# 高效写入数据
TDengine支持多种接口写入数据,包括SQL, Prometheus, Telegraf, EMQ MQTT Broker, HiveMQ Broker, CSV文件等,后续还将提供Kafka, OPC等接口。数据可以单条插入,也可以批量插入,可以插入一个数据采集点的数据,也可以同时插入多个数据采集点的数据。支持多线程插入,支持时间乱序数据插入,也支持历史数据插入。
## SQL写入
应用通过C/C++, JDBC, GO, 或Python Connector 执行SQL insert语句来插入数据,用户还可以通过TAOS Shell,手动输入SQL insert语句插入数据。比如下面这条insert 就将一条记录写入到表d1001中:
```mysql
INSERT INTO d1001 VALUES (1538548685000, 10.3, 219, 0.31);
```
TDengine支持一次写入多条记录,比如下面这条命令就将两条记录写入到表d1001中:
```mysql
INSERT INTO d1001 VALUES (1538548684000, 10.2, 220, 0.23) (1538548696650, 10.3, 218, 0.25);
```
TDengine也支持一次向多个表写入数据,比如下面这条命令就向d1001写入两条记录,向d1002写入一条记录:
```mysql
INSERT INTO d1001 VALUES (1538548685000, 10.3, 219, 0.31) (1538548695000, 12.6, 218, 0.33) d1002 VALUES (1538548696800, 12.3, 221, 0.31);
```
详细的SQL INSERT语法规则请见 [TAOS SQL 的数据写入](https://www.taosdata.com/cn/documentation/taos-sql#insert) 章节。
**Tips:**
- 要提高写入效率,需要批量写入。一批写入的记录条数越多,插入效率就越高。但一条记录不能超过16K,一条SQL语句总长度不能超过64K(可通过参数maxSQLLength配置,最大可配置为1M)。
- TDengine支持多线程同时写入,要进一步提高写入速度,一个客户端需要打开20个以上的线程同时写。但线程数达到一定数量后,无法再提高,甚至还会下降,因为线程切频繁切换,带来额外开销。
- 对同一张表,如果新插入记录的时间戳已经存在,默认(没有使用 UPDATE 1 创建数据库)新记录将被直接抛弃,也就是说,在一张表里,时间戳必须是唯一的。如果应用自动生成记录,很有可能生成的时间戳是一样的,这样,成功插入的记录条数会小于应用插入的记录条数。如果在创建数据库时使用 UPDATE 1 选项,插入相同时间戳的新记录将覆盖原有记录。
- 写入的数据的时间戳必须大于当前时间减去配置参数keep的时间。如果keep配置为3650天,那么无法写入比3650天还老的数据。写入数据的时间戳也不能大于当前时间加配置参数days。如果days配置为2,那么无法写入比当前时间还晚2天的数据。
## Prometheus直接写入
[Prometheus](https://www.prometheus.io/)作为Cloud Native Computing Fundation毕业的项目,在性能监控以及K8S性能监控领域有着非常广泛的应用。TDengine提供一个小工具[Bailongma](https://github.com/taosdata/Bailongma),只需在Prometheus做简单配置,无需任何代码,就可将Prometheus采集的数据直接写入TDengine,并按规则在TDengine自动创建库和相关表项。博文[用Docker容器快速搭建一个Devops监控Demo](https://www.taosdata.com/blog/2020/02/03/1189.html)即是采用bailongma将Prometheus和Telegraf的数据写入TDengine中的示例,可以参考。
### 从源代码编译blm_prometheus
用户需要从github下载[Bailongma](https://github.com/taosdata/Bailongma)的源码,使用Golang语言编译器编译生成可执行文件。在开始编译前,需要准备好以下条件:
- Linux操作系统的服务器
- 安装好Golang, 1.10版本以上
- 对应的TDengine版本。因为用到了TDengine的客户端动态链接库,因此需要安装好和服务端相同版本的TDengine程序;比如服务端版本是TDengine 2.0.0, 则在bailongma所在的linux服务器(可以与TDengine在同一台服务器,或者不同服务器)
Bailongma项目中有一个文件夹blm_prometheus,存放了prometheus的写入API程序。编译过程如下:
```bash
cd blm_prometheus
go build
```
一切正常的情况下,就会在对应的目录下生成一个blm_prometheus的可执行程序。
### 安装Prometheus
通过Prometheus的官网下载安装。[下载地址](https://prometheus.io/download/)
### 配置Prometheus
参考Prometheus的[配置文档](https://prometheus.io/docs/prometheus/latest/configuration/configuration/),在Prometheus的配置文件中的部分,增加以下配置
- url: bailongma API服务提供的URL, 参考下面的blm_prometheus启动示例章节
启动Prometheus后,可以通过taos客户端查询确认数据是否成功写入。
### 启动blm_prometheus程序
blm_prometheus程序有以下选项,在启动blm_prometheus程序时可以通过设定这些选项来设定blm_prometheus的配置。
```sh
--tdengine-name
如果TDengine安装在一台具备域名的服务器上,也可以通过配置TDengine的域名来访问TDengine。在K8S环境下,可以配置成TDengine所运行的service name
--batch-size
blm_prometheus会将收到的prometheus的数据拼装成TDengine的写入请求,这个参数控制一次发给TDengine的写入请求中携带的数据条数。
--dbname
设置在TDengine中创建的数据库名称,blm_prometheus会自动在TDengine中创建一个以dbname为名称的数据库,缺省值是prometheus。
--dbuser
设置访问TDengine的用户名,缺省值是'root'
--dbpassword
设置访问TDengine的密码,缺省值是'taosdata'
--port
blm_prometheus对prometheus提供服务的端口号。
```
### 启动示例
通过以下命令启动一个blm_prometheus的API服务
```bash
./blm_prometheus -port 8088
```
假设blm_prometheus所在服务器的IP地址为"10.1.2.3",则在prometheus的配置文件中部分增加url为
```yaml
remote_write:
- url: "http://10.1.2.3:8088/receive"
```
### 查询prometheus写入数据
prometheus产生的数据格式如下:
```json
{
Timestamp: 1576466279341,
Value: 37.000000,
apiserver_request_latencies_bucket {
component="apiserver",
instance="192.168.99.116:8443",
job="kubernetes-apiservers",
le="125000",
resource="persistentvolumes", s
cope="cluster",
verb="LIST",
version=“v1"
}
}
```
其中,apiserver_request_latencies_bucket为prometheus采集的时序数据的名称,后面{}中的为该时序数据的标签。blm_prometheus会以时序数据的名称在TDengine中自动创建一个超级表,并将{}中的标签转换成TDengine的tag值,Timestamp作为时间戳,value作为该时序数据的值。因此在TDengine的客户端中,可以通过以下指令查到这个数据是否成功写入。
```mysql
use prometheus;
select * from apiserver_request_latencies_bucket;
```
## Telegraf直接写入
[Telegraf](https://www.influxdata.com/time-series-platform/telegraf/)是一流行的IT运维数据采集开源工具,TDengine提供一个小工具[Bailongma](https://github.com/taosdata/Bailongma),只需在Telegraf做简单配置,无需任何代码,就可将Telegraf采集的数据直接写入TDengine,并按规则在TDengine自动创建库和相关表项。博文[用Docker容器快速搭建一个Devops监控Demo](https://www.taosdata.com/blog/2020/02/03/1189.html)即是采用bailongma将Prometheus和Telegraf的数据写入TDengine中的示例,可以参考。
### 从源代码编译blm_telegraf
用户需要从github下载[Bailongma](https://github.com/taosdata/Bailongma)的源码,使用Golang语言编译器编译生成可执行文件。在开始编译前,需要准备好以下条件:
- Linux操作系统的服务器
- 安装好Golang, 1.10版本以上
- 对应的TDengine版本。因为用到了TDengine的客户端动态链接库,因此需要安装好和服务端相同版本的TDengine程序;比如服务端版本是TDengine 2.0.0, 则在bailongma所在的linux服务器(可以与TDengine在同一台服务器,或者不同服务器)
Bailongma项目中有一个文件夹blm_telegraf,存放了Telegraf的写入API程序。编译过程如下:
```bash
cd blm_telegraf
go build
```
一切正常的情况下,就会在对应的目录下生成一个blm_telegraf的可执行程序。
### 安装Telegraf
目前TDengine支持Telegraf 1.7.4以上的版本。用户可以根据当前的操作系统,到Telegraf官网下载安装包,并执行安装。下载地址如下:https://portal.influxdata.com/downloads
### 配置Telegraf
修改Telegraf配置文件/etc/telegraf/telegraf.conf中与TDengine有关的配置项。
在output plugins部分,增加[[outputs.http]]配置项:
- url: bailongma API服务提供的URL, 参考下面的启动示例章节
- data_format: "json"
- json_timestamp_units: "1ms"
在agent部分:
- hostname: 区分不同采集设备的机器名称,需确保其唯一性
- metric_batch_size: 100,允许Telegraf每批次写入记录最大数量,增大其数量可以降低Telegraf的请求发送频率。
关于如何使用Telegraf采集数据以及更多有关使用Telegraf的信息,请参考Telegraf官方的[文档](https://docs.influxdata.com/telegraf/v1.11/)。
### 启动blm_telegraf程序
blm_telegraf程序有以下选项,在启动blm_telegraf程序时可以通过设定这些选项来设定blm_telegraf的配置。
```sh
--host
TDengine服务端的IP地址,缺省值为空
--batch-size
blm_telegraf会将收到的telegraf的数据拼装成TDengine的写入请求,这个参数控制一次发给TDengine的写入请求中携带的数据条数。
--dbname
设置在TDengine中创建的数据库名称,blm_telegraf会自动在TDengine中创建一个以dbname为名称的数据库,缺省值是prometheus。
--dbuser
设置访问TDengine的用户名,缺省值是'root'
--dbpassword
设置访问TDengine的密码,缺省值是'taosdata'
--port
blm_telegraf对telegraf提供服务的端口号。
```
### 启动示例
通过以下命令启动一个blm_telegraf的API服务
```bash
./blm_telegraf -host 127.0.0.1 -port 8089
```
假设blm_telegraf所在服务器的IP地址为"10.1.2.3",则在telegraf的配置文件中, 在output plugins部分,增加[[outputs.http]]配置项:
```yaml
url = "http://10.1.2.3:8089/telegraf"
```
### 查询telegraf写入数据
telegraf产生的数据格式如下:
```json
{
"fields": {
"usage_guest": 0,
"usage_guest_nice": 0,
"usage_idle": 89.7897897897898,
"usage_iowait": 0,
"usage_irq": 0,
"usage_nice": 0,
"usage_softirq": 0,
"usage_steal": 0,
"usage_system": 5.405405405405405,
"usage_user": 4.804804804804805
},
"name": "cpu",
"tags": {
"cpu": "cpu2",
"host": "bogon"
},
"timestamp": 1576464360
}
```
其中,name字段为telegraf采集的时序数据的名称,tags字段为该时序数据的标签。blm_telegraf会以时序数据的名称在TDengine中自动创建一个超级表,并将tags字段中的标签转换成TDengine的tag值,Timestamp作为时间戳,fields字段中的值作为该时序数据的值。因此在TDengine的客户端中,可以通过以下指令查到这个数据是否成功写入。
```mysql
use telegraf;
select * from cpu;
```
MQTT是一流行的物联网数据传输协议,TDengine 可以很方便的接入 MQTT Broker 接受的数据并写入到 TDengine。
## EMQ Broker 直接写入
[EMQ](https://github.com/emqx/emqx)是一开源的MQTT Broker软件,无需任何代码,只需要在EMQ Dashboard里使用“规则”做简单配置,即可将MQTT的数据直接写入TDengine。EMQ X 支持通过 发送到 Web 服务 的方式保存数据到 TDengine,也在企业版上提供原生的 TDengine 驱动实现直接保存。详细使用方法请参考[EMQ 官方文档](https://docs.emqx.io/broker/latest/cn/rule/rule-example.html#%E4%BF%9D%E5%AD%98%E6%95%B0%E6%8D%AE%E5%88%B0-tdengine)。
## HiveMQ Broker 直接写入
[HiveMQ](https://www.hivemq.com/) 是一个提供免费个人版和企业版的 MQTT 代理,主要用于企业和新兴的机器到机器M2M通讯和内部传输,满足可伸缩性、易管理和安全特性。HiveMQ 提供了开源的插件开发包。可以通过 HiveMQ extension - TDengine 保存数据到 TDengine。详细使用方法请参考 [HiveMQ extension - TDengine 说明文档](https://github.com/huskar-t/hivemq-tdengine-extension/blob/b62a26ecc164a310104df57691691b237e091c89/README.md)。