network.cpp 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/**
 * \file src/gopt/test/network.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "./network.h"

using namespace mgb;

SymbolVar Network::add_conv(SymbolVar f, size_t output_channels,
                            KernSize kern_size, DType out_dtype, bool has_relu,
                            Stride stride, Padding padding) {
    static int weight_idx = 0;
    static int bias_idx = 0;

    size_t input_channels = f.node()->shape()[1];
    auto weight = add_cvar(
            ssprintf("w%d", weight_idx).c_str(),
            {output_channels, input_channels, kern_size[0], kern_size[1]});
    auto bias = add_cvar(ssprintf("b%d", bias_idx).c_str(),
                         {1, output_channels, 1, 1});
    if (out_dtype.category() == DTypeCategory::QUANTIZED) {
        weight = add_type_cvt(weight, out_dtype);
        bias = add_type_cvt(bias, dtype::QuantizedS32{1.f});
    }
    opr::ConvBias::Param param;
    param.stride_h = stride[0], param.stride_w = stride[1];
    param.pad_h = padding[0], param.pad_w = padding[1];
    if (has_relu) {
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    } else {
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
    }

    auto conv = opr::ConvBias::make(f, weight, bias, param, {},
                                    OperatorNodeConfig{out_dtype});
    weight_idx++;
    bias_idx++;
    return conv;
}

SymbolVar Network::add_deconv(SymbolVar f, size_t ratio, size_t output_channels,
                              DType out_dtype) {
    static int weight_idx = 0;
    size_t kernel = ratio * 2 - ratio % 2;
    size_t pad = ratio / 2;

    size_t input_channels = f.node()->shape()[1];
    auto weight = add_cvar(ssprintf("w%d", weight_idx).c_str(),
                           {input_channels, output_channels, kernel, kernel});

    if (out_dtype.category() == DTypeCategory::QUANTIZED) {
        weight = add_type_cvt(weight, out_dtype);
    }
    opr::ConvolutionBackwardData::Param param;
    param.stride_h = param.stride_w = ratio;
    param.pad_h = param.pad_w = pad;

    auto deconv = opr::ConvolutionBackwardData::make(
            weight, f, param, {}, OperatorNodeConfig{out_dtype});
    weight_idx++;
    return deconv;
}

SymbolVar Network::add_elemwise(const SymbolVarArray inps, DType out_dtype,
                                opr::Elemwise::Param::Mode mode) {
    using ElemMode = opr::Elemwise::Param::Mode;
    using MultiMode = opr::ElemwiseMultiType::Param::Mode;
    static const ThinHashMap<ElemMode, MultiMode> map = {
            {ElemMode::ADD, MultiMode::QADD},
            {ElemMode::FUSE_ADD_RELU, MultiMode::QFUSE_ADD_RELU}};
    if (out_dtype.category() == DTypeCategory::QUANTIZED) {
        MultiMode alter_mode = map.at(mode);
        return opr::ElemwiseMultiType::make(inps, {alter_mode},
                                            OperatorNodeConfig{out_dtype});
    } else {
        return opr::Elemwise::make(inps, mode);
    }
}

SymbolVar Network::add_pooling(SymbolVar f, Window window, Stride stride,
                               Padding padding,
                               opr::Pooling::Param::Mode mode) {
    opr::Pooling::Param param;
    param.window_h = window[0], param.window_w = window[1];
    param.stride_h = stride[0], param.stride_w = stride[1];
    param.pad_h = padding[0], param.pad_w = padding[1];
    param.mode = mode;
    return opr::Pooling::make(f, param);
}

SymbolVar Network::add_type_cvt(SymbolVar f, DType out_dtype) {
    return opr::TypeCvt::make(f, out_dtype);
}

SymbolVar mgb::create_block(Network& network, SymbolVar f_in, size_t stride,
                            size_t num_outputs1, bool has_proj,
                            DType out_dtype) {
    auto proj = f_in;
    if (has_proj) {
        proj = network.add_conv(f_in, num_outputs1, {1, 1}, out_dtype, false,
                                {stride, stride});
    }

    auto f = network.add_conv(f_in, num_outputs1, {3, 3}, out_dtype, true,
                              {stride, stride}, {1, 1});

    f = network.add_conv(f, num_outputs1, {3, 3}, out_dtype, true, {1, 1},
                         {1, 1});

    f = network.add_elemwise({f, proj}, out_dtype,
                             opr::Elemwise::Mode::FUSE_ADD_RELU);
    return f;
}

SymbolVar mgb::make_resnet18(Network& network, size_t batch, DType out_dtype) {
    auto data = network.add_var("data", {batch, 4, 224, 224});
    if (out_dtype.category() == DTypeCategory::QUANTIZED)
        data = network.add_type_cvt(data, dtype::QuantizedS8{1.f});
    auto first = out_dtype;
    if (out_dtype.category() == DTypeCategory::QUANTIZED)
        first = dtype::QuantizedS8{1.f};
    auto f = network.add_conv(data, 64, {7, 7}, first, true, {2, 2}, {3, 3});
    if (out_dtype.enumv() == DTypeEnum::QuantizedS4 ||
        out_dtype.enumv() == DTypeEnum::Quantized4Asymm) {
        f = network.add_type_cvt(f, out_dtype);
    }
    f = network.add_pooling(f, {3, 3}, {2, 2}, {1, 1});

    using Vector = SmallVector<size_t, 4>;
    Vector stages = {2, 2, 2, 2};
    Vector mid_outputs = {64, 128, 256, 512};
    Vector enable_stride = {0, 1, 1, 1};
    for (size_t i = 0; i < 4; ++i) {
        auto s = stages[i];
        auto o = mid_outputs[i];
        auto es = enable_stride[i];
        for (size_t j = 0; j < s; ++j) {
            size_t stride = !es || j > 0 ? 1 : 2;
            bool has_proj = j > 0 ? false : true;
            f = create_block(network, f, stride, o, has_proj, out_dtype);
        }
    }
    f = network.add_pooling(f, {7, 7}, {7, 7}, {0, 0},
                            opr::Pooling::Param::Mode::AVERAGE);

    f = network.add_type_cvt(f, dtype::Float32());
    return f;
}

namespace {
SymbolVarArray make_pyramids(Network& network, size_t batch, DType out_dtype) {
    SymbolVarArray pyramids;
    auto data = network.add_var("data", {batch, 3, 256, 256});
    data = data + (-128.f);
    if (out_dtype.category() == DTypeCategory::QUANTIZED)
        data = network.add_type_cvt(data, dtype::QuantizedS8{1.f});
    auto first = out_dtype;
    if (out_dtype.category() == DTypeCategory::QUANTIZED)
        first = dtype::QuantizedS8{1.f};
    auto f = network.add_conv(data, 16, {3, 3}, first, true, {2, 2}, {1, 1});
    f = network.add_conv(f, 16, {3, 3}, first, true, {1, 1}, {1, 1});
    f = network.add_conv(f, 32, {3, 3}, first, true, {2, 2}, {1, 1});
    if (out_dtype.enumv() == DTypeEnum::QuantizedS4 ||
        out_dtype.enumv() == DTypeEnum::Quantized4Asymm) {
        f = network.add_type_cvt(f, out_dtype);
    }

    using Vector = SmallVector<size_t, 4>;
    Vector stages = {3, 6, 6, 3};
    Vector mid_outputs = {32, 64, 128, 256};
    Vector enable_stride = {0, 1, 1, 1};
    for (size_t i = 0; i < 4; ++i) {
        auto s = stages[i];
        auto o = mid_outputs[i];
        auto es = enable_stride[i];
        for (size_t j = 0; j < s; ++j) {
            size_t stride = !es || j > 0 ? 1 : 2;
            bool has_proj = j > 0 ? false : true;
            f = create_block(network, f, stride, o, has_proj, out_dtype);
        }
        pyramids.push_back(f);
    }

    for (size_t i = 0; i < pyramids.size(); ++i) {
        pyramids[i] = network.add_type_cvt(pyramids[i], first);
    }
    return pyramids;
}

SymbolVarArray fusion_pyramids_feature(Network& network,
                                       SymbolVarArray pyramids,
                                       size_t fpn_conv_channels) {
    bool touch = false;
    SymbolVar x;
    SymbolVarArray fpn;
    for (int i = 5; i >= 3; --i) {
        auto f = network.add_conv(pyramids[i - 2], fpn_conv_channels, {1, 1},
                                  dtype::QuantizedS8{1.f}, false, {1, 1},
                                  {0, 0});
        if (!touch) {
            x = f;
        } else {
            x = network.add_deconv(x, 2, 16, dtype::QuantizedS8{1.f});
            x = network.add_elemwise({x, f}, dtype::QuantizedS8{1.f},
                                     opr::Elemwise::Mode::ADD);
        }
        fpn.push_back(x);
    }

    x = fpn[0];
    for (int i = 6; i < 8; ++i) {
        x = network.add_conv(x, fpn_conv_channels, {3, 3},
                             dtype::QuantizedS8{1.f}, true, {2, 2}, {1, 1});
    }
    return fpn;
}
}  // namespace

SymbolVarArray mgb::make_det(Network& network, size_t batch, DType out_dtype) {
    SymbolVarArray outputs;
    auto pyramids = make_pyramids(network, batch, out_dtype);
    auto fpn_hv = fusion_pyramids_feature(network, pyramids, 16);
    auto fpn_plate = fusion_pyramids_feature(network, pyramids, 16);
    outputs.insert(outputs.end(), fpn_hv.begin(), fpn_hv.end());
    outputs.insert(outputs.end(), fpn_plate.begin(), fpn_plate.end());
    return outputs;
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}