import { CubeUVReflectionMapping, GammaEncoding, LinearEncoding, NoToneMapping, NearestFilter, NoBlending, RGBDEncoding, RGBEEncoding, RGBEFormat, RGBM16Encoding, RGBM7Encoding, UnsignedByteType, sRGBEncoding } from '../constants.js'; import { BufferAttribute } from '../core/BufferAttribute.js'; import { BufferGeometry } from '../core/BufferGeometry.js'; import { Mesh } from '../objects/Mesh.js'; import { OrthographicCamera } from '../cameras/OrthographicCamera.js'; import { PerspectiveCamera } from '../cameras/PerspectiveCamera.js'; import { RawShaderMaterial } from '../materials/RawShaderMaterial.js'; import { Vector2 } from '../math/Vector2.js'; import { Vector3 } from '../math/Vector3.js'; import { Color } from '../math/Color.js'; import { WebGLRenderTarget } from '../renderers/WebGLRenderTarget.js'; import { MeshBasicMaterial } from '../materials/MeshBasicMaterial.js'; import { BoxGeometry } from '../geometries/BoxGeometry.js'; import { BackSide } from '../constants.js'; const LOD_MIN = 4; const LOD_MAX = 8; const SIZE_MAX = Math.pow( 2, LOD_MAX ); // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const ENCODINGS = { [ LinearEncoding ]: 0, [ sRGBEncoding ]: 1, [ RGBEEncoding ]: 2, [ RGBM7Encoding ]: 3, [ RGBM16Encoding ]: 4, [ RGBDEncoding ]: 5, [ GammaEncoding ]: 6 }; const backgroundMaterial = new MeshBasicMaterial( { side: BackSide, depthWrite: false, depthTest: false, } ); const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes(); const _clearColor = /*@__PURE__*/ new Color(); let _oldTarget = null; // Golden Ratio const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3( 1, 1, 1 ), /*@__PURE__*/ new Vector3( - 1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, - 1 ), /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._blurMaterial = _getBlurShader( MAX_SAMPLES ); this._equirectShader = null; this._cubemapShader = null; this._compileMaterial( this._blurMaterial ); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(); this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular( equirectangular ) { return this._fromTexture( equirectangular ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap( cubemap ) { return this._fromTexture( cubemap ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if ( this._cubemapShader === null ) { this._cubemapShader = _getCubemapShader(); this._compileMaterial( this._cubemapShader ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if ( this._equirectShader === null ) { this._equirectShader = _getEquirectShader(); this._compileMaterial( this._equirectShader ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._blurMaterial.dispose(); if ( this._cubemapShader !== null ) this._cubemapShader.dispose(); if ( this._equirectShader !== null ) this._equirectShader.dispose(); for ( let i = 0; i < _lodPlanes.length; i ++ ) { _lodPlanes[ i ].dispose(); } } // private interface _cleanup( outputTarget ) { this._pingPongRenderTarget.dispose(); this._renderer.setRenderTarget( _oldTarget ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture ) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets( texture ); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets( texture ) { // warning: null texture is valid const params = { magFilter: NearestFilter, minFilter: NearestFilter, generateMipmaps: false, type: UnsignedByteType, format: RGBEFormat, encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget( params ); cubeUVRenderTarget.depthBuffer = texture ? false : true; this._pingPongRenderTarget = _createRenderTarget( params ); return cubeUVRenderTarget; } _compileMaterial( material ) { const tmpMesh = new Mesh( _lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); const upSign = [ 1, - 1, 1, 1, 1, 1 ]; const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const outputEncoding = renderer.outputEncoding; const toneMapping = renderer.toneMapping; renderer.getClearColor( _clearColor ); renderer.toneMapping = NoToneMapping; renderer.outputEncoding = LinearEncoding; renderer.autoClear = false; let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundMaterial.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy( _clearColor ); useSolidColor = true; } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col == 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col == 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } _setViewport( cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } renderer.render( scene, cubeCamera ); } renderer.toneMapping = toneMapping; renderer.outputEncoding = outputEncoding; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; if ( texture.isCubeTexture ) { if ( this._cubemapShader == null ) { this._cubemapShader = _getCubemapShader(); } } else { if ( this._equirectShader == null ) { this._equirectShader = _getEquirectShader(); } } const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; const mesh = new Mesh( _lodPlanes[ 0 ], material ); const uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; if ( ! texture.isCubeTexture ) { uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height ); } uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ]; uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ]; _setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for ( let i = 1; i < TOTAL_LODS; i ++ ) { const sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] ); const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial ); const blurUniforms = blurMaterial.uniforms; const pixels = _sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i == 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn; blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; const outputSize = _sizeLods[ lodOut ]; const x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize ); const y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); } } function _isLDR( texture ) { if ( texture === undefined || texture.type !== UnsignedByteType ) return false; return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; } function _createPlanes() { const _lodPlanes = []; const _sizeLods = []; const _sigmas = []; let lod = LOD_MAX; for ( let i = 0; i < TOTAL_LODS; i ++ ) { const sizeLod = Math.pow( 2, lod ); _sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > LOD_MAX - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ]; } else if ( i == 0 ) { sigma = 0; } _sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 1 ); const min = - texelSize / 2; const max = 1 + texelSize / 2; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : - 1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); const fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); _lodPlanes.push( planes ); if ( lod > LOD_MIN ) { lod --; } } return { _lodPlanes, _sizeLods, _sigmas }; } function _createRenderTarget( params ) { const cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader( maxSamples ) { const weights = new Float32Array( maxSamples ); const poleAxis = new Vector3( 0, 1, 0 ); const shaderMaterial = new RawShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': maxSamples }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; ${ _getEncodings() } #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectShader() { const texelSize = new Vector2( 1, 1 ); const shaderMaterial = new RawShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null }, 'texelSize': { value: texelSize }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform vec2 texelSize; ${ _getEncodings() } #include void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); vec2 f = fract( uv / texelSize - 0.5 ); uv -= f * texelSize; vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x += texelSize.x; vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.y += texelSize.y; vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x -= texelSize.x; vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; vec3 tm = mix( tl, tr, f.x ); vec3 bm = mix( bl, br, f.x ); gl_FragColor.rgb = mix( tm, bm, f.y ); gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCubemapShader() { const shaderMaterial = new RawShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform samplerCube envMap; ${ _getEncodings() } void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb; gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute vec3 position; attribute vec2 uv; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } `; } function _getEncodings() { return /* glsl */` uniform int inputEncoding; uniform int outputEncoding; #include vec4 inputTexelToLinear( vec4 value ) { if ( inputEncoding == 0 ) { return value; } else if ( inputEncoding == 1 ) { return sRGBToLinear( value ); } else if ( inputEncoding == 2 ) { return RGBEToLinear( value ); } else if ( inputEncoding == 3 ) { return RGBMToLinear( value, 7.0 ); } else if ( inputEncoding == 4 ) { return RGBMToLinear( value, 16.0 ); } else if ( inputEncoding == 5 ) { return RGBDToLinear( value, 256.0 ); } else { return GammaToLinear( value, 2.2 ); } } vec4 linearToOutputTexel( vec4 value ) { if ( outputEncoding == 0 ) { return value; } else if ( outputEncoding == 1 ) { return LinearTosRGB( value ); } else if ( outputEncoding == 2 ) { return LinearToRGBE( value ); } else if ( outputEncoding == 3 ) { return LinearToRGBM( value, 7.0 ); } else if ( outputEncoding == 4 ) { return LinearToRGBM( value, 16.0 ); } else if ( outputEncoding == 5 ) { return LinearToRGBD( value, 256.0 ); } else { return LinearToGamma( value, 2.2 ); } } vec4 envMapTexelToLinear( vec4 color ) { return inputTexelToLinear( color ); } `; } export { PMREMGenerator };