ) ? true : false; } } ); // Parse an FBX file in Binary format function BinaryParser() {} Object.assign( BinaryParser.prototype, { parse: function ( buffer ) { var reader = new BinaryReader( buffer ); reader.skip( 23 ); // skip magic 23 bytes var version = reader.getUint32(); console.log( 'THREE.FBXLoader: FBX binary version: ' + version ); var allNodes = new FBXTree(); while ( ! this.endOfContent( reader ) ) { var node = this.parseNode( reader, version ); if ( node !== null ) allNodes.add( node.name, node ); } return allNodes; }, // Check if reader has reached the end of content. endOfContent: function ( reader ) { // footer size: 160bytes + 16-byte alignment padding // - 16bytes: magic // - padding til 16-byte alignment (at least 1byte?) // (seems like some exporters embed fixed 15 or 16bytes?) // - 4bytes: magic // - 4bytes: version // - 120bytes: zero // - 16bytes: magic if ( reader.size() % 16 === 0 ) { return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } }, parseNode: function ( reader, version ) { // The first three data sizes depends on version. var endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); var numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // note: do not remove this even if you get a linter warning as it moves the buffer forward var propertyListLen = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); var nameLen = reader.getUint8(); var name = reader.getString( nameLen ); // Regards this node as NULL-record if endOffset is zero if ( endOffset === 0 ) return null; var propertyList = []; for ( var i = 0; i < numProperties; i ++ ) { propertyList.push( this.parseProperty( reader ) ); } // Regards the first three elements in propertyList as id, attrName, and attrType var id = propertyList.length > 0 ? propertyList[ 0 ] : ''; var attrName = propertyList.length > 1 ? propertyList[ 1 ] : ''; var attrType = propertyList.length > 2 ? propertyList[ 2 ] : ''; var subNodes = {}; var properties = {}; var isSingleProperty = false; // check if this node represents just a single property // like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} if ( numProperties === 1 && reader.getOffset() === endOffset ) { isSingleProperty = true; } while ( endOffset > reader.getOffset() ) { var node = this.parseNode( reader, version ); if ( node === null ) continue; // special case: child node is single property if ( node.singleProperty === true ) { var value = node.propertyList[ 0 ]; if ( Array.isArray( value ) ) { node.properties[ node.name ] = node.propertyList[ 0 ]; subNodes[ node.name ] = node; node.properties.a = value; } else { properties[ node.name ] = value; } continue; } // parse connections if ( name === 'Connections' && node.name === 'C' ) { var array = []; for ( var i = 1, il = node.propertyList.length; i < il; i ++ ) { array[ i - 1 ] = node.propertyList[ i ]; } if ( properties.connections === undefined ) { properties.connections = []; } properties.connections.push( array ); continue; } // special case: child node is Properties\d+ // move child node's properties to this node. if ( node.name.match( /^Properties\d+$/ ) ) { var keys = Object.keys( node.properties ); for ( var i = 0, il = keys.length; i < il; i ++ ) { var key = keys[ i ]; properties[ key ] = node.properties[ key ]; } continue; } // parse 'properties70' if ( name.match( /^Properties\d+$/ ) && node.name === 'P' ) { var innerPropName = node.propertyList[ 0 ]; var innerPropType1 = node.propertyList[ 1 ]; var innerPropType2 = node.propertyList[ 2 ]; var innerPropFlag = node.propertyList[ 3 ]; var innerPropValue; if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) { innerPropValue = [ node.propertyList[ 4 ], node.propertyList[ 5 ], node.propertyList[ 6 ] ]; } else { innerPropValue = node.propertyList[ 4 ]; } // this will be copied to parent, see above properties[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; continue; } if ( subNodes[ node.name ] === undefined ) { if ( typeof node.id === 'number' ) { subNodes[ node.name ] = {}; subNodes[ node.name ][ node.id ] = node; } else { subNodes[ node.name ] = node; } } else { if ( node.id === '' ) { if ( ! Array.isArray( subNodes[ node.name ] ) ) { subNodes[ node.name ] = [ subNodes[ node.name ] ]; } subNodes[ node.name ].push( node ); } else { if ( subNodes[ node.name ][ node.id ] === undefined ) { subNodes[ node.name ][ node.id ] = node; } else { // conflict id. irregular? if ( ! Array.isArray( subNodes[ node.name ][ node.id ] ) ) { subNodes[ node.name ][ node.id ] = [ subNodes[ node.name ][ node.id ] ]; } subNodes[ node.name ][ node.id ].push( node ); } } } } return { singleProperty: isSingleProperty, id: id, attrName: attrName, attrType: attrType, name: name, properties: properties, propertyList: propertyList, // raw property list used by parent subNodes: subNodes }; }, parseProperty: function ( reader ) { var type = reader.getChar(); switch ( type ) { case 'C': return reader.getBoolean(); case 'D': return reader.getFloat64(); case 'F': return reader.getFloat32(); case 'I': return reader.getInt32(); case 'L': return reader.getInt64(); case 'R': var length = reader.getUint32(); return reader.getArrayBuffer( length ); case 'S': var length = reader.getUint32(); return reader.getString( length ); case 'Y': return reader.getInt16(); case 'b': case 'c': case 'd': case 'f': case 'i': case 'l': var arrayLength = reader.getUint32(); var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed var compressedLength = reader.getUint32(); if ( encoding === 0 ) { switch ( type ) { case 'b': case 'c': return reader.getBooleanArray( arrayLength ); case 'd': return reader.getFloat64Array( arrayLength ); case 'f': return reader.getFloat32Array( arrayLength ); case 'i': return reader.getInt32Array( arrayLength ); case 'l': return reader.getInt64Array( arrayLength ); } } if ( window.Zlib === undefined ) { throw new Error( 'THREE.FBXLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' ); } var inflate = new Zlib.Inflate( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); // eslint-disable-line no-undef var reader2 = new BinaryReader( inflate.decompress().buffer ); switch ( type ) { case 'b': case 'c': return reader2.getBooleanArray( arrayLength ); case 'd': return reader2.getFloat64Array( arrayLength ); case 'f': return reader2.getFloat32Array( arrayLength ); case 'i': return reader2.getInt32Array( arrayLength ); case 'l': return reader2.getInt64Array( arrayLength ); } default: throw new Error( 'THREE.FBXLoader: Unknown property type ' + type ); } } } ); function BinaryReader( buffer, littleEndian ) { this.dv = new DataView( buffer ); this.offset = 0; this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true; } Object.assign( BinaryReader.prototype, { getOffset: function () { return this.offset; }, size: function () { return this.dv.buffer.byteLength; }, skip: function ( length ) { this.offset += length; }, // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. getBoolean: function () { return ( this.getUint8() & 1 ) === 1; }, getBooleanArray: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getBoolean() ); } return a; }, getInt8: function () { var value = this.dv.getInt8( this.offset ); this.offset += 1; return value; }, getInt8Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt8() ); } return a; }, getUint8: function () { var value = this.dv.getUint8( this.offset ); this.offset += 1; return value; }, getUint8Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint8() ); } return a; }, getInt16: function () { var value = this.dv.getInt16( this.offset, this.littleEndian ); this.offset += 2; return value; }, getInt16Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt16() ); } return a; }, getUint16: function () { var value = this.dv.getUint16( this.offset, this.littleEndian ); this.offset += 2; return value; }, getUint16Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint16() ); } return a; }, getInt32: function () { var value = this.dv.getInt32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getInt32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt32() ); } return a; }, getUint32: function () { var value = this.dv.getUint32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getUint32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint32() ); } return a; }, // JavaScript doesn't support 64-bit integer so calculate this here // 1 << 32 will return 1 so using multiply operation instead here. // There's a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer getInt64: function () { var low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } // calculate negative value if ( high & 0x80000000 ) { high = ~ high & 0xFFFFFFFF; low = ~ low & 0xFFFFFFFF; if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF; low = ( low + 1 ) & 0xFFFFFFFF; return - ( high * 0x100000000 + low ); } return high * 0x100000000 + low; }, getInt64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt64() ); } return a; }, // Note: see getInt64() comment getUint64: function () { var low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 0x100000000 + low; }, getUint64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint64() ); } return a; }, getFloat32: function () { var value = this.dv.getFloat32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getFloat32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat32() ); } return a; }, getFloat64: function () { var value = this.dv.getFloat64( this.offset, this.littleEndian ); this.offset += 8; return value; }, getFloat64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat64() ); } return a; }, getArrayBuffer: function ( size ) { var value = this.dv.buffer.slice( this.offset, this.offset + size ); this.offset += size; return value; }, getChar: function () { return String.fromCharCode( this.getUint8() ); }, getString: function ( size ) { var s = ''; while ( size > 0 ) { var value = this.getUint8(); size --; if ( value === 0 ) break; s += String.fromCharCode( value ); } // Manage UTF8 encoding s = decodeURIComponent( escape( s ) ); this.skip( size ); return s; } } ); // FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format) // and BinaryParser( FBX Binary format) function FBXTree() {} Object.assign( FBXTree.prototype, { add: function ( key, val ) { this[ key ] = val; }, } ); function isFbxFormatBinary( buffer ) { var CORRECT = 'Kaydara FBX Binary \0'; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length ); } function isFbxFormatASCII( text ) { var CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ]; var cursor = 0; function read( offset ) { var result = text[ offset - 1 ]; text = text.slice( cursor + offset ); cursor ++; return result; } for ( var i = 0; i < CORRECT.length; ++ i ) { var num = read( 1 ); if ( num === CORRECT[ i ] ) { return false; } } return true; } function getFbxVersion( text ) { var versionRegExp = /FBXVersion: (\d+)/; var match = text.match( versionRegExp ); if ( match ) { var version = parseInt( match[ 1 ] ); return version; } throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' ); } // Converts FBX ticks into real time seconds. function convertFBXTimeToSeconds( time ) { return time / 46186158000; } // Parses comma separated list of numbers and returns them an array. // Used internally by the TextParser function parseNumberArray( value ) { var array = value.split( ',' ); for ( var i = 0, l = array.length; i < l; i ++ ) { array[ i ] = parseFloat( array[ i ] ); } return array; } function parseVector3( property ) { return new THREE.Vector3().fromArray( property.value ); } function parseColor( property ) { return new THREE.Color().fromArray( property.value ); } // Converts ArrayBuffer to String. function convertArrayBufferToString( buffer, from, to ) { if ( from === undefined ) from = 0; if ( to === undefined ) to = buffer.byteLength; var array = new Uint8Array( buffer, from, to ); if ( window.TextDecoder !== undefined ) { return new TextDecoder().decode( array ); } var s = ''; for ( var i = 0, il = array.length; i < il; i ++ ) { s += String.fromCharCode( array[ i ] ); } return s; } function findIndex( array, func ) { for ( var i = 0, l = array.length; i < l; i ++ ) { if ( func( array[ i ] ) ) return i; } return - 1; } function append( a, b ) { for ( var i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) { a[ j ] = b[ i ]; } } function slice( a, b, from, to ) { for ( var i = from, j = 0; i < to; i ++, j ++ ) { a[ j ] = b[ i ]; } return a; } } )();