提交 64516d6d 编写于 作者: B Bernard Xiong

Merge pull request #275 from aozima/pulls

Pulls
......@@ -23,10 +23,10 @@
#include "stm32f10x_rcc.h"
/* STM32F107 ETH dirver options */
#define CHECKSUM_BY_HARDWARE
#define MII_MODE /* MII mode for STM3210C-EVAL Board (MB784) (check jumpers setting) */
//#define RMII_MODE /* RMII mode for STM3210C-EVAL Board (MB784) (check jumpers setting) */
#define CHECKSUM_BY_HARDWARE 1 /* 0: disable. 1: use hardware checksum. */
#define RMII_MODE 0 /* 0: MII MODE, 1: RMII MODE. */
#define STM32_ETH_IO_REMAP 1 /* 0: default, 1: remap RXD to PDx. */
#define USE_MCO 1 /* 0: disable, 1: PA8(MCO) out 25Mhz(MII) or 50Mhz(RMII). */
/** @addtogroup STM32_ETH_Driver
* @brief ETH driver modules
......@@ -124,8 +124,8 @@ ETH_DMADESCTypeDef *DMAPTPRxDescToGet;
*/
void ETH_DeInit(void)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ETH_MAC, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ETH_MAC, DISABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ETH_MAC, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_ETH_MAC, DISABLE);
}
/**
......@@ -138,216 +138,216 @@ void ETH_DeInit(void)
*/
uint32_t ETH_Init(ETH_InitTypeDef* ETH_InitStruct)
{
uint32_t tmpreg = 0;
__IO uint32_t i = 0;
RCC_ClocksTypeDef rcc_clocks;
uint32_t hclk = 60000000;
__IO uint32_t timeout = 0;
/* Check the parameters */
/* MAC --------------------------*/
assert_param(IS_ETH_AUTONEGOTIATION(ETH_InitStruct->ETH_AutoNegotiation));
assert_param(IS_ETH_WATCHDOG(ETH_InitStruct->ETH_Watchdog));
assert_param(IS_ETH_JABBER(ETH_InitStruct->ETH_Jabber));
assert_param(IS_ETH_INTER_FRAME_GAP(ETH_InitStruct->ETH_InterFrameGap));
assert_param(IS_ETH_CARRIER_SENSE(ETH_InitStruct->ETH_CarrierSense));
assert_param(IS_ETH_SPEED(ETH_InitStruct->ETH_Speed));
assert_param(IS_ETH_RECEIVE_OWN(ETH_InitStruct->ETH_ReceiveOwn));
assert_param(IS_ETH_LOOPBACK_MODE(ETH_InitStruct->ETH_LoopbackMode));
assert_param(IS_ETH_DUPLEX_MODE(ETH_InitStruct->ETH_Mode));
assert_param(IS_ETH_CHECKSUM_OFFLOAD(ETH_InitStruct->ETH_ChecksumOffload));
assert_param(IS_ETH_RETRY_TRANSMISSION(ETH_InitStruct->ETH_RetryTransmission));
assert_param(IS_ETH_AUTOMATIC_PADCRC_STRIP(ETH_InitStruct->ETH_AutomaticPadCRCStrip));
assert_param(IS_ETH_BACKOFF_LIMIT(ETH_InitStruct->ETH_BackOffLimit));
assert_param(IS_ETH_DEFERRAL_CHECK(ETH_InitStruct->ETH_DeferralCheck));
assert_param(IS_ETH_RECEIVE_ALL(ETH_InitStruct->ETH_ReceiveAll));
assert_param(IS_ETH_SOURCE_ADDR_FILTER(ETH_InitStruct->ETH_SourceAddrFilter));
assert_param(IS_ETH_CONTROL_FRAMES(ETH_InitStruct->ETH_PassControlFrames));
assert_param(IS_ETH_BROADCAST_FRAMES_RECEPTION(ETH_InitStruct->ETH_BroadcastFramesReception));
assert_param(IS_ETH_DESTINATION_ADDR_FILTER(ETH_InitStruct->ETH_DestinationAddrFilter));
assert_param(IS_ETH_PROMISCUOUS_MODE(ETH_InitStruct->ETH_PromiscuousMode));
assert_param(IS_ETH_MULTICAST_FRAMES_FILTER(ETH_InitStruct->ETH_MulticastFramesFilter));
assert_param(IS_ETH_UNICAST_FRAMES_FILTER(ETH_InitStruct->ETH_UnicastFramesFilter));
assert_param(IS_ETH_PAUSE_TIME(ETH_InitStruct->ETH_PauseTime));
assert_param(IS_ETH_ZEROQUANTA_PAUSE(ETH_InitStruct->ETH_ZeroQuantaPause));
assert_param(IS_ETH_PAUSE_LOW_THRESHOLD(ETH_InitStruct->ETH_PauseLowThreshold));
assert_param(IS_ETH_UNICAST_PAUSE_FRAME_DETECT(ETH_InitStruct->ETH_UnicastPauseFrameDetect));
assert_param(IS_ETH_RECEIVE_FLOWCONTROL(ETH_InitStruct->ETH_ReceiveFlowControl));
assert_param(IS_ETH_TRANSMIT_FLOWCONTROL(ETH_InitStruct->ETH_TransmitFlowControl));
assert_param(IS_ETH_VLAN_TAG_COMPARISON(ETH_InitStruct->ETH_VLANTagComparison));
assert_param(IS_ETH_VLAN_TAG_IDENTIFIER(ETH_InitStruct->ETH_VLANTagIdentifier));
/* DMA --------------------------*/
assert_param(IS_ETH_DROP_TCPIP_CHECKSUM_FRAME(ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame));
assert_param(IS_ETH_RECEIVE_STORE_FORWARD(ETH_InitStruct->ETH_ReceiveStoreForward));
assert_param(IS_ETH_FLUSH_RECEIVE_FRAME(ETH_InitStruct->ETH_FlushReceivedFrame));
assert_param(IS_ETH_TRANSMIT_STORE_FORWARD(ETH_InitStruct->ETH_TransmitStoreForward));
assert_param(IS_ETH_TRANSMIT_THRESHOLD_CONTROL(ETH_InitStruct->ETH_TransmitThresholdControl));
assert_param(IS_ETH_FORWARD_ERROR_FRAMES(ETH_InitStruct->ETH_ForwardErrorFrames));
assert_param(IS_ETH_FORWARD_UNDERSIZED_GOOD_FRAMES(ETH_InitStruct->ETH_ForwardUndersizedGoodFrames));
assert_param(IS_ETH_RECEIVE_THRESHOLD_CONTROL(ETH_InitStruct->ETH_ReceiveThresholdControl));
assert_param(IS_ETH_SECOND_FRAME_OPERATE(ETH_InitStruct->ETH_SecondFrameOperate));
assert_param(IS_ETH_ADDRESS_ALIGNED_BEATS(ETH_InitStruct->ETH_AddressAlignedBeats));
assert_param(IS_ETH_FIXED_BURST(ETH_InitStruct->ETH_FixedBurst));
assert_param(IS_ETH_RXDMA_BURST_LENGTH(ETH_InitStruct->ETH_RxDMABurstLength));
assert_param(IS_ETH_TXDMA_BURST_LENGTH(ETH_InitStruct->ETH_TxDMABurstLength));
assert_param(IS_ETH_DMA_DESC_SKIP_LENGTH(ETH_InitStruct->ETH_DescriptorSkipLength));
assert_param(IS_ETH_DMA_ARBITRATION_ROUNDROBIN_RXTX(ETH_InitStruct->ETH_DMAArbitration));
/*-------------------------------- MAC Config ------------------------------*/
/*---------------------- ETHERNET MACMIIAR Configuration -------------------*/
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
/* Clear CSR Clock Range CR[2:0] bits */
tmpreg &= MACMIIAR_CR_MASK;
/* Get hclk frequency value */
RCC_GetClocksFreq(&rcc_clocks);
hclk = rcc_clocks.HCLK_Frequency;
/* Set CR bits depending on hclk value */
if((hclk >= 20000000)&&(hclk < 35000000))
{
/* CSR Clock Range between 20-35 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div16;
}
else if((hclk >= 35000000)&&(hclk < 60000000))
{
/* CSR Clock Range between 35-60 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div26;
}
else /* ((hclk >= 60000000)&&(hclk <= 72000000)) */
{
/* CSR Clock Range between 60-72 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div42;
}
/* Write to ETHERNET MAC MIIAR: Configure the ETHERNET CSR Clock Range */
ETH->MACMIIAR = (uint32_t)tmpreg;
/*------------------------ ETHERNET MACCR Configuration --------------------*/
/* Get the ETHERNET MACCR value */
tmpreg = ETH->MACCR;
/* Clear WD, PCE, PS, TE and RE bits */
tmpreg &= MACCR_CLEAR_MASK;
/* Set the WD bit according to ETH_Watchdog value */
/* Set the JD: bit according to ETH_Jabber value */
/* Set the IFG bit according to ETH_InterFrameGap value */
/* Set the DCRS bit according to ETH_CarrierSense value */
/* Set the FES bit according to ETH_Speed value */
/* Set the DO bit according to ETH_ReceiveOwn value */
/* Set the LM bit according to ETH_LoopbackMode value */
/* Set the DM bit according to ETH_Mode value */
/* Set the IPC bit according to ETH_ChecksumOffload value */
/* Set the DR bit according to ETH_RetryTransmission value */
/* Set the ACS bit according to ETH_AutomaticPadCRCStrip value */
/* Set the BL bit according to ETH_BackOffLimit value */
/* Set the DC bit according to ETH_DeferralCheck value */
tmpreg |= (uint32_t)(ETH_InitStruct->ETH_Watchdog |
ETH_InitStruct->ETH_Jabber |
ETH_InitStruct->ETH_InterFrameGap |
ETH_InitStruct->ETH_CarrierSense |
ETH_InitStruct->ETH_Speed |
ETH_InitStruct->ETH_ReceiveOwn |
ETH_InitStruct->ETH_LoopbackMode |
ETH_InitStruct->ETH_Mode |
ETH_InitStruct->ETH_ChecksumOffload |
ETH_InitStruct->ETH_RetryTransmission |
ETH_InitStruct->ETH_AutomaticPadCRCStrip |
ETH_InitStruct->ETH_BackOffLimit |
ETH_InitStruct->ETH_DeferralCheck);
/* Write to ETHERNET MACCR */
ETH->MACCR = (uint32_t)tmpreg;
/*----------------------- ETHERNET MACFFR Configuration --------------------*/
/* Set the RA bit according to ETH_ReceiveAll value */
/* Set the SAF and SAIF bits according to ETH_SourceAddrFilter value */
/* Set the PCF bit according to ETH_PassControlFrames value */
/* Set the DBF bit according to ETH_BroadcastFramesReception value */
/* Set the DAIF bit according to ETH_DestinationAddrFilter value */
/* Set the PR bit according to ETH_PromiscuousMode value */
/* Set the PM, HMC and HPF bits according to ETH_MulticastFramesFilter value */
/* Set the HUC and HPF bits according to ETH_UnicastFramesFilter value */
/* Write to ETHERNET MACFFR */
ETH->MACFFR = (uint32_t)(ETH_InitStruct->ETH_ReceiveAll |
ETH_InitStruct->ETH_SourceAddrFilter |
ETH_InitStruct->ETH_PassControlFrames |
ETH_InitStruct->ETH_BroadcastFramesReception |
ETH_InitStruct->ETH_DestinationAddrFilter |
ETH_InitStruct->ETH_PromiscuousMode |
ETH_InitStruct->ETH_MulticastFramesFilter |
ETH_InitStruct->ETH_UnicastFramesFilter);
/*--------------- ETHERNET MACHTHR and MACHTLR Configuration ---------------*/
/* Write to ETHERNET MACHTHR */
ETH->MACHTHR = (uint32_t)ETH_InitStruct->ETH_HashTableHigh;
/* Write to ETHERNET MACHTLR */
ETH->MACHTLR = (uint32_t)ETH_InitStruct->ETH_HashTableLow;
/*----------------------- ETHERNET MACFCR Configuration --------------------*/
/* Get the ETHERNET MACFCR value */
tmpreg = ETH->MACFCR;
/* Clear xx bits */
tmpreg &= MACFCR_CLEAR_MASK;
/* Set the PT bit according to ETH_PauseTime value */
/* Set the DZPQ bit according to ETH_ZeroQuantaPause value */
/* Set the PLT bit according to ETH_PauseLowThreshold value */
/* Set the UP bit according to ETH_UnicastPauseFrameDetect value */
/* Set the RFE bit according to ETH_ReceiveFlowControl value */
/* Set the TFE bit according to ETH_TransmitFlowControl value */
tmpreg |= (uint32_t)((ETH_InitStruct->ETH_PauseTime << 16) |
ETH_InitStruct->ETH_ZeroQuantaPause |
ETH_InitStruct->ETH_PauseLowThreshold |
ETH_InitStruct->ETH_UnicastPauseFrameDetect |
ETH_InitStruct->ETH_ReceiveFlowControl |
ETH_InitStruct->ETH_TransmitFlowControl);
/* Write to ETHERNET MACFCR */
ETH->MACFCR = (uint32_t)tmpreg;
/*----------------------- ETHERNET MACVLANTR Configuration -----------------*/
/* Set the ETV bit according to ETH_VLANTagComparison value */
/* Set the VL bit according to ETH_VLANTagIdentifier value */
ETH->MACVLANTR = (uint32_t)(ETH_InitStruct->ETH_VLANTagComparison |
ETH_InitStruct->ETH_VLANTagIdentifier);
/*-------------------------------- DMA Config ------------------------------*/
/*----------------------- ETHERNET DMAOMR Configuration --------------------*/
/* Get the ETHERNET DMAOMR value */
tmpreg = ETH->DMAOMR;
/* Clear xx bits */
tmpreg &= DMAOMR_CLEAR_MASK;
/* Set the DT bit according to ETH_DropTCPIPChecksumErrorFrame value */
/* Set the RSF bit according to ETH_ReceiveStoreForward value */
/* Set the DFF bit according to ETH_FlushReceivedFrame value */
/* Set the TSF bit according to ETH_TransmitStoreForward value */
/* Set the TTC bit according to ETH_TransmitThresholdControl value */
/* Set the FEF bit according to ETH_ForwardErrorFrames value */
/* Set the FUF bit according to ETH_ForwardUndersizedGoodFrames value */
/* Set the RTC bit according to ETH_ReceiveThresholdControl value */
/* Set the OSF bit according to ETH_SecondFrameOperate value */
tmpreg |= (uint32_t)(ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame |
ETH_InitStruct->ETH_ReceiveStoreForward |
ETH_InitStruct->ETH_FlushReceivedFrame |
ETH_InitStruct->ETH_TransmitStoreForward |
ETH_InitStruct->ETH_TransmitThresholdControl |
ETH_InitStruct->ETH_ForwardErrorFrames |
ETH_InitStruct->ETH_ForwardUndersizedGoodFrames |
ETH_InitStruct->ETH_ReceiveThresholdControl |
ETH_InitStruct->ETH_SecondFrameOperate);
/* Write to ETHERNET DMAOMR */
ETH->DMAOMR = (uint32_t)tmpreg;
/*----------------------- ETHERNET DMABMR Configuration --------------------*/
/* Set the AAL bit according to ETH_AddressAlignedBeats value */
/* Set the FB bit according to ETH_FixedBurst value */
/* Set the RPBL and 4*PBL bits according to ETH_RxDMABurstLength value */
/* Set the PBL and 4*PBL bits according to ETH_TxDMABurstLength value */
/* Set the DSL bit according to ETH_DesciptorSkipLength value */
/* Set the PR and DA bits according to ETH_DMAArbitration value */
ETH->DMABMR = (uint32_t)(ETH_InitStruct->ETH_AddressAlignedBeats |
ETH_InitStruct->ETH_FixedBurst |
ETH_InitStruct->ETH_RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */
ETH_InitStruct->ETH_TxDMABurstLength |
(ETH_InitStruct->ETH_DescriptorSkipLength << 2) |
ETH_InitStruct->ETH_DMAArbitration |
ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */
/* Return Ethernet configuration success */
return ETH_SUCCESS;
uint32_t tmpreg = 0;
__IO uint32_t i = 0;
RCC_ClocksTypeDef rcc_clocks;
uint32_t hclk = 60000000;
__IO uint32_t timeout = 0;
/* Check the parameters */
/* MAC --------------------------*/
assert_param(IS_ETH_AUTONEGOTIATION(ETH_InitStruct->ETH_AutoNegotiation));
assert_param(IS_ETH_WATCHDOG(ETH_InitStruct->ETH_Watchdog));
assert_param(IS_ETH_JABBER(ETH_InitStruct->ETH_Jabber));
assert_param(IS_ETH_INTER_FRAME_GAP(ETH_InitStruct->ETH_InterFrameGap));
assert_param(IS_ETH_CARRIER_SENSE(ETH_InitStruct->ETH_CarrierSense));
assert_param(IS_ETH_SPEED(ETH_InitStruct->ETH_Speed));
assert_param(IS_ETH_RECEIVE_OWN(ETH_InitStruct->ETH_ReceiveOwn));
assert_param(IS_ETH_LOOPBACK_MODE(ETH_InitStruct->ETH_LoopbackMode));
assert_param(IS_ETH_DUPLEX_MODE(ETH_InitStruct->ETH_Mode));
assert_param(IS_ETH_CHECKSUM_OFFLOAD(ETH_InitStruct->ETH_ChecksumOffload));
assert_param(IS_ETH_RETRY_TRANSMISSION(ETH_InitStruct->ETH_RetryTransmission));
assert_param(IS_ETH_AUTOMATIC_PADCRC_STRIP(ETH_InitStruct->ETH_AutomaticPadCRCStrip));
assert_param(IS_ETH_BACKOFF_LIMIT(ETH_InitStruct->ETH_BackOffLimit));
assert_param(IS_ETH_DEFERRAL_CHECK(ETH_InitStruct->ETH_DeferralCheck));
assert_param(IS_ETH_RECEIVE_ALL(ETH_InitStruct->ETH_ReceiveAll));
assert_param(IS_ETH_SOURCE_ADDR_FILTER(ETH_InitStruct->ETH_SourceAddrFilter));
assert_param(IS_ETH_CONTROL_FRAMES(ETH_InitStruct->ETH_PassControlFrames));
assert_param(IS_ETH_BROADCAST_FRAMES_RECEPTION(ETH_InitStruct->ETH_BroadcastFramesReception));
assert_param(IS_ETH_DESTINATION_ADDR_FILTER(ETH_InitStruct->ETH_DestinationAddrFilter));
assert_param(IS_ETH_PROMISCUOUS_MODE(ETH_InitStruct->ETH_PromiscuousMode));
assert_param(IS_ETH_MULTICAST_FRAMES_FILTER(ETH_InitStruct->ETH_MulticastFramesFilter));
assert_param(IS_ETH_UNICAST_FRAMES_FILTER(ETH_InitStruct->ETH_UnicastFramesFilter));
assert_param(IS_ETH_PAUSE_TIME(ETH_InitStruct->ETH_PauseTime));
assert_param(IS_ETH_ZEROQUANTA_PAUSE(ETH_InitStruct->ETH_ZeroQuantaPause));
assert_param(IS_ETH_PAUSE_LOW_THRESHOLD(ETH_InitStruct->ETH_PauseLowThreshold));
assert_param(IS_ETH_UNICAST_PAUSE_FRAME_DETECT(ETH_InitStruct->ETH_UnicastPauseFrameDetect));
assert_param(IS_ETH_RECEIVE_FLOWCONTROL(ETH_InitStruct->ETH_ReceiveFlowControl));
assert_param(IS_ETH_TRANSMIT_FLOWCONTROL(ETH_InitStruct->ETH_TransmitFlowControl));
assert_param(IS_ETH_VLAN_TAG_COMPARISON(ETH_InitStruct->ETH_VLANTagComparison));
assert_param(IS_ETH_VLAN_TAG_IDENTIFIER(ETH_InitStruct->ETH_VLANTagIdentifier));
/* DMA --------------------------*/
assert_param(IS_ETH_DROP_TCPIP_CHECKSUM_FRAME(ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame));
assert_param(IS_ETH_RECEIVE_STORE_FORWARD(ETH_InitStruct->ETH_ReceiveStoreForward));
assert_param(IS_ETH_FLUSH_RECEIVE_FRAME(ETH_InitStruct->ETH_FlushReceivedFrame));
assert_param(IS_ETH_TRANSMIT_STORE_FORWARD(ETH_InitStruct->ETH_TransmitStoreForward));
assert_param(IS_ETH_TRANSMIT_THRESHOLD_CONTROL(ETH_InitStruct->ETH_TransmitThresholdControl));
assert_param(IS_ETH_FORWARD_ERROR_FRAMES(ETH_InitStruct->ETH_ForwardErrorFrames));
assert_param(IS_ETH_FORWARD_UNDERSIZED_GOOD_FRAMES(ETH_InitStruct->ETH_ForwardUndersizedGoodFrames));
assert_param(IS_ETH_RECEIVE_THRESHOLD_CONTROL(ETH_InitStruct->ETH_ReceiveThresholdControl));
assert_param(IS_ETH_SECOND_FRAME_OPERATE(ETH_InitStruct->ETH_SecondFrameOperate));
assert_param(IS_ETH_ADDRESS_ALIGNED_BEATS(ETH_InitStruct->ETH_AddressAlignedBeats));
assert_param(IS_ETH_FIXED_BURST(ETH_InitStruct->ETH_FixedBurst));
assert_param(IS_ETH_RXDMA_BURST_LENGTH(ETH_InitStruct->ETH_RxDMABurstLength));
assert_param(IS_ETH_TXDMA_BURST_LENGTH(ETH_InitStruct->ETH_TxDMABurstLength));
assert_param(IS_ETH_DMA_DESC_SKIP_LENGTH(ETH_InitStruct->ETH_DescriptorSkipLength));
assert_param(IS_ETH_DMA_ARBITRATION_ROUNDROBIN_RXTX(ETH_InitStruct->ETH_DMAArbitration));
/*-------------------------------- MAC Config ------------------------------*/
/*---------------------- ETHERNET MACMIIAR Configuration -------------------*/
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
/* Clear CSR Clock Range CR[2:0] bits */
tmpreg &= MACMIIAR_CR_MASK;
/* Get hclk frequency value */
RCC_GetClocksFreq(&rcc_clocks);
hclk = rcc_clocks.HCLK_Frequency;
/* Set CR bits depending on hclk value */
if((hclk >= 20000000)&&(hclk < 35000000))
{
/* CSR Clock Range between 20-35 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div16;
}
else if((hclk >= 35000000)&&(hclk < 60000000))
{
/* CSR Clock Range between 35-60 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div26;
}
else /* ((hclk >= 60000000)&&(hclk <= 72000000)) */
{
/* CSR Clock Range between 60-72 MHz */
tmpreg |= (uint32_t)ETH_MACMIIAR_CR_Div42;
}
/* Write to ETHERNET MAC MIIAR: Configure the ETHERNET CSR Clock Range */
ETH->MACMIIAR = (uint32_t)tmpreg;
/*------------------------ ETHERNET MACCR Configuration --------------------*/
/* Get the ETHERNET MACCR value */
tmpreg = ETH->MACCR;
/* Clear WD, PCE, PS, TE and RE bits */
tmpreg &= MACCR_CLEAR_MASK;
/* Set the WD bit according to ETH_Watchdog value */
/* Set the JD: bit according to ETH_Jabber value */
/* Set the IFG bit according to ETH_InterFrameGap value */
/* Set the DCRS bit according to ETH_CarrierSense value */
/* Set the FES bit according to ETH_Speed value */
/* Set the DO bit according to ETH_ReceiveOwn value */
/* Set the LM bit according to ETH_LoopbackMode value */
/* Set the DM bit according to ETH_Mode value */
/* Set the IPC bit according to ETH_ChecksumOffload value */
/* Set the DR bit according to ETH_RetryTransmission value */
/* Set the ACS bit according to ETH_AutomaticPadCRCStrip value */
/* Set the BL bit according to ETH_BackOffLimit value */
/* Set the DC bit according to ETH_DeferralCheck value */
tmpreg |= (uint32_t)(ETH_InitStruct->ETH_Watchdog |
ETH_InitStruct->ETH_Jabber |
ETH_InitStruct->ETH_InterFrameGap |
ETH_InitStruct->ETH_CarrierSense |
ETH_InitStruct->ETH_Speed |
ETH_InitStruct->ETH_ReceiveOwn |
ETH_InitStruct->ETH_LoopbackMode |
ETH_InitStruct->ETH_Mode |
ETH_InitStruct->ETH_ChecksumOffload |
ETH_InitStruct->ETH_RetryTransmission |
ETH_InitStruct->ETH_AutomaticPadCRCStrip |
ETH_InitStruct->ETH_BackOffLimit |
ETH_InitStruct->ETH_DeferralCheck);
/* Write to ETHERNET MACCR */
ETH->MACCR = (uint32_t)tmpreg;
/*----------------------- ETHERNET MACFFR Configuration --------------------*/
/* Set the RA bit according to ETH_ReceiveAll value */
/* Set the SAF and SAIF bits according to ETH_SourceAddrFilter value */
/* Set the PCF bit according to ETH_PassControlFrames value */
/* Set the DBF bit according to ETH_BroadcastFramesReception value */
/* Set the DAIF bit according to ETH_DestinationAddrFilter value */
/* Set the PR bit according to ETH_PromiscuousMode value */
/* Set the PM, HMC and HPF bits according to ETH_MulticastFramesFilter value */
/* Set the HUC and HPF bits according to ETH_UnicastFramesFilter value */
/* Write to ETHERNET MACFFR */
ETH->MACFFR = (uint32_t)(ETH_InitStruct->ETH_ReceiveAll |
ETH_InitStruct->ETH_SourceAddrFilter |
ETH_InitStruct->ETH_PassControlFrames |
ETH_InitStruct->ETH_BroadcastFramesReception |
ETH_InitStruct->ETH_DestinationAddrFilter |
ETH_InitStruct->ETH_PromiscuousMode |
ETH_InitStruct->ETH_MulticastFramesFilter |
ETH_InitStruct->ETH_UnicastFramesFilter);
/*--------------- ETHERNET MACHTHR and MACHTLR Configuration ---------------*/
/* Write to ETHERNET MACHTHR */
ETH->MACHTHR = (uint32_t)ETH_InitStruct->ETH_HashTableHigh;
/* Write to ETHERNET MACHTLR */
ETH->MACHTLR = (uint32_t)ETH_InitStruct->ETH_HashTableLow;
/*----------------------- ETHERNET MACFCR Configuration --------------------*/
/* Get the ETHERNET MACFCR value */
tmpreg = ETH->MACFCR;
/* Clear xx bits */
tmpreg &= MACFCR_CLEAR_MASK;
/* Set the PT bit according to ETH_PauseTime value */
/* Set the DZPQ bit according to ETH_ZeroQuantaPause value */
/* Set the PLT bit according to ETH_PauseLowThreshold value */
/* Set the UP bit according to ETH_UnicastPauseFrameDetect value */
/* Set the RFE bit according to ETH_ReceiveFlowControl value */
/* Set the TFE bit according to ETH_TransmitFlowControl value */
tmpreg |= (uint32_t)((ETH_InitStruct->ETH_PauseTime << 16) |
ETH_InitStruct->ETH_ZeroQuantaPause |
ETH_InitStruct->ETH_PauseLowThreshold |
ETH_InitStruct->ETH_UnicastPauseFrameDetect |
ETH_InitStruct->ETH_ReceiveFlowControl |
ETH_InitStruct->ETH_TransmitFlowControl);
/* Write to ETHERNET MACFCR */
ETH->MACFCR = (uint32_t)tmpreg;
/*----------------------- ETHERNET MACVLANTR Configuration -----------------*/
/* Set the ETV bit according to ETH_VLANTagComparison value */
/* Set the VL bit according to ETH_VLANTagIdentifier value */
ETH->MACVLANTR = (uint32_t)(ETH_InitStruct->ETH_VLANTagComparison |
ETH_InitStruct->ETH_VLANTagIdentifier);
/*-------------------------------- DMA Config ------------------------------*/
/*----------------------- ETHERNET DMAOMR Configuration --------------------*/
/* Get the ETHERNET DMAOMR value */
tmpreg = ETH->DMAOMR;
/* Clear xx bits */
tmpreg &= DMAOMR_CLEAR_MASK;
/* Set the DT bit according to ETH_DropTCPIPChecksumErrorFrame value */
/* Set the RSF bit according to ETH_ReceiveStoreForward value */
/* Set the DFF bit according to ETH_FlushReceivedFrame value */
/* Set the TSF bit according to ETH_TransmitStoreForward value */
/* Set the TTC bit according to ETH_TransmitThresholdControl value */
/* Set the FEF bit according to ETH_ForwardErrorFrames value */
/* Set the FUF bit according to ETH_ForwardUndersizedGoodFrames value */
/* Set the RTC bit according to ETH_ReceiveThresholdControl value */
/* Set the OSF bit according to ETH_SecondFrameOperate value */
tmpreg |= (uint32_t)(ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame |
ETH_InitStruct->ETH_ReceiveStoreForward |
ETH_InitStruct->ETH_FlushReceivedFrame |
ETH_InitStruct->ETH_TransmitStoreForward |
ETH_InitStruct->ETH_TransmitThresholdControl |
ETH_InitStruct->ETH_ForwardErrorFrames |
ETH_InitStruct->ETH_ForwardUndersizedGoodFrames |
ETH_InitStruct->ETH_ReceiveThresholdControl |
ETH_InitStruct->ETH_SecondFrameOperate);
/* Write to ETHERNET DMAOMR */
ETH->DMAOMR = (uint32_t)tmpreg;
/*----------------------- ETHERNET DMABMR Configuration --------------------*/
/* Set the AAL bit according to ETH_AddressAlignedBeats value */
/* Set the FB bit according to ETH_FixedBurst value */
/* Set the RPBL and 4*PBL bits according to ETH_RxDMABurstLength value */
/* Set the PBL and 4*PBL bits according to ETH_TxDMABurstLength value */
/* Set the DSL bit according to ETH_DesciptorSkipLength value */
/* Set the PR and DA bits according to ETH_DMAArbitration value */
ETH->DMABMR = (uint32_t)(ETH_InitStruct->ETH_AddressAlignedBeats |
ETH_InitStruct->ETH_FixedBurst |
ETH_InitStruct->ETH_RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */
ETH_InitStruct->ETH_TxDMABurstLength |
(ETH_InitStruct->ETH_DescriptorSkipLength << 2) |
ETH_InitStruct->ETH_DMAArbitration |
ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */
/* Return Ethernet configuration success */
return ETH_SUCCESS;
}
/**
......@@ -357,56 +357,56 @@ uint32_t ETH_Init(ETH_InitTypeDef* ETH_InitStruct)
*/
void ETH_StructInit(ETH_InitTypeDef* ETH_InitStruct)
{
/* ETH_InitStruct members default value */
/*------------------------ MAC -----------------------------------*/
ETH_InitStruct->ETH_AutoNegotiation = ETH_AutoNegotiation_Disable;
ETH_InitStruct->ETH_Watchdog = ETH_Watchdog_Enable;
ETH_InitStruct->ETH_Jabber = ETH_Jabber_Enable;
ETH_InitStruct->ETH_InterFrameGap = ETH_InterFrameGap_96Bit;
ETH_InitStruct->ETH_CarrierSense = ETH_CarrierSense_Enable;
ETH_InitStruct->ETH_Speed = ETH_Speed_10M;
ETH_InitStruct->ETH_ReceiveOwn = ETH_ReceiveOwn_Enable;
ETH_InitStruct->ETH_LoopbackMode = ETH_LoopbackMode_Disable;
ETH_InitStruct->ETH_Mode = ETH_Mode_HalfDuplex;
ETH_InitStruct->ETH_ChecksumOffload = ETH_ChecksumOffload_Disable;
ETH_InitStruct->ETH_RetryTransmission = ETH_RetryTransmission_Enable;
ETH_InitStruct->ETH_AutomaticPadCRCStrip = ETH_AutomaticPadCRCStrip_Disable;
ETH_InitStruct->ETH_BackOffLimit = ETH_BackOffLimit_10;
ETH_InitStruct->ETH_DeferralCheck = ETH_DeferralCheck_Disable;
ETH_InitStruct->ETH_ReceiveAll = ETH_ReceiveAll_Disable;
ETH_InitStruct->ETH_SourceAddrFilter = ETH_SourceAddrFilter_Disable;
ETH_InitStruct->ETH_PassControlFrames = ETH_PassControlFrames_BlockAll;
ETH_InitStruct->ETH_BroadcastFramesReception = ETH_BroadcastFramesReception_Disable;
ETH_InitStruct->ETH_DestinationAddrFilter = ETH_DestinationAddrFilter_Normal;
ETH_InitStruct->ETH_PromiscuousMode = ETH_PromiscuousMode_Disable;
ETH_InitStruct->ETH_MulticastFramesFilter = ETH_MulticastFramesFilter_Perfect;
ETH_InitStruct->ETH_UnicastFramesFilter = ETH_UnicastFramesFilter_Perfect;
ETH_InitStruct->ETH_HashTableHigh = 0x0;
ETH_InitStruct->ETH_HashTableLow = 0x0;
ETH_InitStruct->ETH_PauseTime = 0x0;
ETH_InitStruct->ETH_ZeroQuantaPause = ETH_ZeroQuantaPause_Disable;
ETH_InitStruct->ETH_PauseLowThreshold = ETH_PauseLowThreshold_Minus4;
ETH_InitStruct->ETH_UnicastPauseFrameDetect = ETH_UnicastPauseFrameDetect_Disable;
ETH_InitStruct->ETH_ReceiveFlowControl = ETH_ReceiveFlowControl_Disable;
ETH_InitStruct->ETH_TransmitFlowControl = ETH_TransmitFlowControl_Disable;
ETH_InitStruct->ETH_VLANTagComparison = ETH_VLANTagComparison_16Bit;
ETH_InitStruct->ETH_VLANTagIdentifier = 0x0;
/*------------------------ DMA -----------------------------------*/
ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Disable;
ETH_InitStruct->ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStruct->ETH_FlushReceivedFrame = ETH_FlushReceivedFrame_Disable;
ETH_InitStruct->ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStruct->ETH_TransmitThresholdControl = ETH_TransmitThresholdControl_64Bytes;
ETH_InitStruct->ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStruct->ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStruct->ETH_ReceiveThresholdControl = ETH_ReceiveThresholdControl_64Bytes;
ETH_InitStruct->ETH_SecondFrameOperate = ETH_SecondFrameOperate_Disable;
ETH_InitStruct->ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStruct->ETH_FixedBurst = ETH_FixedBurst_Disable;
ETH_InitStruct->ETH_RxDMABurstLength = ETH_RxDMABurstLength_1Beat;
ETH_InitStruct->ETH_TxDMABurstLength = ETH_TxDMABurstLength_1Beat;
ETH_InitStruct->ETH_DescriptorSkipLength = 0x0;
ETH_InitStruct->ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_1_1;
/* ETH_InitStruct members default value */
/*------------------------ MAC -----------------------------------*/
ETH_InitStruct->ETH_AutoNegotiation = ETH_AutoNegotiation_Disable;
ETH_InitStruct->ETH_Watchdog = ETH_Watchdog_Enable;
ETH_InitStruct->ETH_Jabber = ETH_Jabber_Enable;
ETH_InitStruct->ETH_InterFrameGap = ETH_InterFrameGap_96Bit;
ETH_InitStruct->ETH_CarrierSense = ETH_CarrierSense_Enable;
ETH_InitStruct->ETH_Speed = ETH_Speed_10M;
ETH_InitStruct->ETH_ReceiveOwn = ETH_ReceiveOwn_Enable;
ETH_InitStruct->ETH_LoopbackMode = ETH_LoopbackMode_Disable;
ETH_InitStruct->ETH_Mode = ETH_Mode_HalfDuplex;
ETH_InitStruct->ETH_ChecksumOffload = ETH_ChecksumOffload_Disable;
ETH_InitStruct->ETH_RetryTransmission = ETH_RetryTransmission_Enable;
ETH_InitStruct->ETH_AutomaticPadCRCStrip = ETH_AutomaticPadCRCStrip_Disable;
ETH_InitStruct->ETH_BackOffLimit = ETH_BackOffLimit_10;
ETH_InitStruct->ETH_DeferralCheck = ETH_DeferralCheck_Disable;
ETH_InitStruct->ETH_ReceiveAll = ETH_ReceiveAll_Disable;
ETH_InitStruct->ETH_SourceAddrFilter = ETH_SourceAddrFilter_Disable;
ETH_InitStruct->ETH_PassControlFrames = ETH_PassControlFrames_BlockAll;
ETH_InitStruct->ETH_BroadcastFramesReception = ETH_BroadcastFramesReception_Disable;
ETH_InitStruct->ETH_DestinationAddrFilter = ETH_DestinationAddrFilter_Normal;
ETH_InitStruct->ETH_PromiscuousMode = ETH_PromiscuousMode_Disable;
ETH_InitStruct->ETH_MulticastFramesFilter = ETH_MulticastFramesFilter_Perfect;
ETH_InitStruct->ETH_UnicastFramesFilter = ETH_UnicastFramesFilter_Perfect;
ETH_InitStruct->ETH_HashTableHigh = 0x0;
ETH_InitStruct->ETH_HashTableLow = 0x0;
ETH_InitStruct->ETH_PauseTime = 0x0;
ETH_InitStruct->ETH_ZeroQuantaPause = ETH_ZeroQuantaPause_Disable;
ETH_InitStruct->ETH_PauseLowThreshold = ETH_PauseLowThreshold_Minus4;
ETH_InitStruct->ETH_UnicastPauseFrameDetect = ETH_UnicastPauseFrameDetect_Disable;
ETH_InitStruct->ETH_ReceiveFlowControl = ETH_ReceiveFlowControl_Disable;
ETH_InitStruct->ETH_TransmitFlowControl = ETH_TransmitFlowControl_Disable;
ETH_InitStruct->ETH_VLANTagComparison = ETH_VLANTagComparison_16Bit;
ETH_InitStruct->ETH_VLANTagIdentifier = 0x0;
/*------------------------ DMA -----------------------------------*/
ETH_InitStruct->ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Disable;
ETH_InitStruct->ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStruct->ETH_FlushReceivedFrame = ETH_FlushReceivedFrame_Disable;
ETH_InitStruct->ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStruct->ETH_TransmitThresholdControl = ETH_TransmitThresholdControl_64Bytes;
ETH_InitStruct->ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStruct->ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStruct->ETH_ReceiveThresholdControl = ETH_ReceiveThresholdControl_64Bytes;
ETH_InitStruct->ETH_SecondFrameOperate = ETH_SecondFrameOperate_Disable;
ETH_InitStruct->ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStruct->ETH_FixedBurst = ETH_FixedBurst_Disable;
ETH_InitStruct->ETH_RxDMABurstLength = ETH_RxDMABurstLength_1Beat;
ETH_InitStruct->ETH_TxDMABurstLength = ETH_TxDMABurstLength_1Beat;
ETH_InitStruct->ETH_DescriptorSkipLength = 0x0;
ETH_InitStruct->ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_1_1;
}
/**
......@@ -416,17 +416,17 @@ void ETH_StructInit(ETH_InitTypeDef* ETH_InitStruct)
*/
void ETH_Start(void)
{
/* Enable transmit state machine of the MAC for transmission on the MII */
ETH_MACTransmissionCmd(ENABLE);
/* Flush Transmit FIFO */
ETH_FlushTransmitFIFO();
/* Enable receive state machine of the MAC for reception from the MII */
ETH_MACReceptionCmd(ENABLE);
/* Enable transmit state machine of the MAC for transmission on the MII */
ETH_MACTransmissionCmd(ENABLE);
/* Flush Transmit FIFO */
ETH_FlushTransmitFIFO();
/* Enable receive state machine of the MAC for reception from the MII */
ETH_MACReceptionCmd(ENABLE);
/* Start DMA transmission */
ETH_DMATransmissionCmd(ENABLE);
/* Start DMA reception */
ETH_DMAReceptionCmd(ENABLE);
/* Start DMA transmission */
ETH_DMATransmissionCmd(ENABLE);
/* Start DMA reception */
ETH_DMAReceptionCmd(ENABLE);
}
/**
......@@ -438,58 +438,58 @@ void ETH_Start(void)
*/
uint32_t ETH_HandleTxPkt(uint8_t *ppkt, uint16_t FrameLength)
{
uint32_t offset = 0;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (uint32_t)RESET)
{
/* Return ERROR: OWN bit set */
return ETH_ERROR;
}
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
for(offset=0; offset<FrameLength; offset++)
{
(*(__IO uint8_t *)((DMATxDescToSet->Buffer1Addr) + offset)) = (*(ppkt + offset));
}
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (FrameLength & ETH_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_TBUS;
/* Resume DMA transmission*/
ETH->DMATPDR = 0;
}
uint32_t offset = 0;
/* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
/* Chained Mode */
if((DMATxDescToSet->Status & ETH_DMATxDesc_TCH) != (uint32_t)RESET)
{
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMATxDescToSet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMATxDescToSet->Status & ETH_DMATxDesc_TER) != (uint32_t)RESET)
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (uint32_t)RESET)
{
/* Selects the first DMA Tx descriptor for next buffer to send: last Tx descriptor was used */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
/* Return ERROR: OWN bit set */
return ETH_ERROR;
}
else
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
for(offset=0; offset<FrameLength; offset++)
{
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMATxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
(*(__IO uint8_t *)((DMATxDescToSet->Buffer1Addr) + offset)) = (*(ppkt + offset));
}
}
/* Return SUCCESS */
return ETH_SUCCESS;
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (FrameLength & ETH_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_TBUS;
/* Resume DMA transmission*/
ETH->DMATPDR = 0;
}
/* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
/* Chained Mode */
if((DMATxDescToSet->Status & ETH_DMATxDesc_TCH) != (uint32_t)RESET)
{
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMATxDescToSet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMATxDescToSet->Status & ETH_DMATxDesc_TER) != (uint32_t)RESET)
{
/* Selects the first DMA Tx descriptor for next buffer to send: last Tx descriptor was used */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
}
else
{
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMATxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
}
}
/* Return SUCCESS */
return ETH_SUCCESS;
}
/**
......@@ -500,66 +500,66 @@ uint32_t ETH_HandleTxPkt(uint8_t *ppkt, uint16_t FrameLength)
*/
uint32_t ETH_HandleRxPkt(uint8_t *ppkt)
{
uint32_t offset = 0, framelength = 0;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (uint32_t)RESET)
{
/* Return error: OWN bit set */
return ETH_ERROR;
}
if(((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
for(offset=0; offset<framelength; offset++)
{
(*(ppkt + offset)) = (*(__IO uint8_t *)((DMARxDescToGet->Buffer1Addr) + offset));
}
}
else
{
/* Return ERROR */
framelength = ETH_ERROR;
}
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARxDesc_OWN;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
uint32_t offset = 0, framelength = 0;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (uint32_t)RESET)
{
/* Return error: OWN bit set */
return ETH_ERROR;
}
if(((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
for(offset=0; offset<framelength; offset++)
{
(*(ppkt + offset)) = (*(__IO uint8_t *)((DMARxDescToGet->Buffer1Addr) + offset));
}
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
/* Return ERROR */
framelength = ETH_ERROR;
}
}
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARxDesc_OWN;
/* Return Frame Length/ERROR */
return (framelength);
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
}
}
/* Return Frame Length/ERROR */
return (framelength);
}
/**
......@@ -569,18 +569,18 @@ uint32_t ETH_HandleRxPkt(uint8_t *ppkt)
*/
uint32_t ETH_GetRxPktSize(void)
{
uint32_t frameLength = 0;
if(((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the size of the packet: including 4 bytes of the CRC */
frameLength = ETH_GetDMARxDescFrameLength(DMARxDescToGet);
}
uint32_t frameLength = 0;
if(((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the size of the packet: including 4 bytes of the CRC */
frameLength = ETH_GetDMARxDescFrameLength(DMARxDescToGet);
}
/* Return Frame Length */
return frameLength;
/* Return Frame Length */
return frameLength;
}
/**
......@@ -590,28 +590,28 @@ uint32_t ETH_GetRxPktSize(void)
*/
void ETH_DropRxPkt(void)
{
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARxDesc_OWN;
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read: this will
be the first Rx descriptor in this case */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARxDesc_OWN;
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else
else /* Ring Mode */
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read: this will
be the first Rx descriptor in this case */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
}
}
}
}
/*--------------------------------- PHY ------------------------------------*/
......@@ -630,37 +630,38 @@ void ETH_DropRxPkt(void)
*/
uint16_t ETH_ReadPHYRegister(uint16_t PHYAddress, uint16_t PHYReg)
{
uint32_t tmpreg = 0;
__IO uint32_t timeout = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_ETH_PHY_REG(PHYReg));
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
/* Keep only the CSR Clock Range CR[2:0] bits value */
tmpreg &= ~MACMIIAR_CR_MASK;
/* Prepare the MII address register value */
tmpreg |=(((uint32_t)PHYAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */
tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */
tmpreg &= ~ETH_MACMIIAR_MW; /* Set the read mode */
tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */
/* Write the result value into the MII Address register */
ETH->MACMIIAR = tmpreg;
/* Check for the Busy flag */
do
{
timeout++;
uint32_t tmpreg = 0;
__IO uint32_t timeout = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_ETH_PHY_REG(PHYReg));
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
} while ((tmpreg & ETH_MACMIIAR_MB) && (timeout < (uint32_t)PHY_READ_TO));
/* Return ERROR in case of timeout */
if(timeout == PHY_READ_TO)
{
return (uint16_t)ETH_ERROR;
}
/* Keep only the CSR Clock Range CR[2:0] bits value */
tmpreg &= ~MACMIIAR_CR_MASK;
/* Prepare the MII address register value */
tmpreg |=(((uint32_t)PHYAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */
tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */
tmpreg &= ~ETH_MACMIIAR_MW; /* Set the read mode */
tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */
/* Write the result value into the MII Address register */
ETH->MACMIIAR = tmpreg;
/* Check for the Busy flag */
do
{
timeout++;
tmpreg = ETH->MACMIIAR;
}
while ((tmpreg & ETH_MACMIIAR_MB) && (timeout < (uint32_t)PHY_READ_TO));
/* Return ERROR in case of timeout */
if(timeout == PHY_READ_TO)
{
return (uint16_t)ETH_ERROR;
}
/* Return data register value */
return (uint16_t)(ETH->MACMIIDR);
/* Return data register value */
return (uint16_t)(ETH->MACMIIDR);
}
/**
......@@ -677,39 +678,40 @@ __IO uint32_t timeout = 0;
*/
uint32_t ETH_WritePHYRegister(uint16_t PHYAddress, uint16_t PHYReg, uint16_t PHYValue)
{
uint32_t tmpreg = 0;
__IO uint32_t timeout = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_ETH_PHY_REG(PHYReg));
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
/* Keep only the CSR Clock Range CR[2:0] bits value */
tmpreg &= ~MACMIIAR_CR_MASK;
/* Prepare the MII register address value */
tmpreg |=(((uint32_t)PHYAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */
tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */
tmpreg |= ETH_MACMIIAR_MW; /* Set the write mode */
tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */
/* Give the value to the MII data register */
ETH->MACMIIDR = PHYValue;
/* Write the result value into the MII Address register */
ETH->MACMIIAR = tmpreg;
/* Check for the Busy flag */
do
{
timeout++;
uint32_t tmpreg = 0;
__IO uint32_t timeout = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_ETH_PHY_REG(PHYReg));
/* Get the ETHERNET MACMIIAR value */
tmpreg = ETH->MACMIIAR;
} while ((tmpreg & ETH_MACMIIAR_MB) && (timeout < (uint32_t)PHY_WRITE_TO));
/* Return ERROR in case of timeout */
if(timeout == PHY_WRITE_TO)
{
return ETH_ERROR;
}
/* Keep only the CSR Clock Range CR[2:0] bits value */
tmpreg &= ~MACMIIAR_CR_MASK;
/* Prepare the MII register address value */
tmpreg |=(((uint32_t)PHYAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */
tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */
tmpreg |= ETH_MACMIIAR_MW; /* Set the write mode */
tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */
/* Give the value to the MII data register */
ETH->MACMIIDR = PHYValue;
/* Write the result value into the MII Address register */
ETH->MACMIIAR = tmpreg;
/* Check for the Busy flag */
do
{
timeout++;
tmpreg = ETH->MACMIIAR;
}
while ((tmpreg & ETH_MACMIIAR_MB) && (timeout < (uint32_t)PHY_WRITE_TO));
/* Return ERROR in case of timeout */
if(timeout == PHY_WRITE_TO)
{
return ETH_ERROR;
}
/* Return SUCCESS */
return ETH_SUCCESS;
/* Return SUCCESS */
return ETH_SUCCESS;
}
/**
......@@ -725,34 +727,34 @@ uint32_t ETH_WritePHYRegister(uint16_t PHYAddress, uint16_t PHYReg, uint16_t PHY
*/
uint32_t ETH_PHYLoopBackCmd(uint16_t PHYAddress, FunctionalState NewState)
{
uint16_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Get the PHY configuration to update it */
tmpreg = ETH_ReadPHYRegister(PHYAddress, PHY_BCR);
if (NewState != DISABLE)
{
/* Enable the PHY loopback mode */
tmpreg |= PHY_Loopback;
}
else
{
/* Disable the PHY loopback mode: normal mode */
tmpreg &= (uint16_t)(~(uint16_t)PHY_Loopback);
}
/* Update the PHY control register with the new configuration */
if(ETH_WritePHYRegister(PHYAddress, PHY_BCR, tmpreg) != (uint32_t)RESET)
{
return ETH_SUCCESS;
}
else
{
/* Return SUCCESS */
return ETH_ERROR;
}
uint16_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_ETH_PHY_ADDRESS(PHYAddress));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Get the PHY configuration to update it */
tmpreg = ETH_ReadPHYRegister(PHYAddress, PHY_BCR);
if (NewState != DISABLE)
{
/* Enable the PHY loopback mode */
tmpreg |= PHY_Loopback;
}
else
{
/* Disable the PHY loopback mode: normal mode */
tmpreg &= (uint16_t)(~(uint16_t)PHY_Loopback);
}
/* Update the PHY control register with the new configuration */
if(ETH_WritePHYRegister(PHYAddress, PHY_BCR, tmpreg) != (uint32_t)RESET)
{
return ETH_SUCCESS;
}
else
{
/* Return SUCCESS */
return ETH_ERROR;
}
}
/*--------------------------------- MAC ------------------------------------*/
......@@ -764,19 +766,19 @@ uint32_t ETH_PHYLoopBackCmd(uint16_t PHYAddress, FunctionalState NewState)
*/
void ETH_MACTransmissionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC transmission */
ETH->MACCR |= ETH_MACCR_TE;
}
else
{
/* Disable the MAC transmission */
ETH->MACCR &= ~ETH_MACCR_TE;
}
if (NewState != DISABLE)
{
/* Enable the MAC transmission */
ETH->MACCR |= ETH_MACCR_TE;
}
else
{
/* Disable the MAC transmission */
ETH->MACCR &= ~ETH_MACCR_TE;
}
}
/**
......@@ -787,19 +789,19 @@ void ETH_MACTransmissionCmd(FunctionalState NewState)
*/
void ETH_MACReceptionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC reception */
ETH->MACCR |= ETH_MACCR_RE;
}
else
{
/* Disable the MAC reception */
ETH->MACCR &= ~ETH_MACCR_RE;
}
if (NewState != DISABLE)
{
/* Enable the MAC reception */
ETH->MACCR |= ETH_MACCR_RE;
}
else
{
/* Disable the MAC reception */
ETH->MACCR &= ~ETH_MACCR_RE;
}
}
/**
......@@ -809,17 +811,17 @@ void ETH_MACReceptionCmd(FunctionalState NewState)
*/
FlagStatus ETH_GetFlowControlBusyStatus(void)
{
FlagStatus bitstatus = RESET;
/* The Flow Control register should not be written to until this bit is cleared */
if ((ETH->MACFCR & ETH_MACFCR_FCBBPA) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
/* The Flow Control register should not be written to until this bit is cleared */
if ((ETH->MACFCR & ETH_MACFCR_FCBBPA) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -829,8 +831,8 @@ FlagStatus ETH_GetFlowControlBusyStatus(void)
*/
void ETH_InitiatePauseControlFrame(void)
{
/* When Set In full duplex MAC initiates pause control frame */
ETH->MACFCR |= ETH_MACFCR_FCBBPA;
/* When Set In full duplex MAC initiates pause control frame */
ETH->MACFCR |= ETH_MACFCR_FCBBPA;
}
/**
......@@ -841,21 +843,21 @@ void ETH_InitiatePauseControlFrame(void)
*/
void ETH_BackPressureActivationCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Activate the MAC BackPressure operation */
/* In Half duplex: during backpressure, when the MAC receives a new frame,
the transmitter starts sending a JAM pattern resulting in a collision */
ETH->MACFCR |= ETH_MACFCR_FCBBPA;
}
else
{
/* Desactivate the MAC BackPressure operation */
ETH->MACFCR &= ~ETH_MACFCR_FCBBPA;
}
if (NewState != DISABLE)
{
/* Activate the MAC BackPressure operation */
/* In Half duplex: during backpressure, when the MAC receives a new frame,
the transmitter starts sending a JAM pattern resulting in a collision */
ETH->MACFCR |= ETH_MACFCR_FCBBPA;
}
else
{
/* Desactivate the MAC BackPressure operation */
ETH->MACFCR &= ~ETH_MACFCR_FCBBPA;
}
}
/**
......@@ -871,18 +873,18 @@ void ETH_BackPressureActivationCmd(FunctionalState NewState)
*/
FlagStatus ETH_GetMACFlagStatus(uint32_t ETH_MAC_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MAC_GET_FLAG(ETH_MAC_FLAG));
if ((ETH->MACSR & ETH_MAC_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MAC_GET_FLAG(ETH_MAC_FLAG));
if ((ETH->MACSR & ETH_MAC_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -898,18 +900,18 @@ FlagStatus ETH_GetMACFlagStatus(uint32_t ETH_MAC_FLAG)
*/
ITStatus ETH_GetMACITStatus(uint32_t ETH_MAC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MAC_GET_IT(ETH_MAC_IT));
if ((ETH->MACSR & ETH_MAC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MAC_GET_IT(ETH_MAC_IT));
if ((ETH->MACSR & ETH_MAC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -925,20 +927,20 @@ ITStatus ETH_GetMACITStatus(uint32_t ETH_MAC_IT)
*/
void ETH_MACITConfig(uint32_t ETH_MAC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ETH_MAC_IT(ETH_MAC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_ETH_MAC_IT(ETH_MAC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MAC interrupts */
ETH->MACIMR &= (~(uint32_t)ETH_MAC_IT);
}
else
{
/* Disable the selected ETHERNET MAC interrupts */
ETH->MACIMR |= ETH_MAC_IT;
}
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MAC interrupts */
ETH->MACIMR &= (~(uint32_t)ETH_MAC_IT);
}
else
{
/* Disable the selected ETHERNET MAC interrupts */
ETH->MACIMR |= ETH_MAC_IT;
}
}
/**
......@@ -954,19 +956,19 @@ void ETH_MACITConfig(uint32_t ETH_MAC_IT, FunctionalState NewState)
*/
void ETH_MACAddressConfig(uint32_t MacAddr, uint8_t *Addr)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr));
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr));
/* Calculate the selectecd MAC address high register */
tmpreg = ((uint32_t)Addr[5] << 8) | (uint32_t)Addr[4];
/* Load the selectecd MAC address high register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) = tmpreg;
/* Calculate the selectecd MAC address low register */
tmpreg = ((uint32_t)Addr[3] << 24) | ((uint32_t)Addr[2] << 16) | ((uint32_t)Addr[1] << 8) | Addr[0];
/* Calculate the selectecd MAC address high register */
tmpreg = ((uint32_t)Addr[5] << 8) | (uint32_t)Addr[4];
/* Load the selectecd MAC address high register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) = tmpreg;
/* Calculate the selectecd MAC address low register */
tmpreg = ((uint32_t)Addr[3] << 24) | ((uint32_t)Addr[2] << 16) | ((uint32_t)Addr[1] << 8) | Addr[0];
/* Load the selectecd MAC address low register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_LBASE + MacAddr)) = tmpreg;
/* Load the selectecd MAC address low register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_LBASE + MacAddr)) = tmpreg;
}
/**
......@@ -982,23 +984,23 @@ void ETH_MACAddressConfig(uint32_t MacAddr, uint8_t *Addr)
*/
void ETH_GetMACAddress(uint32_t MacAddr, uint8_t *Addr)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr));
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr));
/* Get the selectecd MAC address high register */
tmpreg =(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr));
/* Get the selectecd MAC address high register */
tmpreg =(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr));
/* Calculate the selectecd MAC address buffer */
Addr[5] = ((tmpreg >> 8) & (uint8_t)0xFF);
Addr[4] = (tmpreg & (uint8_t)0xFF);
/* Load the selectecd MAC address low register */
tmpreg =(*(__IO uint32_t *) (ETH_MAC_ADDR_LBASE + MacAddr));
/* Calculate the selectecd MAC address buffer */
Addr[3] = ((tmpreg >> 24) & (uint8_t)0xFF);
Addr[2] = ((tmpreg >> 16) & (uint8_t)0xFF);
Addr[1] = ((tmpreg >> 8 ) & (uint8_t)0xFF);
Addr[0] = (tmpreg & (uint8_t)0xFF);
/* Calculate the selectecd MAC address buffer */
Addr[5] = ((tmpreg >> 8) & (uint8_t)0xFF);
Addr[4] = (tmpreg & (uint8_t)0xFF);
/* Load the selectecd MAC address low register */
tmpreg =(*(__IO uint32_t *) (ETH_MAC_ADDR_LBASE + MacAddr));
/* Calculate the selectecd MAC address buffer */
Addr[3] = ((tmpreg >> 24) & (uint8_t)0xFF);
Addr[2] = ((tmpreg >> 16) & (uint8_t)0xFF);
Addr[1] = ((tmpreg >> 8 ) & (uint8_t)0xFF);
Addr[0] = (tmpreg & (uint8_t)0xFF);
}
/**
......@@ -1015,20 +1017,20 @@ void ETH_GetMACAddress(uint32_t MacAddr, uint8_t *Addr)
*/
void ETH_MACAddressPerfectFilterCmd(uint32_t MacAddr, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MAC address for perfect filtering */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= ETH_MACA1HR_AE;
}
else
{
/* Disable the selected ETHERNET MAC address for perfect filtering */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_AE);
}
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MAC address for perfect filtering */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= ETH_MACA1HR_AE;
}
else
{
/* Disable the selected ETHERNET MAC address for perfect filtering */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_AE);
}
}
/**
......@@ -1048,22 +1050,22 @@ void ETH_MACAddressPerfectFilterCmd(uint32_t MacAddr, FunctionalState NewState)
*/
void ETH_MACAddressFilterConfig(uint32_t MacAddr, uint32_t Filter)
{
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_ETH_MAC_ADDRESS_FILTER(Filter));
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_ETH_MAC_ADDRESS_FILTER(Filter));
if (Filter != ETH_MAC_AddressFilter_DA)
{
/* The selected ETHERNET MAC address is used to compare with the SA fields of the
received frame. */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= ETH_MACA1HR_SA;
}
else
{
/* The selected ETHERNET MAC address is used to compare with the DA fields of the
received frame. */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_SA);
}
if (Filter != ETH_MAC_AddressFilter_DA)
{
/* The selected ETHERNET MAC address is used to compare with the SA fields of the
received frame. */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= ETH_MACA1HR_SA;
}
else
{
/* The selected ETHERNET MAC address is used to compare with the DA fields of the
received frame. */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_SA);
}
}
/**
......@@ -1085,14 +1087,14 @@ void ETH_MACAddressFilterConfig(uint32_t MacAddr, uint32_t Filter)
*/
void ETH_MACAddressMaskBytesFilterConfig(uint32_t MacAddr, uint32_t MaskByte)
{
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_ETH_MAC_ADDRESS_MASK(MaskByte));
/* Check the parameters */
assert_param(IS_ETH_MAC_ADDRESS123(MacAddr));
assert_param(IS_ETH_MAC_ADDRESS_MASK(MaskByte));
/* Clear MBC bits in the selected MAC address high register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_MBC);
/* Set the selected Filetr mask bytes */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= MaskByte;
/* Clear MBC bits in the selected MAC address high register */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) &=(~(uint32_t)ETH_MACA1HR_MBC);
/* Set the selected Filetr mask bytes */
(*(__IO uint32_t *) (ETH_MAC_ADDR_HBASE + MacAddr)) |= MaskByte;
}
/*------------------------ DMA Tx/Rx Desciptors -----------------------------*/
......@@ -1105,37 +1107,37 @@ void ETH_MACAddressMaskBytesFilterConfig(uint32_t MacAddr, uint32_t MaskByte)
*/
void ETH_DMATxDescChainInit(ETH_DMADESCTypeDef *DMATxDescTab, uint8_t* TxBuff, uint32_t TxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab + i;
/* Set Second Address Chained bit */
DMATxDesc->Status = ETH_DMATxDesc_TCH;
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab + i;
/* Set Second Address Chained bit */
DMATxDesc->Status = ETH_DMATxDesc_TCH;
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (TxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (TxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
}
}
}
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
}
/**
......@@ -1150,33 +1152,33 @@ void ETH_DMATxDescChainInit(ETH_DMADESCTypeDef *DMATxDescTab, uint8_t* TxBuff, u
*/
void ETH_DMATxDescRingInit(ETH_DMADESCTypeDef *DMATxDescTab, uint8_t *TxBuff1, uint8_t *TxBuff2, uint32_t TxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab + i;
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff1[i*ETH_MAX_PACKET_SIZE]);
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab + i;
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff1[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer2 address pointer */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(&TxBuff2[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer2 address pointer */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(&TxBuff2[i*ETH_MAX_PACKET_SIZE]);
/* Set Transmit End of Ring bit for last descriptor: The DMA returns to the base
address of the list, creating a Desciptor Ring */
if(i == (TxBuffCount-1))
{
/* Set Transmit End of Ring bit */
DMATxDesc->Status = ETH_DMATxDesc_TER;
/* Set Transmit End of Ring bit for last descriptor: The DMA returns to the base
address of the list, creating a Desciptor Ring */
if(i == (TxBuffCount-1))
{
/* Set Transmit End of Ring bit */
DMATxDesc->Status = ETH_DMATxDesc_TER;
}
}
}
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
}
/**
......@@ -1212,19 +1214,19 @@ void ETH_DMATxDescRingInit(ETH_DMADESCTypeDef *DMATxDescTab, uint8_t *TxBuff1, u
*/
FlagStatus ETH_GetDMATxDescFlagStatus(ETH_DMADESCTypeDef *DMATxDesc, uint32_t ETH_DMATxDescFlag)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMATxDESC_GET_FLAG(ETH_DMATxDescFlag));
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMATxDESC_GET_FLAG(ETH_DMATxDescFlag));
if ((DMATxDesc->Status & ETH_DMATxDescFlag) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
if ((DMATxDesc->Status & ETH_DMATxDescFlag) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1234,8 +1236,8 @@ FlagStatus ETH_GetDMATxDescFlagStatus(ETH_DMADESCTypeDef *DMATxDesc, uint32_t ET
*/
uint32_t ETH_GetDMATxDescCollisionCount(ETH_DMADESCTypeDef *DMATxDesc)
{
/* Return the Receive descriptor frame length */
return ((DMATxDesc->Status & ETH_DMATxDesc_CC) >> ETH_DMATXDESC_COLLISION_COUNTSHIFT);
/* Return the Receive descriptor frame length */
return ((DMATxDesc->Status & ETH_DMATxDesc_CC) >> ETH_DMATXDESC_COLLISION_COUNTSHIFT);
}
/**
......@@ -1245,8 +1247,8 @@ uint32_t ETH_GetDMATxDescCollisionCount(ETH_DMADESCTypeDef *DMATxDesc)
*/
void ETH_SetDMATxDescOwnBit(ETH_DMADESCTypeDef *DMATxDesc)
{
/* Set the DMA Tx Desc Own bit */
DMATxDesc->Status |= ETH_DMATxDesc_OWN;
/* Set the DMA Tx Desc Own bit */
DMATxDesc->Status |= ETH_DMATxDesc_OWN;
}
/**
......@@ -1258,19 +1260,19 @@ void ETH_SetDMATxDescOwnBit(ETH_DMADESCTypeDef *DMATxDesc)
*/
void ETH_DMATxDescTransmitITConfig(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the DMA Tx Desc Transmit interrupt */
DMATxDesc->Status |= ETH_DMATxDesc_IC;
}
else
{
/* Disable the DMA Tx Desc Transmit interrupt */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_IC);
}
if (NewState != DISABLE)
{
/* Enable the DMA Tx Desc Transmit interrupt */
DMATxDesc->Status |= ETH_DMATxDesc_IC;
}
else
{
/* Disable the DMA Tx Desc Transmit interrupt */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_IC);
}
}
/**
......@@ -1284,11 +1286,11 @@ void ETH_DMATxDescTransmitITConfig(ETH_DMADESCTypeDef *DMATxDesc, FunctionalStat
*/
void ETH_DMATxDescFrameSegmentConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_t DMATxDesc_FrameSegment)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_TXDESC_SEGMENT(DMATxDesc_FrameSegment));
/* Check the parameters */
assert_param(IS_ETH_DMA_TXDESC_SEGMENT(DMATxDesc_FrameSegment));
/* Selects the DMA Tx Desc Frame segment */
DMATxDesc->Status |= DMATxDesc_FrameSegment;
/* Selects the DMA Tx Desc Frame segment */
DMATxDesc->Status |= DMATxDesc_FrameSegment;
}
/**
......@@ -1304,11 +1306,11 @@ void ETH_DMATxDescFrameSegmentConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_t DMA
*/
void ETH_DMATxDescChecksumInsertionConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_t DMATxDesc_Checksum)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_TXDESC_CHECKSUM(DMATxDesc_Checksum));
/* Check the parameters */
assert_param(IS_ETH_DMA_TXDESC_CHECKSUM(DMATxDesc_Checksum));
/* Set the selected DMA Tx desc checksum insertion control */
DMATxDesc->Status |= DMATxDesc_Checksum;
/* Set the selected DMA Tx desc checksum insertion control */
DMATxDesc->Status |= DMATxDesc_Checksum;
}
/**
......@@ -1320,19 +1322,19 @@ void ETH_DMATxDescChecksumInsertionConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_
*/
void ETH_DMATxDescCRCCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc CRC */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_DC);
}
else
{
/* Disable the selected DMA Tx Desc CRC */
DMATxDesc->Status |= ETH_DMATxDesc_DC;
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc CRC */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_DC);
}
else
{
/* Disable the selected DMA Tx Desc CRC */
DMATxDesc->Status |= ETH_DMATxDesc_DC;
}
}
/**
......@@ -1344,19 +1346,19 @@ void ETH_DMATxDescCRCCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState
*/
void ETH_DMATxDescEndOfRingCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc end of ring */
DMATxDesc->Status |= ETH_DMATxDesc_TER;
}
else
{
/* Disable the selected DMA Tx Desc end of ring */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_TER);
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc end of ring */
DMATxDesc->Status |= ETH_DMATxDesc_TER;
}
else
{
/* Disable the selected DMA Tx Desc end of ring */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_TER);
}
}
/**
......@@ -1368,19 +1370,19 @@ void ETH_DMATxDescEndOfRingCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState Ne
*/
void ETH_DMATxDescSecondAddressChainedCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc second address chained */
DMATxDesc->Status |= ETH_DMATxDesc_TCH;
}
else
{
/* Disable the selected DMA Tx Desc second address chained */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_TCH);
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc second address chained */
DMATxDesc->Status |= ETH_DMATxDesc_TCH;
}
else
{
/* Disable the selected DMA Tx Desc second address chained */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_TCH);
}
}
/**
......@@ -1392,19 +1394,19 @@ void ETH_DMATxDescSecondAddressChainedCmd(ETH_DMADESCTypeDef *DMATxDesc, Functio
*/
void ETH_DMATxDescShortFramePaddingCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc padding for frame shorter than 64 bytes */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_DP);
}
else
{
/* Disable the selected DMA Tx Desc padding for frame shorter than 64 bytes*/
DMATxDesc->Status |= ETH_DMATxDesc_DP;
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc padding for frame shorter than 64 bytes */
DMATxDesc->Status &= (~(uint32_t)ETH_DMATxDesc_DP);
}
else
{
/* Disable the selected DMA Tx Desc padding for frame shorter than 64 bytes*/
DMATxDesc->Status |= ETH_DMATxDesc_DP;
}
}
/**
......@@ -1416,19 +1418,19 @@ void ETH_DMATxDescShortFramePaddingCmd(ETH_DMADESCTypeDef *DMATxDesc, Functional
*/
void ETH_DMATxDescTimeStampCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc time stamp */
DMATxDesc->Status |= ETH_DMATxDesc_TTSE;
}
else
{
/* Disable the selected DMA Tx Desc time stamp */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_TTSE);
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Tx Desc time stamp */
DMATxDesc->Status |= ETH_DMATxDesc_TTSE;
}
else
{
/* Disable the selected DMA Tx Desc time stamp */
DMATxDesc->Status &=(~(uint32_t)ETH_DMATxDesc_TTSE);
}
}
/**
......@@ -1440,12 +1442,12 @@ void ETH_DMATxDescTimeStampCmd(ETH_DMADESCTypeDef *DMATxDesc, FunctionalState Ne
*/
void ETH_DMATxDescBufferSizeConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_t BufferSize1, uint32_t BufferSize2)
{
/* Check the parameters */
assert_param(IS_ETH_DMATxDESC_BUFFER_SIZE(BufferSize1));
assert_param(IS_ETH_DMATxDESC_BUFFER_SIZE(BufferSize2));
/* Check the parameters */
assert_param(IS_ETH_DMATxDESC_BUFFER_SIZE(BufferSize1));
assert_param(IS_ETH_DMATxDESC_BUFFER_SIZE(BufferSize2));
/* Set the DMA Tx Desc buffer1 and buffer2 sizes values */
DMATxDesc->ControlBufferSize |= (BufferSize1 | (BufferSize2 << ETH_DMATXDESC_BUFFER2_SIZESHIFT));
/* Set the DMA Tx Desc buffer1 and buffer2 sizes values */
DMATxDesc->ControlBufferSize |= (BufferSize1 | (BufferSize2 << ETH_DMATXDESC_BUFFER2_SIZESHIFT));
}
/**
......@@ -1457,39 +1459,39 @@ void ETH_DMATxDescBufferSizeConfig(ETH_DMADESCTypeDef *DMATxDesc, uint32_t Buffe
*/
void ETH_DMARxDescChainInit(ETH_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size and Second Address Chained bit */
DMARxDesc->ControlBufferSize = ETH_DMARxDesc_RCH | (uint32_t)ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (RxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
}
else
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size and Second Address Chained bit */
DMARxDesc->ControlBufferSize = ETH_DMARxDesc_RCH | (uint32_t)ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (RxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
}
}
}
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
}
/**
......@@ -1504,36 +1506,36 @@ void ETH_DMARxDescChainInit(ETH_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff, u
*/
void ETH_DMARxDescRingInit(ETH_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff1, uint8_t *RxBuff2, uint32_t RxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size */
DMARxDesc->ControlBufferSize = ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff1[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer2 address pointer */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(&RxBuff2[i*ETH_MAX_PACKET_SIZE]);
/* Set Receive End of Ring bit for last descriptor: The DMA returns to the base
address of the list, creating a Desciptor Ring */
if(i == (RxBuffCount-1))
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Set Receive End of Ring bit */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RER;
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size */
DMARxDesc->ControlBufferSize = ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff1[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer2 address pointer */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(&RxBuff2[i*ETH_MAX_PACKET_SIZE]);
/* Set Receive End of Ring bit for last descriptor: The DMA returns to the base
address of the list, creating a Desciptor Ring */
if(i == (RxBuffCount-1))
{
/* Set Receive End of Ring bit */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RER;
}
}
}
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
}
/**
......@@ -1563,18 +1565,18 @@ void ETH_DMARxDescRingInit(ETH_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff1, u
*/
FlagStatus ETH_GetDMARxDescFlagStatus(ETH_DMADESCTypeDef *DMARxDesc, uint32_t ETH_DMARxDescFlag)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMARxDESC_GET_FLAG(ETH_DMARxDescFlag));
if ((DMARxDesc->Status & ETH_DMARxDescFlag) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMARxDESC_GET_FLAG(ETH_DMARxDescFlag));
if ((DMARxDesc->Status & ETH_DMARxDescFlag) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1584,8 +1586,8 @@ FlagStatus ETH_GetDMARxDescFlagStatus(ETH_DMADESCTypeDef *DMARxDesc, uint32_t ET
*/
void ETH_SetDMARxDescOwnBit(ETH_DMADESCTypeDef *DMARxDesc)
{
/* Set the DMA Rx Desc Own bit */
DMARxDesc->Status |= ETH_DMARxDesc_OWN;
/* Set the DMA Rx Desc Own bit */
DMARxDesc->Status |= ETH_DMARxDesc_OWN;
}
/**
......@@ -1595,8 +1597,8 @@ void ETH_SetDMARxDescOwnBit(ETH_DMADESCTypeDef *DMARxDesc)
*/
uint32_t ETH_GetDMARxDescFrameLength(ETH_DMADESCTypeDef *DMARxDesc)
{
/* Return the Receive descriptor frame length */
return ((DMARxDesc->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT);
/* Return the Receive descriptor frame length */
return ((DMARxDesc->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT);
}
/**
......@@ -1608,19 +1610,19 @@ uint32_t ETH_GetDMARxDescFrameLength(ETH_DMADESCTypeDef *DMARxDesc)
*/
void ETH_DMARxDescReceiveITConfig(ETH_DMADESCTypeDef *DMARxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the DMA Rx Desc receive interrupt */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_DIC);
}
else
{
/* Disable the DMA Rx Desc receive interrupt */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_DIC;
}
if (NewState != DISABLE)
{
/* Enable the DMA Rx Desc receive interrupt */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_DIC);
}
else
{
/* Disable the DMA Rx Desc receive interrupt */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_DIC;
}
}
/**
......@@ -1632,19 +1634,19 @@ void ETH_DMARxDescReceiveITConfig(ETH_DMADESCTypeDef *DMARxDesc, FunctionalState
*/
void ETH_DMARxDescEndOfRingCmd(ETH_DMADESCTypeDef *DMARxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Rx Desc end of ring */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RER;
}
else
{
/* Disable the selected DMA Rx Desc end of ring */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_RER);
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Rx Desc end of ring */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RER;
}
else
{
/* Disable the selected DMA Rx Desc end of ring */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_RER);
}
}
/**
......@@ -1656,19 +1658,19 @@ void ETH_DMARxDescEndOfRingCmd(ETH_DMADESCTypeDef *DMARxDesc, FunctionalState Ne
*/
void ETH_DMARxDescSecondAddressChainedCmd(ETH_DMADESCTypeDef *DMARxDesc, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Rx Desc second address chained */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RCH;
}
else
{
/* Disable the selected DMA Rx Desc second address chained */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_RCH);
}
if (NewState != DISABLE)
{
/* Enable the selected DMA Rx Desc second address chained */
DMARxDesc->ControlBufferSize |= ETH_DMARxDesc_RCH;
}
else
{
/* Disable the selected DMA Rx Desc second address chained */
DMARxDesc->ControlBufferSize &=(~(uint32_t)ETH_DMARxDesc_RCH);
}
}
/**
......@@ -1682,19 +1684,19 @@ void ETH_DMARxDescSecondAddressChainedCmd(ETH_DMADESCTypeDef *DMARxDesc, Functio
*/
uint32_t ETH_GetDMARxDescBufferSize(ETH_DMADESCTypeDef *DMARxDesc, uint32_t DMARxDesc_Buffer)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_RXDESC_BUFFER(DMARxDesc_Buffer));
/* Check the parameters */
assert_param(IS_ETH_DMA_RXDESC_BUFFER(DMARxDesc_Buffer));
if(DMARxDesc_Buffer != ETH_DMARxDesc_Buffer1)
{
/* Return the DMA Rx Desc buffer2 size */
return ((DMARxDesc->ControlBufferSize & ETH_DMARxDesc_RBS2) >> ETH_DMARXDESC_BUFFER2_SIZESHIFT);
}
else
{
/* Return the DMA Rx Desc buffer1 size */
return (DMARxDesc->ControlBufferSize & ETH_DMARxDesc_RBS1);
}
if(DMARxDesc_Buffer != ETH_DMARxDesc_Buffer1)
{
/* Return the DMA Rx Desc buffer2 size */
return ((DMARxDesc->ControlBufferSize & ETH_DMARxDesc_RBS2) >> ETH_DMARXDESC_BUFFER2_SIZESHIFT);
}
else
{
/* Return the DMA Rx Desc buffer1 size */
return (DMARxDesc->ControlBufferSize & ETH_DMARxDesc_RBS1);
}
}
/*--------------------------------- DMA ------------------------------------*/
......@@ -1705,9 +1707,9 @@ uint32_t ETH_GetDMARxDescBufferSize(ETH_DMADESCTypeDef *DMARxDesc, uint32_t DMAR
*/
void ETH_SoftwareReset(void)
{
/* Set the SWR bit: resets all MAC subsystem internal registers and logic */
/* After reset all the registers holds their respective reset values */
ETH->DMABMR |= ETH_DMABMR_SR;
/* Set the SWR bit: resets all MAC subsystem internal registers and logic */
/* After reset all the registers holds their respective reset values */
ETH->DMABMR |= ETH_DMABMR_SR;
}
/**
......@@ -1717,16 +1719,16 @@ void ETH_SoftwareReset(void)
*/
FlagStatus ETH_GetSoftwareResetStatus(void)
{
FlagStatus bitstatus = RESET;
if((ETH->DMABMR & ETH_DMABMR_SR) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
if((ETH->DMABMR & ETH_DMABMR_SR) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1758,18 +1760,18 @@ FlagStatus ETH_GetSoftwareResetStatus(void)
*/
FlagStatus ETH_GetDMAFlagStatus(uint32_t ETH_DMA_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_IT(ETH_DMA_FLAG));
if ((ETH->DMASR & ETH_DMA_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_IT(ETH_DMA_FLAG));
if ((ETH->DMASR & ETH_DMA_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1795,11 +1797,11 @@ FlagStatus ETH_GetDMAFlagStatus(uint32_t ETH_DMA_FLAG)
*/
void ETH_DMAClearFlag(uint32_t ETH_DMA_FLAG)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_FLAG(ETH_DMA_FLAG));
/* Check the parameters */
assert_param(IS_ETH_DMA_FLAG(ETH_DMA_FLAG));
/* Clear the selected ETHERNET DMA FLAG */
ETH->DMASR = (uint32_t) ETH_DMA_FLAG;
/* Clear the selected ETHERNET DMA FLAG */
ETH->DMASR = (uint32_t) ETH_DMA_FLAG;
}
/**
......@@ -1828,18 +1830,18 @@ void ETH_DMAClearFlag(uint32_t ETH_DMA_FLAG)
*/
ITStatus ETH_GetDMAITStatus(uint32_t ETH_DMA_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_IT(ETH_DMA_IT));
if ((ETH->DMASR & ETH_DMA_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_IT(ETH_DMA_IT));
if ((ETH->DMASR & ETH_DMA_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1865,11 +1867,11 @@ ITStatus ETH_GetDMAITStatus(uint32_t ETH_DMA_IT)
*/
void ETH_DMAClearITPendingBit(uint32_t ETH_DMA_IT)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_IT(ETH_DMA_IT));
/* Check the parameters */
assert_param(IS_ETH_DMA_IT(ETH_DMA_IT));
/* Clear the selected ETHERNET DMA IT */
ETH->DMASR = (uint32_t) ETH_DMA_IT;
/* Clear the selected ETHERNET DMA IT */
ETH->DMASR = (uint32_t) ETH_DMA_IT;
}
/**
......@@ -1886,7 +1888,7 @@ void ETH_DMAClearITPendingBit(uint32_t ETH_DMA_IT)
*/
uint32_t ETH_GetTransmitProcessState(void)
{
return ((uint32_t)(ETH->DMASR & ETH_DMASR_TS));
return ((uint32_t)(ETH->DMASR & ETH_DMASR_TS));
}
/**
......@@ -1903,7 +1905,7 @@ uint32_t ETH_GetTransmitProcessState(void)
*/
uint32_t ETH_GetReceiveProcessState(void)
{
return ((uint32_t)(ETH->DMASR & ETH_DMASR_RS));
return ((uint32_t)(ETH->DMASR & ETH_DMASR_RS));
}
/**
......@@ -1913,8 +1915,8 @@ uint32_t ETH_GetReceiveProcessState(void)
*/
void ETH_FlushTransmitFIFO(void)
{
/* Set the Flush Transmit FIFO bit */
ETH->DMAOMR |= ETH_DMAOMR_FTF;
/* Set the Flush Transmit FIFO bit */
ETH->DMAOMR |= ETH_DMAOMR_FTF;
}
/**
......@@ -1924,16 +1926,16 @@ void ETH_FlushTransmitFIFO(void)
*/
FlagStatus ETH_GetFlushTransmitFIFOStatus(void)
{
FlagStatus bitstatus = RESET;
if ((ETH->DMAOMR & ETH_DMAOMR_FTF) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
FlagStatus bitstatus = RESET;
if ((ETH->DMAOMR & ETH_DMAOMR_FTF) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -1944,19 +1946,19 @@ FlagStatus ETH_GetFlushTransmitFIFOStatus(void)
*/
void ETH_DMATransmissionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the DMA transmission */
ETH->DMAOMR |= ETH_DMAOMR_ST;
}
else
{
/* Disable the DMA transmission */
ETH->DMAOMR &= ~ETH_DMAOMR_ST;
}
if (NewState != DISABLE)
{
/* Enable the DMA transmission */
ETH->DMAOMR |= ETH_DMAOMR_ST;
}
else
{
/* Disable the DMA transmission */
ETH->DMAOMR &= ~ETH_DMAOMR_ST;
}
}
/**
......@@ -1967,19 +1969,19 @@ void ETH_DMATransmissionCmd(FunctionalState NewState)
*/
void ETH_DMAReceptionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the DMA reception */
ETH->DMAOMR |= ETH_DMAOMR_SR;
}
else
{
/* Disable the DMA reception */
ETH->DMAOMR &= ~ETH_DMAOMR_SR;
}
if (NewState != DISABLE)
{
/* Enable the DMA reception */
ETH->DMAOMR |= ETH_DMAOMR_SR;
}
else
{
/* Disable the DMA reception */
ETH->DMAOMR &= ~ETH_DMAOMR_SR;
}
}
/**
......@@ -2008,20 +2010,20 @@ void ETH_DMAReceptionCmd(FunctionalState NewState)
*/
void ETH_DMAITConfig(uint32_t ETH_DMA_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ETH_DMA_IT(ETH_DMA_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_ETH_DMA_IT(ETH_DMA_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET DMA interrupts */
ETH->DMAIER |= ETH_DMA_IT;
}
else
{
/* Disable the selected ETHERNET DMA interrupts */
ETH->DMAIER &=(~(uint32_t)ETH_DMA_IT);
}
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET DMA interrupts */
ETH->DMAIER |= ETH_DMA_IT;
}
else
{
/* Disable the selected ETHERNET DMA interrupts */
ETH->DMAIER &=(~(uint32_t)ETH_DMA_IT);
}
}
/**
......@@ -2034,19 +2036,19 @@ void ETH_DMAITConfig(uint32_t ETH_DMA_IT, FunctionalState NewState)
*/
FlagStatus ETH_GetDMAOverflowStatus(uint32_t ETH_DMA_Overflow)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_OVERFLOW(ETH_DMA_Overflow));
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_DMA_GET_OVERFLOW(ETH_DMA_Overflow));
if ((ETH->DMAMFBOCR & ETH_DMA_Overflow) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
if ((ETH->DMAMFBOCR & ETH_DMA_Overflow) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -2056,7 +2058,7 @@ FlagStatus ETH_GetDMAOverflowStatus(uint32_t ETH_DMA_Overflow)
*/
uint32_t ETH_GetRxOverflowMissedFrameCounter(void)
{
return ((uint32_t)((ETH->DMAMFBOCR & ETH_DMAMFBOCR_MFA)>>ETH_DMA_RX_OVERFLOW_MISSEDFRAMES_COUNTERSHIFT));
return ((uint32_t)((ETH->DMAMFBOCR & ETH_DMAMFBOCR_MFA)>>ETH_DMA_RX_OVERFLOW_MISSEDFRAMES_COUNTERSHIFT));
}
/**
......@@ -2066,7 +2068,7 @@ uint32_t ETH_GetRxOverflowMissedFrameCounter(void)
*/
uint32_t ETH_GetBufferUnavailableMissedFrameCounter(void)
{
return ((uint32_t)(ETH->DMAMFBOCR) & ETH_DMAMFBOCR_MFC);
return ((uint32_t)(ETH->DMAMFBOCR) & ETH_DMAMFBOCR_MFC);
}
/**
......@@ -2076,7 +2078,7 @@ uint32_t ETH_GetBufferUnavailableMissedFrameCounter(void)
*/
uint32_t ETH_GetCurrentTxDescStartAddress(void)
{
return ((uint32_t)(ETH->DMACHTDR));
return ((uint32_t)(ETH->DMACHTDR));
}
/**
......@@ -2086,7 +2088,7 @@ uint32_t ETH_GetCurrentTxDescStartAddress(void)
*/
uint32_t ETH_GetCurrentRxDescStartAddress(void)
{
return ((uint32_t)(ETH->DMACHRDR));
return ((uint32_t)(ETH->DMACHRDR));
}
/**
......@@ -2096,7 +2098,7 @@ uint32_t ETH_GetCurrentRxDescStartAddress(void)
*/
uint32_t ETH_GetCurrentTxBufferAddress(void)
{
return ((uint32_t)(ETH->DMACHTBAR));
return ((uint32_t)(ETH->DMACHTBAR));
}
/**
......@@ -2106,7 +2108,7 @@ uint32_t ETH_GetCurrentTxBufferAddress(void)
*/
uint32_t ETH_GetCurrentRxBufferAddress(void)
{
return ((uint32_t)(ETH->DMACHRBAR));
return ((uint32_t)(ETH->DMACHRBAR));
}
/**
......@@ -2117,7 +2119,7 @@ uint32_t ETH_GetCurrentRxBufferAddress(void)
*/
void ETH_ResumeDMATransmission(void)
{
ETH->DMATPDR = 0;
ETH->DMATPDR = 0;
}
/**
......@@ -2128,7 +2130,7 @@ void ETH_ResumeDMATransmission(void)
*/
void ETH_ResumeDMAReception(void)
{
ETH->DMARPDR = 0;
ETH->DMARPDR = 0;
}
/*--------------------------------- PMT ------------------------------------*/
......@@ -2139,8 +2141,8 @@ void ETH_ResumeDMAReception(void)
*/
void ETH_ResetWakeUpFrameFilterRegisterPointer(void)
{
/* Resets the Remote Wake-up Frame Filter register pointer to 0x0000 */
ETH->MACPMTCSR |= ETH_MACPMTCSR_WFFRPR;
/* Resets the Remote Wake-up Frame Filter register pointer to 0x0000 */
ETH->MACPMTCSR |= ETH_MACPMTCSR_WFFRPR;
}
/**
......@@ -2150,14 +2152,14 @@ void ETH_ResetWakeUpFrameFilterRegisterPointer(void)
*/
void ETH_SetWakeUpFrameFilterRegister(uint32_t *Buffer)
{
uint32_t i = 0;
uint32_t i = 0;
/* Fill Remote Wake-up Frame Filter register with Buffer data */
for(i =0; i<ETH_WAKEUP_REGISTER_LENGTH; i++)
{
/* Write each time to the same register */
ETH->MACRWUFFR = Buffer[i];
}
/* Fill Remote Wake-up Frame Filter register with Buffer data */
for(i =0; i<ETH_WAKEUP_REGISTER_LENGTH; i++)
{
/* Write each time to the same register */
ETH->MACRWUFFR = Buffer[i];
}
}
/**
......@@ -2169,19 +2171,19 @@ void ETH_SetWakeUpFrameFilterRegister(uint32_t *Buffer)
*/
void ETH_GlobalUnicastWakeUpCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC Global Unicast Wake-Up */
ETH->MACPMTCSR |= ETH_MACPMTCSR_GU;
}
else
{
/* Disable the MAC Global Unicast Wake-Up */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_GU;
}
if (NewState != DISABLE)
{
/* Enable the MAC Global Unicast Wake-Up */
ETH->MACPMTCSR |= ETH_MACPMTCSR_GU;
}
else
{
/* Disable the MAC Global Unicast Wake-Up */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_GU;
}
}
/**
......@@ -2195,19 +2197,19 @@ void ETH_GlobalUnicastWakeUpCmd(FunctionalState NewState)
*/
FlagStatus ETH_GetPMTFlagStatus(uint32_t ETH_PMT_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_PMT_GET_FLAG(ETH_PMT_FLAG));
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_PMT_GET_FLAG(ETH_PMT_FLAG));
if ((ETH->MACPMTCSR & ETH_PMT_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
if ((ETH->MACPMTCSR & ETH_PMT_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -2218,19 +2220,19 @@ FlagStatus ETH_GetPMTFlagStatus(uint32_t ETH_PMT_FLAG)
*/
void ETH_WakeUpFrameDetectionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC Wake-Up Frame Detection */
ETH->MACPMTCSR |= ETH_MACPMTCSR_WFE;
}
else
{
/* Disable the MAC Wake-Up Frame Detection */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_WFE;
}
if (NewState != DISABLE)
{
/* Enable the MAC Wake-Up Frame Detection */
ETH->MACPMTCSR |= ETH_MACPMTCSR_WFE;
}
else
{
/* Disable the MAC Wake-Up Frame Detection */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_WFE;
}
}
/**
......@@ -2241,19 +2243,19 @@ void ETH_WakeUpFrameDetectionCmd(FunctionalState NewState)
*/
void ETH_MagicPacketDetectionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC Magic Packet Detection */
ETH->MACPMTCSR |= ETH_MACPMTCSR_MPE;
}
else
{
/* Disable the MAC Magic Packet Detection */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_MPE;
}
if (NewState != DISABLE)
{
/* Enable the MAC Magic Packet Detection */
ETH->MACPMTCSR |= ETH_MACPMTCSR_MPE;
}
else
{
/* Disable the MAC Magic Packet Detection */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_MPE;
}
}
/**
......@@ -2264,20 +2266,20 @@ void ETH_MagicPacketDetectionCmd(FunctionalState NewState)
*/
void ETH_PowerDownCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MAC Power Down */
/* This puts the MAC in power down mode */
ETH->MACPMTCSR |= ETH_MACPMTCSR_PD;
}
else
{
/* Disable the MAC Power Down */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_PD;
}
if (NewState != DISABLE)
{
/* Enable the MAC Power Down */
/* This puts the MAC in power down mode */
ETH->MACPMTCSR |= ETH_MACPMTCSR_PD;
}
else
{
/* Disable the MAC Power Down */
ETH->MACPMTCSR &= ~ETH_MACPMTCSR_PD;
}
}
/*--------------------------------- MMC ------------------------------------*/
......@@ -2289,19 +2291,19 @@ void ETH_PowerDownCmd(FunctionalState NewState)
*/
void ETH_MMCCounterFreezeCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MMC Counter Freeze */
ETH->MMCCR |= ETH_MMCCR_MCF;
}
else
{
/* Disable the MMC Counter Freeze */
ETH->MMCCR &= ~ETH_MMCCR_MCF;
}
if (NewState != DISABLE)
{
/* Enable the MMC Counter Freeze */
ETH->MMCCR |= ETH_MMCCR_MCF;
}
else
{
/* Disable the MMC Counter Freeze */
ETH->MMCCR &= ~ETH_MMCCR_MCF;
}
}
/**
......@@ -2312,19 +2314,19 @@ void ETH_MMCCounterFreezeCmd(FunctionalState NewState)
*/
void ETH_MMCResetOnReadCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the MMC Counter reset on read */
ETH->MMCCR |= ETH_MMCCR_ROR;
}
else
{
/* Disable the MMC Counter reset on read */
ETH->MMCCR &= ~ETH_MMCCR_ROR;
}
if (NewState != DISABLE)
{
/* Enable the MMC Counter reset on read */
ETH->MMCCR |= ETH_MMCCR_ROR;
}
else
{
/* Disable the MMC Counter reset on read */
ETH->MMCCR &= ~ETH_MMCCR_ROR;
}
}
/**
......@@ -2335,19 +2337,19 @@ void ETH_MMCResetOnReadCmd(FunctionalState NewState)
*/
void ETH_MMCCounterRolloverCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Disable the MMC Counter Stop Rollover */
ETH->MMCCR &= ~ETH_MMCCR_CSR;
}
else
{
/* Enable the MMC Counter Stop Rollover */
ETH->MMCCR |= ETH_MMCCR_CSR;
}
if (NewState != DISABLE)
{
/* Disable the MMC Counter Stop Rollover */
ETH->MMCCR &= ~ETH_MMCCR_CSR;
}
else
{
/* Enable the MMC Counter Stop Rollover */
ETH->MMCCR |= ETH_MMCCR_CSR;
}
}
/**
......@@ -2357,8 +2359,8 @@ void ETH_MMCCounterRolloverCmd(FunctionalState NewState)
*/
void ETH_MMCCountersReset(void)
{
/* Resets the MMC Counters */
ETH->MMCCR |= ETH_MMCCR_CR;
/* Resets the MMC Counters */
ETH->MMCCR |= ETH_MMCCR_CR;
}
/**
......@@ -2378,41 +2380,41 @@ void ETH_MMCCountersReset(void)
*/
void ETH_MMCITConfig(uint32_t ETH_MMC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ETH_MMC_IT(ETH_MMC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_ETH_MMC_IT(ETH_MMC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if ((ETH_MMC_IT & (uint32_t)0x10000000) != (uint32_t)RESET)
{
/* Remove egister mak from IT */
ETH_MMC_IT &= 0xEFFFFFFF;
/* ETHERNET MMC Rx interrupts selected */
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MMC interrupts */
ETH->MMCRIMR &=(~(uint32_t)ETH_MMC_IT);
}
else
{
/* Disable the selected ETHERNET MMC interrupts */
ETH->MMCRIMR |= ETH_MMC_IT;
}
}
else
{
/* ETHERNET MMC Tx interrupts selected */
if (NewState != DISABLE)
if ((ETH_MMC_IT & (uint32_t)0x10000000) != (uint32_t)RESET)
{
/* Enable the selected ETHERNET MMC interrupts */
ETH->MMCTIMR &=(~(uint32_t)ETH_MMC_IT);
/* Remove egister mak from IT */
ETH_MMC_IT &= 0xEFFFFFFF;
/* ETHERNET MMC Rx interrupts selected */
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MMC interrupts */
ETH->MMCRIMR &=(~(uint32_t)ETH_MMC_IT);
}
else
{
/* Disable the selected ETHERNET MMC interrupts */
ETH->MMCRIMR |= ETH_MMC_IT;
}
}
else
{
/* Disable the selected ETHERNET MMC interrupts */
ETH->MMCTIMR |= ETH_MMC_IT;
/* ETHERNET MMC Tx interrupts selected */
if (NewState != DISABLE)
{
/* Enable the selected ETHERNET MMC interrupts */
ETH->MMCTIMR &=(~(uint32_t)ETH_MMC_IT);
}
else
{
/* Disable the selected ETHERNET MMC interrupts */
ETH->MMCTIMR |= ETH_MMC_IT;
}
}
}
}
/**
......@@ -2429,38 +2431,38 @@ void ETH_MMCITConfig(uint32_t ETH_MMC_IT, FunctionalState NewState)
*/
ITStatus ETH_GetMMCITStatus(uint32_t ETH_MMC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MMC_GET_IT(ETH_MMC_IT));
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_MMC_GET_IT(ETH_MMC_IT));
if ((ETH_MMC_IT & (uint32_t)0x10000000) != (uint32_t)RESET)
{
/* ETHERNET MMC Rx interrupts selected */
/* Check if the ETHERNET MMC Rx selected interrupt is enabled and occured */
if ((((ETH->MMCRIR & ETH_MMC_IT) != (uint32_t)RESET)) && ((ETH->MMCRIMR & ETH_MMC_IT) != (uint32_t)RESET))
{
bitstatus = SET;
}
else
if ((ETH_MMC_IT & (uint32_t)0x10000000) != (uint32_t)RESET)
{
bitstatus = RESET;
}
}
else
{
/* ETHERNET MMC Tx interrupts selected */
/* Check if the ETHERNET MMC Tx selected interrupt is enabled and occured */
if ((((ETH->MMCTIR & ETH_MMC_IT) != (uint32_t)RESET)) && ((ETH->MMCRIMR & ETH_MMC_IT) != (uint32_t)RESET))
{
bitstatus = SET;
/* ETHERNET MMC Rx interrupts selected */
/* Check if the ETHERNET MMC Rx selected interrupt is enabled and occured */
if ((((ETH->MMCRIR & ETH_MMC_IT) != (uint32_t)RESET)) && ((ETH->MMCRIMR & ETH_MMC_IT) != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else
{
bitstatus = RESET;
/* ETHERNET MMC Tx interrupts selected */
/* Check if the ETHERNET MMC Tx selected interrupt is enabled and occured */
if ((((ETH->MMCTIR & ETH_MMC_IT) != (uint32_t)RESET)) && ((ETH->MMCRIMR & ETH_MMC_IT) != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
}
return bitstatus;
return bitstatus;
}
/**
......@@ -2482,11 +2484,11 @@ ITStatus ETH_GetMMCITStatus(uint32_t ETH_MMC_IT)
*/
uint32_t ETH_GetMMCRegister(uint32_t ETH_MMCReg)
{
/* Check the parameters */
assert_param(IS_ETH_MMC_REGISTER(ETH_MMCReg));
/* Check the parameters */
assert_param(IS_ETH_MMC_REGISTER(ETH_MMCReg));
/* Return the selected register value */
return (*(__IO uint32_t *)(ETH_MAC_BASE + ETH_MMCReg));
/* Return the selected register value */
return (*(__IO uint32_t *)(ETH_MAC_BASE + ETH_MMCReg));
}
/*--------------------------------- PTP ------------------------------------*/
......@@ -2497,8 +2499,8 @@ uint32_t ETH_GetMMCRegister(uint32_t ETH_MMCReg)
*/
void ETH_EnablePTPTimeStampAddend(void)
{
/* Enable the PTP block update with the Time Stamp Addend register value */
ETH->PTPTSCR |= ETH_PTPTSCR_TSARU;
/* Enable the PTP block update with the Time Stamp Addend register value */
ETH->PTPTSCR |= ETH_PTPTSCR_TSARU;
}
/**
......@@ -2508,8 +2510,8 @@ void ETH_EnablePTPTimeStampAddend(void)
*/
void ETH_EnablePTPTimeStampInterruptTrigger(void)
{
/* Enable the PTP target time interrupt */
ETH->PTPTSCR |= ETH_PTPTSCR_TSITE;
/* Enable the PTP target time interrupt */
ETH->PTPTSCR |= ETH_PTPTSCR_TSITE;
}
/**
......@@ -2519,8 +2521,8 @@ void ETH_EnablePTPTimeStampInterruptTrigger(void)
*/
void ETH_EnablePTPTimeStampUpdate(void)
{
/* Enable the PTP system time update with the Time Stamp Update register value */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTU;
/* Enable the PTP system time update with the Time Stamp Update register value */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTU;
}
/**
......@@ -2530,8 +2532,8 @@ void ETH_EnablePTPTimeStampUpdate(void)
*/
void ETH_InitializePTPTimeStamp(void)
{
/* Initialize the PTP Time Stamp */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTI;
/* Initialize the PTP Time Stamp */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTI;
}
/**
......@@ -2544,19 +2546,19 @@ void ETH_InitializePTPTimeStamp(void)
*/
void ETH_PTPUpdateMethodConfig(uint32_t UpdateMethod)
{
/* Check the parameters */
assert_param(IS_ETH_PTP_UPDATE(UpdateMethod));
/* Check the parameters */
assert_param(IS_ETH_PTP_UPDATE(UpdateMethod));
if (UpdateMethod != ETH_PTP_CoarseUpdate)
{
/* Enable the PTP Fine Update method */
ETH->PTPTSCR |= ETH_PTPTSCR_TSFCU;
}
else
{
/* Disable the PTP Coarse Update method */
ETH->PTPTSCR &= (~(uint32_t)ETH_PTPTSCR_TSFCU);
}
if (UpdateMethod != ETH_PTP_CoarseUpdate)
{
/* Enable the PTP Fine Update method */
ETH->PTPTSCR |= ETH_PTPTSCR_TSFCU;
}
else
{
/* Disable the PTP Coarse Update method */
ETH->PTPTSCR &= (~(uint32_t)ETH_PTPTSCR_TSFCU);
}
}
/**
......@@ -2567,19 +2569,19 @@ void ETH_PTPUpdateMethodConfig(uint32_t UpdateMethod)
*/
void ETH_PTPTimeStampCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the PTP time stamp for transmit and receive frames */
ETH->PTPTSCR |= ETH_PTPTSCR_TSE;
}
else
{
/* Disable the PTP time stamp for transmit and receive frames */
ETH->PTPTSCR &= (~(uint32_t)ETH_PTPTSCR_TSE);
}
if (NewState != DISABLE)
{
/* Enable the PTP time stamp for transmit and receive frames */
ETH->PTPTSCR |= ETH_PTPTSCR_TSE;
}
else
{
/* Disable the PTP time stamp for transmit and receive frames */
ETH->PTPTSCR &= (~(uint32_t)ETH_PTPTSCR_TSE);
}
}
/**
......@@ -2594,19 +2596,19 @@ void ETH_PTPTimeStampCmd(FunctionalState NewState)
*/
FlagStatus ETH_GetPTPFlagStatus(uint32_t ETH_PTP_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_PTP_GET_FLAG(ETH_PTP_FLAG));
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ETH_PTP_GET_FLAG(ETH_PTP_FLAG));
if ((ETH->PTPTSCR & ETH_PTP_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
if ((ETH->PTPTSCR & ETH_PTP_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
......@@ -2616,10 +2618,10 @@ FlagStatus ETH_GetPTPFlagStatus(uint32_t ETH_PTP_FLAG)
*/
void ETH_SetPTPSubSecondIncrement(uint32_t SubSecondValue)
{
/* Check the parameters */
assert_param(IS_ETH_PTP_SUBSECOND_INCREMENT(SubSecondValue));
/* Set the PTP Sub-Second Increment Register */
ETH->PTPSSIR = SubSecondValue;
/* Check the parameters */
assert_param(IS_ETH_PTP_SUBSECOND_INCREMENT(SubSecondValue));
/* Set the PTP Sub-Second Increment Register */
ETH->PTPSSIR = SubSecondValue;
}
/**
......@@ -2635,14 +2637,14 @@ void ETH_SetPTPSubSecondIncrement(uint32_t SubSecondValue)
*/
void ETH_SetPTPTimeStampUpdate(uint32_t Sign, uint32_t SecondValue, uint32_t SubSecondValue)
{
/* Check the parameters */
assert_param(IS_ETH_PTP_TIME_SIGN(Sign));
assert_param(IS_ETH_PTP_TIME_STAMP_UPDATE_SUBSECOND(SubSecondValue));
/* Set the PTP Time Update High Register */
ETH->PTPTSHUR = SecondValue;
/* Check the parameters */
assert_param(IS_ETH_PTP_TIME_SIGN(Sign));
assert_param(IS_ETH_PTP_TIME_STAMP_UPDATE_SUBSECOND(SubSecondValue));
/* Set the PTP Time Update High Register */
ETH->PTPTSHUR = SecondValue;
/* Set the PTP Time Update Low Register with sign */
ETH->PTPTSLUR = Sign | SubSecondValue;
/* Set the PTP Time Update Low Register with sign */
ETH->PTPTSLUR = Sign | SubSecondValue;
}
/**
......@@ -2652,8 +2654,8 @@ void ETH_SetPTPTimeStampUpdate(uint32_t Sign, uint32_t SecondValue, uint32_t Sub
*/
void ETH_SetPTPTimeStampAddend(uint32_t Value)
{
/* Set the PTP Time Stamp Addend Register */
ETH->PTPTSAR = Value;
/* Set the PTP Time Stamp Addend Register */
ETH->PTPTSAR = Value;
}
/**
......@@ -2664,10 +2666,10 @@ void ETH_SetPTPTimeStampAddend(uint32_t Value)
*/
void ETH_SetPTPTargetTime(uint32_t HighValue, uint32_t LowValue)
{
/* Set the PTP Target Time High Register */
ETH->PTPTTHR = HighValue;
/* Set the PTP Target Time Low Register */
ETH->PTPTTLR = LowValue;
/* Set the PTP Target Time High Register */
ETH->PTPTTHR = HighValue;
/* Set the PTP Target Time Low Register */
ETH->PTPTTLR = LowValue;
}
/**
......@@ -2687,11 +2689,11 @@ void ETH_SetPTPTargetTime(uint32_t HighValue, uint32_t LowValue)
*/
uint32_t ETH_GetPTPRegister(uint32_t ETH_PTPReg)
{
/* Check the parameters */
assert_param(IS_ETH_PTP_REGISTER(ETH_PTPReg));
/* Check the parameters */
assert_param(IS_ETH_PTP_REGISTER(ETH_PTPReg));
/* Return the selected register value */
return (*(__IO uint32_t *)(ETH_MAC_BASE + ETH_PTPReg));
/* Return the selected register value */
return (*(__IO uint32_t *)(ETH_MAC_BASE + ETH_PTPReg));
}
/**
......@@ -2705,43 +2707,43 @@ uint32_t ETH_GetPTPRegister(uint32_t ETH_PTPReg)
void ETH_DMAPTPTxDescChainInit(ETH_DMADESCTypeDef *DMATxDescTab, ETH_DMADESCTypeDef *DMAPTPTxDescTab,
uint8_t* TxBuff, uint32_t TxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
uint32_t i = 0;
ETH_DMADESCTypeDef *DMATxDesc;
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
DMAPTPTxDescToSet = DMAPTPTxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab+i;
/* Set Second Address Chained bit and enable PTP */
DMATxDesc->Status = ETH_DMATxDesc_TCH | ETH_DMATxDesc_TTSE;
/* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */
DMATxDescToSet = DMATxDescTab;
DMAPTPTxDescToSet = DMAPTPTxDescTab;
/* Fill each DMATxDesc descriptor with the right values */
for(i=0; i < TxBuffCount; i++)
{
/* Get the pointer on the ith member of the Tx Desc list */
DMATxDesc = DMATxDescTab+i;
/* Set Second Address Chained bit and enable PTP */
DMATxDesc->Status = ETH_DMATxDesc_TCH | ETH_DMATxDesc_TTSE;
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr =(uint32_t)(&TxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Set Buffer1 address pointer */
DMATxDesc->Buffer1Addr =(uint32_t)(&TxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (TxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (TxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
}
/* make DMAPTPTxDescTab points to the same addresses as DMATxDescTab */
(&DMAPTPTxDescTab[i])->Buffer1Addr = DMATxDesc->Buffer1Addr;
(&DMAPTPTxDescTab[i])->Buffer2NextDescAddr = DMATxDesc->Buffer2NextDescAddr;
}
/* make DMAPTPTxDescTab points to the same addresses as DMATxDescTab */
(&DMAPTPTxDescTab[i])->Buffer1Addr = DMATxDesc->Buffer1Addr;
(&DMAPTPTxDescTab[i])->Buffer2NextDescAddr = DMATxDesc->Buffer2NextDescAddr;
}
/* Store on the last DMAPTPTxDescTab desc status record the first list address */
(&DMAPTPTxDescTab[i-1])->Status = (uint32_t) DMAPTPTxDescTab;
/* Store on the last DMAPTPTxDescTab desc status record the first list address */
(&DMAPTPTxDescTab[i-1])->Status = (uint32_t) DMAPTPTxDescTab;
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
/* Set Transmit Desciptor List Address Register */
ETH->DMATDLAR = (uint32_t) DMATxDescTab;
}
/**
......@@ -2755,45 +2757,45 @@ void ETH_DMAPTPTxDescChainInit(ETH_DMADESCTypeDef *DMATxDescTab, ETH_DMADESCType
void ETH_DMAPTPRxDescChainInit(ETH_DMADESCTypeDef *DMARxDescTab, ETH_DMADESCTypeDef *DMAPTPRxDescTab,
uint8_t *RxBuff, uint32_t RxBuffCount)
{
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
DMAPTPRxDescToGet = DMAPTPRxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size and Second Address Chained bit */
DMARxDesc->ControlBufferSize = ETH_DMARxDesc_RCH | (uint32_t)ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_MAX_PACKET_SIZE]);
uint32_t i = 0;
ETH_DMADESCTypeDef *DMARxDesc;
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (RxBuffCount-1))
/* Set the DMARxDescToGet pointer with the first one of the DMARxDescTab list */
DMARxDescToGet = DMARxDescTab;
DMAPTPRxDescToGet = DMAPTPRxDescTab;
/* Fill each DMARxDesc descriptor with the right values */
for(i=0; i < RxBuffCount; i++)
{
/* Set next descriptor address register with next descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
/* Get the pointer on the ith member of the Rx Desc list */
DMARxDesc = DMARxDescTab+i;
/* Set Own bit of the Rx descriptor Status */
DMARxDesc->Status = ETH_DMARxDesc_OWN;
/* Set Buffer1 size and Second Address Chained bit */
DMARxDesc->ControlBufferSize = ETH_DMARxDesc_RCH | (uint32_t)ETH_MAX_PACKET_SIZE;
/* Set Buffer1 address pointer */
DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_MAX_PACKET_SIZE]);
/* Initialize the next descriptor with the Next Desciptor Polling Enable */
if(i < (RxBuffCount-1))
{
/* Set next descriptor address register with next descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
}
else
{
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
}
/* Make DMAPTPRxDescTab points to the same addresses as DMARxDescTab */
(&DMAPTPRxDescTab[i])->Buffer1Addr = DMARxDesc->Buffer1Addr;
(&DMAPTPRxDescTab[i])->Buffer2NextDescAddr = DMARxDesc->Buffer2NextDescAddr;
}
/* Make DMAPTPRxDescTab points to the same addresses as DMARxDescTab */
(&DMAPTPRxDescTab[i])->Buffer1Addr = DMARxDesc->Buffer1Addr;
(&DMAPTPRxDescTab[i])->Buffer2NextDescAddr = DMARxDesc->Buffer2NextDescAddr;
}
/* Store on the last DMAPTPRxDescTab desc status record the first list address */
(&DMAPTPRxDescTab[i-1])->Status = (uint32_t) DMAPTPRxDescTab;
/* Store on the last DMAPTPRxDescTab desc status record the first list address */
(&DMAPTPRxDescTab[i-1])->Status = (uint32_t) DMAPTPRxDescTab;
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
/* Set Receive Desciptor List Address Register */
ETH->DMARDLAR = (uint32_t) DMARxDescTab;
}
/**
......@@ -2806,79 +2808,80 @@ void ETH_DMAPTPRxDescChainInit(ETH_DMADESCTypeDef *DMARxDescTab, ETH_DMADESCType
*/
uint32_t ETH_HandlePTPTxPkt(uint8_t *ppkt, uint16_t FrameLength, uint32_t *PTPTxTab)
{
uint32_t offset = 0, timeout = 0;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (uint32_t)RESET)
{
/* Return ERROR: OWN bit set */
return ETH_ERROR;
}
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
for(offset=0; offset<FrameLength; offset++)
{
(*(__IO uint8_t *)((DMAPTPTxDescToSet->Buffer1Addr) + offset)) = (*(ppkt + offset));
}
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (FrameLength & (uint32_t)0x1FFF);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_TBUS;
/* Resume DMA transmission*/
ETH->DMATPDR = 0;
}
/* Wait for ETH_DMATxDesc_TTSS flag to be set */
do
{
timeout++;
} while (!(DMATxDescToSet->Status & ETH_DMATxDesc_TTSS) && (timeout < 0xFFFF));
/* Return ERROR in case of timeout */
if(timeout == PHY_READ_TO)
{
return ETH_ERROR;
}
/* Clear the DMATxDescToSet status register TTSS flag */
DMATxDescToSet->Status &= ~ETH_DMATxDesc_TTSS;
*PTPTxTab++ = DMATxDescToSet->Buffer1Addr;
*PTPTxTab = DMATxDescToSet->Buffer2NextDescAddr;
/* Update the ENET DMA current descriptor */
/* Chained Mode */
if((DMATxDescToSet->Status & ETH_DMATxDesc_TCH) != (uint32_t)RESET)
{
/* Selects the next DMA Tx descriptor list for next buffer read */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMAPTPTxDescToSet->Buffer2NextDescAddr);
if(DMAPTPTxDescToSet->Status != 0)
{
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) (DMAPTPTxDescToSet->Status);
uint32_t offset = 0, timeout = 0;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (uint32_t)RESET)
{
/* Return ERROR: OWN bit set */
return ETH_ERROR;
}
else
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
for(offset=0; offset<FrameLength; offset++)
{
(*(__IO uint8_t *)((DMAPTPTxDescToSet->Buffer1Addr) + offset)) = (*(ppkt + offset));
}
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (FrameLength & (uint32_t)0x1FFF);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_TBUS;
/* Resume DMA transmission*/
ETH->DMATPDR = 0;
}
/* Wait for ETH_DMATxDesc_TTSS flag to be set */
do
{
DMAPTPTxDescToSet++;
timeout++;
}
}
else /* Ring Mode */
{
if((DMATxDescToSet->Status & ETH_DMATxDesc_TER) != (uint32_t)RESET)
while (!(DMATxDescToSet->Status & ETH_DMATxDesc_TTSS) && (timeout < 0xFFFF));
/* Return ERROR in case of timeout */
if(timeout == PHY_READ_TO)
{
/* Selects the next DMA Tx descriptor list for next buffer read: this will
be the first Tx descriptor in this case */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
return ETH_ERROR;
}
else
/* Clear the DMATxDescToSet status register TTSS flag */
DMATxDescToSet->Status &= ~ETH_DMATxDesc_TTSS;
*PTPTxTab++ = DMATxDescToSet->Buffer1Addr;
*PTPTxTab = DMATxDescToSet->Buffer2NextDescAddr;
/* Update the ENET DMA current descriptor */
/* Chained Mode */
if((DMATxDescToSet->Status & ETH_DMATxDesc_TCH) != (uint32_t)RESET)
{
/* Selects the next DMA Tx descriptor list for next buffer read */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMAPTPTxDescToSet->Buffer2NextDescAddr);
if(DMAPTPTxDescToSet->Status != 0)
{
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) (DMAPTPTxDescToSet->Status);
}
else
{
DMAPTPTxDescToSet++;
}
}
else /* Ring Mode */
{
/* Selects the next DMA Tx descriptor list for next buffer read */
DMATxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMATxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMAPTPTxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
if((DMATxDescToSet->Status & ETH_DMATxDesc_TER) != (uint32_t)RESET)
{
/* Selects the next DMA Tx descriptor list for next buffer read: this will
be the first Tx descriptor in this case */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) (ETH->DMATDLAR);
}
else
{
/* Selects the next DMA Tx descriptor list for next buffer read */
DMATxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMATxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
DMAPTPTxDescToSet = (ETH_DMADESCTypeDef*) ((uint32_t)DMAPTPTxDescToSet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
}
}
}
/* Return SUCCESS */
return ETH_SUCCESS;
/* Return SUCCESS */
return ETH_SUCCESS;
}
/**
......@@ -2890,72 +2893,72 @@ uint32_t ETH_HandlePTPTxPkt(uint8_t *ppkt, uint16_t FrameLength, uint32_t *PTPTx
*/
uint32_t ETH_HandlePTPRxPkt(uint8_t *ppkt, uint32_t *PTPRxTab)
{
uint32_t offset = 0, framelength = 0;
/* Check if the descriptor is owned by the ENET or CPU */
if((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (uint32_t)RESET)
{
/* Return error: OWN bit set */
return ETH_ERROR;
}
if(((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
for(offset=0; offset<framelength; offset++)
{
(*(ppkt + offset)) = (*(__IO uint8_t *)((DMAPTPRxDescToGet->Buffer1Addr) + offset));
}
}
else
{
/* Return ERROR */
framelength = ETH_ERROR;
}
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
*PTPRxTab++ = DMARxDescToGet->Buffer1Addr;
*PTPRxTab = DMARxDescToGet->Buffer2NextDescAddr;
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status |= ETH_DMARxDesc_OWN;
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMAPTPRxDescToGet->Buffer2NextDescAddr);
if(DMAPTPRxDescToGet->Status != 0)
{
DMAPTPRxDescToGet = (ETH_DMADESCTypeDef*) (DMAPTPRxDescToGet->Status);
uint32_t offset = 0, framelength = 0;
/* Check if the descriptor is owned by the ENET or CPU */
if((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (uint32_t)RESET)
{
/* Return error: OWN bit set */
return ETH_ERROR;
}
if(((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
for(offset=0; offset<framelength; offset++)
{
(*(ppkt + offset)) = (*(__IO uint8_t *)((DMAPTPRxDescToGet->Buffer1Addr) + offset));
}
}
else
{
DMAPTPRxDescToGet++;
/* Return ERROR */
framelength = ETH_ERROR;
}
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
else
*PTPRxTab++ = DMARxDescToGet->Buffer1Addr;
*PTPRxTab = DMARxDescToGet->Buffer2NextDescAddr;
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status |= ETH_DMARxDesc_OWN;
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMAPTPRxDescToGet->Buffer2NextDescAddr);
if(DMAPTPRxDescToGet->Status != 0)
{
DMAPTPRxDescToGet = (ETH_DMADESCTypeDef*) (DMAPTPRxDescToGet->Status);
}
else
{
DMAPTPRxDescToGet++;
}
}
else /* Ring Mode */
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLAR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMR & ETH_DMABMR_DSL) >> 2));
}
}
}
/* Return Frame Length/ERROR */
return (framelength);
/* Return Frame Length/ERROR */
return (framelength);
}
/**
......@@ -2983,7 +2986,32 @@ uint32_t ETH_HandlePTPRxPkt(uint8_t *ppkt, uint32_t *PTPRxTab)
#define STM32_ETH_TRACE rt_kprintf
#else
#define STM32_ETH_TRACE(...)
#endif
#endif /* ETH_DEBUG */
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char * msg, const struct pbuf* p)
{
rt_uint32_t i;
rt_uint8_t *ptr = p->payload;
STM32_ETH_TRACE("%s %d byte\n", msg, p->tot_len);
for(i=0; i<p->tot_len; i++)
{
if( (i%8) == 0 )
{
STM32_ETH_TRACE(" ");
}
if( (i%16) == 0 )
{
STM32_ETH_TRACE("\r\n");
}
STM32_ETH_TRACE("%02x ",*ptr);
ptr++;
}
STM32_ETH_TRACE("\n\n");
}
#endif /* dump */
#define ETH_RXBUFNB 4
#define ETH_TXBUFNB 2
......@@ -3011,8 +3039,8 @@ void ETH_IRQHandler(void)
/* enter interrupt */
rt_interrupt_enter();
/* get DMA IT status */
status = ETH->DMASR;
/* get DMA IT status */
status = ETH->DMASR;
if ( (status & ETH_DMA_IT_R) != (u32)RESET ) /* packet receiption */
{
......@@ -3086,46 +3114,46 @@ static rt_err_t rt_stm32_eth_init(rt_device_t dev)
ETH_InitStructure.ETH_PromiscuousMode = ETH_PromiscuousMode_Disable;
ETH_InitStructure.ETH_MulticastFramesFilter = ETH_MulticastFramesFilter_Perfect;
ETH_InitStructure.ETH_UnicastFramesFilter = ETH_UnicastFramesFilter_Perfect;
#ifdef CHECKSUM_BY_HARDWARE
#if CHECKSUM_BY_HARDWARE
ETH_InitStructure.ETH_ChecksumOffload = ETH_ChecksumOffload_Enable;
#endif
#endif /* CHECKSUM_BY_HARDWARE */
/*------------------------ DMA -----------------------------------*/
/*------------------------ DMA -----------------------------------*/
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
if the checksum is OK the DMA can handle the frame otherwise the frame is dropped */
ETH_InitStructure.ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Enable;
ETH_InitStructure.ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStructure.ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
if the checksum is OK the DMA can handle the frame otherwise the frame is dropped */
ETH_InitStructure.ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Enable;
ETH_InitStructure.ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStructure.ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStructure.ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStructure.ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStructure.ETH_SecondFrameOperate = ETH_SecondFrameOperate_Enable;
ETH_InitStructure.ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStructure.ETH_FixedBurst = ETH_FixedBurst_Enable;
ETH_InitStructure.ETH_RxDMABurstLength = ETH_RxDMABurstLength_32Beat;
ETH_InitStructure.ETH_TxDMABurstLength = ETH_TxDMABurstLength_32Beat;
ETH_InitStructure.ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_2_1;
ETH_InitStructure.ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStructure.ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStructure.ETH_SecondFrameOperate = ETH_SecondFrameOperate_Enable;
ETH_InitStructure.ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStructure.ETH_FixedBurst = ETH_FixedBurst_Enable;
ETH_InitStructure.ETH_RxDMABurstLength = ETH_RxDMABurstLength_32Beat;
ETH_InitStructure.ETH_TxDMABurstLength = ETH_TxDMABurstLength_32Beat;
ETH_InitStructure.ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_2_1;
/* Configure ETHERNET */
Value = ETH_Init(&ETH_InitStructure);
/* Configure ETHERNET */
Value = ETH_Init(&ETH_InitStructure);
/* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
ETH_DMAITConfig(ETH_DMA_IT_NIS | ETH_DMA_IT_R | ETH_DMA_IT_T, ENABLE);
/* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
ETH_DMAITConfig(ETH_DMA_IT_NIS | ETH_DMA_IT_R | ETH_DMA_IT_T, ENABLE);
/* Initialize Tx Descriptors list: Chain Mode */
ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* Initialize Tx Descriptors list: Chain Mode */
ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* MAC address configuration */
ETH_MACAddressConfig(ETH_MAC_Address0, (u8*)&stm32_eth_device.dev_addr[0]);
/* MAC address configuration */
ETH_MACAddressConfig(ETH_MAC_Address0, (u8*)&stm32_eth_device.dev_addr[0]);
/* Enable MAC and DMA transmission and reception */
ETH_Start();
/* Enable MAC and DMA transmission and reception */
ETH_Start();
return RT_EOK;
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
......@@ -3175,7 +3203,7 @@ rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
rt_uint32_t offset;
/* get free tx buffer */
{
{
rt_err_t result;
result = rt_sem_take(&tx_buf_free, 2);
if (result != RT_EOK) return -RT_ERROR;
......@@ -3202,35 +3230,17 @@ rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
}
#ifdef ETH_TX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = (rt_uint8_t*)(DMATxDescToSet->Buffer1Addr);
STM32_ETH_TRACE("tx_dump:");
for(i=0; i<p->tot_len; i++)
{
if( (i%8) == 0 )
{
STM32_ETH_TRACE(" ");
}
if( (i%16) == 0 )
{
STM32_ETH_TRACE("\r\n");
}
STM32_ETH_TRACE("%02x ",*ptr);
ptr++;
}
STM32_ETH_TRACE("\r\ndump done!\r\n");
}
packet_dump("TX dump", p);
#endif
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (p->tot_len & ETH_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (p->tot_len & ETH_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Enable TX Completion Interrupt */
DMATxDescToSet->Status |= ETH_DMATxDesc_IC;
#ifdef CHECKSUM_BY_HARDWARE
#if CHECKSUM_BY_HARDWARE
DMATxDescToSet->Status |= ETH_DMATxDesc_ChecksumTCPUDPICMPFull;
/* clean ICMP checksum STM32F need */
{
......@@ -3247,7 +3257,8 @@ rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
}
}
}
#endif
#endif /* CHECKSUM_BY_HARDWARE */
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
......@@ -3272,7 +3283,7 @@ rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t offset = 0, framelength = 0;
rt_uint32_t framelength = 0;
/* init p pointer */
p = RT_NULL;
......@@ -3292,25 +3303,21 @@ struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM);
if (p != RT_NULL)
{
rt_uint8_t* ptr;
const char * from;
struct pbuf* q;
rt_size_t len;
from = (const char *)(DMARxDescToGet->Buffer1Addr);
for (q = p; q != RT_NULL; q= q->next)
{
ptr = q->payload;
len = q->len;
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
while (len)
{
*ptr = (*(__IO uint8_t *)((DMARxDescToGet->Buffer1Addr) + offset));
offset ++;
ptr ++;
len --;
}
memcpy(q->payload, from, q->len);
from += q->len;
}
#ifdef ETH_RX_DUMP
packet_dump("RX dump", p);
#endif /* ETH_RX_DUMP */
}
}
......@@ -3356,9 +3363,9 @@ static void RCC_Configuration(void)
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_ETH_MAC | RCC_AHBPeriph_ETH_MAC_Tx |
RCC_AHBPeriph_ETH_MAC_Rx, ENABLE);
/* Enable GPIOs clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC |
RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE| RCC_APB2Periph_AFIO, ENABLE);
/* Enable GPIOs clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC |
RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE| RCC_APB2Periph_AFIO, ENABLE);
}
static void NVIC_Configuration(void)
......@@ -3375,112 +3382,195 @@ static void NVIC_Configuration(void)
/*
* GPIO Configuration for ETH
AF Output Push Pull:
- ETH_MDC : PC1
- ETH_MDIO : PA2
- ETH_TX_EN : PB11
- ETH_TXD0 : PB12
- ETH_TXD1 : PB13
- ETH_TXD2 : PC2
- ETH_TXD3 : PB8
- ETH_PPS_OUT / ETH_RMII_PPS_OUT: PB5
Input (Reset Value):
- ETH_MII_TX_CLK: PC3
- ETH_MII_RX_CLK / ETH_RMII_REF_CLK: PA1
- ETH_MII_CRS: PA0
- ETH_MII_COL: PA3
- ETH_MII_RX_DV / ETH_RMII_CRS_DV: PA7
- ETH_MII_RXD0: PC4
- ETH_MII_RXD1: PC5
- ETH_MII_RXD2: PB0
- ETH_MII_RXD3: PB1
- ETH_MII_RX_ER: PB10
***************************************
For Remapped Ethernet pins
*******************************************
Input (Reset Value):
- ETH_MII_RX_DV / ETH_RMII_CRS_DV: PD8
- ETH_MII_RXD0 / ETH_RMII_RXD0: PD9
- ETH_MII_RXD1 / ETH_RMII_RXD1: PD10
- ETH_MII_RXD2: PD11
- ETH_MII_RXD3: PD12
*/
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
#if STM32_ETH_IO_REMAP
/* ETHERNET pins remapp in STM3210C-EVAL board: RX_DV and RxD[3:0] */
GPIO_PinRemapConfig(GPIO_Remap_ETH, ENABLE);
#endif /* STM32_ETH_IO_REMAP */
/* ETHERNET pins remapp in STM3210C-EVAL board: RX_DV and RxD[3:0] */
GPIO_PinRemapConfig(GPIO_Remap_ETH, ENABLE);
/* MII/RMII Media interface selection */
#if (RMII_MODE == 0) /* Mode MII. */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_MII);
#elif (RMII_MODE == 1) /* Mode RMII. */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_RMII);
#endif /* RMII_MODE */
/* MII/RMII Media interface selection */
#ifdef MII_MODE /* Mode MII with STM3210C-EVAL */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_MII);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/* Get HSE clock = 25MHz on PA8 pin(MCO) */
RCC_MCOConfig(RCC_MCO_HSE);
/* MDIO */
{
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
#elif defined RMII_MODE /* Mode RMII with STM3210C-EVAL */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_RMII);
/* MDC */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Get HSE clock = 25MHz on PA8 pin(MCO) */
/* set PLL3 clock output to 50MHz (25MHz /5 *10 =50MHz) */
RCC_PLL3Config(RCC_PLL3Mul_10);
/* Enable PLL3 */
RCC_PLL3Cmd(ENABLE);
/* Wait till PLL3 is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLL3RDY) == RESET)
{}
/* MDIO */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOA, &GPIO_InitStructure);
} /* MDIO */
/* Get clock PLL3 clock on PA8 pin */
RCC_MCOConfig(RCC_MCO_PLL3CLK);
#endif
/* TXD */
{
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
/* TX_EN */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* TXD0 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* TXD1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* ETHERNET pins configuration */
/* AF Output Push Pull:
- ETH_MII_MDIO / ETH_RMII_MDIO: PA2
- ETH_MII_MDC / ETH_RMII_MDC: PC1
- ETH_MII_TXD2: PC2
- ETH_MII_TX_EN / ETH_RMII_TX_EN: PB11
- ETH_MII_TXD0 / ETH_RMII_TXD0: PB12
- ETH_MII_TXD1 / ETH_RMII_TXD1: PB13
- ETH_MII_PPS_OUT / ETH_RMII_PPS_OUT: PB5
- ETH_MII_TXD3: PB8 */
/* Configure PA2 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure PC1, PC2 and PC3 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Configure PB5, PB8, PB11, PB12 and PB13 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_8 | GPIO_Pin_11 |
GPIO_Pin_12 | GPIO_Pin_13;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/**************************************************************/
/* For Remapped Ethernet pins */
/*************************************************************/
/* Input (Reset Value):
- ETH_MII_CRS CRS: PA0
- ETH_MII_RX_CLK / ETH_RMII_REF_CLK: PA1
- ETH_MII_COL: PA3
- ETH_MII_RX_DV / ETH_RMII_CRS_DV: PD8
- ETH_MII_TX_CLK: PC3
- ETH_MII_RXD0 / ETH_RMII_RXD0: PD9
- ETH_MII_RXD1 / ETH_RMII_RXD1: PD10
- ETH_MII_RXD2: PD11
- ETH_MII_RXD3: PD12
- ETH_MII_RX_ER: PB10 */
/* Configure PA0, PA1 and PA3 as input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure PB10 as input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure PC3 as input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Configure PD8, PD9, PD10, PD11 and PD12 as input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOD, &GPIO_InitStructure); /**/
/* MCO pin configuration------------------------------------------------- */
/* Configure MCO (PA8) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#if (RMII_MODE == 0)
/* TXD2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* TXD3 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* TX_CLK */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_Init(GPIOC, &GPIO_InitStructure);
#endif /* RMII_MODE */
} /* TXD */
/* RXD */
{
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
#if (STM32_ETH_IO_REMAP == 0)
/* RX_DV/CRS_DV */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* RXD0 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* RXD1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_Init(GPIOC, &GPIO_InitStructure);
#if (RMII_MODE == 0)
/* RXD2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* RXD3 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif /* RMII_MODE */
#else
/* RX_DV/CRS_DV */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* RXD0 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* RXD1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOD, &GPIO_InitStructure);
#if (RMII_MODE == 0)
/* RXD2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* RXD3 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOD, &GPIO_InitStructure);
#endif /* RMII_MODE */
#endif /* STM32_ETH_IO_REMAP */
#if (RMII_MODE == 0)
/* CRS */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* COL */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* RX_CLK */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* RX_ER */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif /* RMII_MODE */
} /* RXD */
#if (USE_MCO == 1)
#if (RMII_MODE == 0) /* Mode MII. */
/* Get HSE clock = 25MHz on PA8 pin(MCO) */
RCC_MCOConfig(RCC_MCO_HSE);
#elif (RMII_MODE == 1) /* Mode RMII. */
/* Get HSE clock = 25MHz on PA8 pin(MCO) */
/* set PLL3 clock output to 50MHz (25MHz /5 *10 =50MHz) */
RCC_PLL3Config(RCC_PLL3Mul_10);
/* Enable PLL3 */
RCC_PLL3Cmd(ENABLE);
/* Wait till PLL3 is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLL3RDY) == RESET)
{}
/* Get clock PLL3 clock on PA8 pin */
RCC_MCOConfig(RCC_MCO_PLL3CLK);
#endif /* RMII_MODE */
/* MCO pin configuration------------------------------------------------- */
/* Configure MCO (PA8) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif /* USE_MCO */
}
void rt_hw_stm32_eth_init()
......@@ -3516,3 +3606,56 @@ void rt_hw_stm32_eth_init()
eth_device_init(&(stm32_eth_device.parent), "e0");
}
#ifdef RT_USING_FINSH
#include <finsh.h>
static void phy_search(void)
{
int i;
int value;
for(i=0; i<32; i++)
{
value = ETH_ReadPHYRegister(i, 2);
rt_kprintf("addr %02d: %04X\n", i, value);
}
}
FINSH_FUNCTION_EXPORT(phy_search, search phy use MDIO);
static void phy_dump(int addr)
{
int i;
int value;
rt_kprintf("dump phy addr %d\n", addr);
for(i=0; i<32; i++)
{
value = ETH_ReadPHYRegister(addr, i);
rt_kprintf("reg %02d: %04X\n", i, value);
}
}
FINSH_FUNCTION_EXPORT(phy_dump, dump PHY register);
static void phy_write(int addr, int reg, int value)
{
ETH_WritePHYRegister(addr, reg ,value);
}
FINSH_FUNCTION_EXPORT(phy_write, write PHY register);
static void emac_dump(int addr)
{
int i;
int value;
int *p = (int *)ETH;
rt_kprintf("dump EAMC reg %d\n", addr);
for(i=0; i<sizeof(ETH_TypeDef)/4; i++)
{
value = *p++;
rt_kprintf("reg %04X: %08X\n", i*4, value);
}
}
FINSH_FUNCTION_EXPORT(emac_dump, dump EMAC register);
#endif // RT_USING_FINSH
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册