From a14f792d797f961e790278d1aa2830c54a737173 Mon Sep 17 00:00:00 2001 From: Elias Soong Date: Wed, 16 Jun 2021 11:22:07 +0800 Subject: [PATCH] [TD-2639] : fix word "MATLAB" spelling. --- documentation20/cn/00.index/docs.md | 2 +- documentation20/cn/01.evaluation/docs.md | 4 ++-- documentation20/cn/08.connector/docs.md | 2 +- documentation20/cn/09.connections/docs.md | 14 +++++++------- documentation20/en/00.index/docs.md | 2 +- documentation20/en/01.evaluation/docs.md | 4 ++-- documentation20/en/08.connector/docs.md | 2 +- documentation20/en/09.connections/docs.md | 14 +++++++------- 8 files changed, 22 insertions(+), 22 deletions(-) diff --git a/documentation20/cn/00.index/docs.md b/documentation20/cn/00.index/docs.md index 49cfa12119..4c37ce598c 100644 --- a/documentation20/cn/00.index/docs.md +++ b/documentation20/cn/00.index/docs.md @@ -81,7 +81,7 @@ TDengine是一个高效的存储、查询、分析时序大数据的平台,专 ## [与其他工具的连接](/connections) * [Grafana](/connections#grafana):获取并可视化保存在TDengine的数据 -* [Matlab](/connections#matlab):通过配置Matlab的JDBC数据源访问保存在TDengine的数据 +* [MATLAB](/connections#matlab):通过配置MATLAB的JDBC数据源访问保存在TDengine的数据 * [R](/connections#r):通过配置R的JDBC数据源访问保存在TDengine的数据 * [IDEA Database](https://www.taosdata.com/blog/2020/08/27/1767.html):通过IDEA 数据库管理工具可视化使用 TDengine diff --git a/documentation20/cn/01.evaluation/docs.md b/documentation20/cn/01.evaluation/docs.md index 0ae2106ff2..7f70ccec56 100644 --- a/documentation20/cn/01.evaluation/docs.md +++ b/documentation20/cn/01.evaluation/docs.md @@ -9,8 +9,8 @@ TDengine的模块之一是时序数据库。但除此之外,为减少研发的 * __10倍以上的性能提升__:定义了创新的数据存储结构,单核每秒能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快十倍以上。 * __硬件或云服务成本降至1/5__:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10。 * __全栈时序数据处理引擎__:将数据库、消息队列、缓存、流式计算等功能融为一体,应用无需再集成Kafka/Redis/HBase/Spark/HDFS等软件,大幅降低应用开发和维护的复杂度成本。 -* __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。即席查询可通过Shell, Python, R, Matlab随时进行。 -* __与第三方工具无缝连接__:不用一行代码,即可与Telegraf, Grafana, EMQ, HiveMQ, Prometheus, Matlab, R等集成。后续将支持OPC, Hadoop, Spark等, BI工具也将无缝连接。 +* __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。即席查询可通过Shell, Python, R, MATLAB随时进行。 +* __与第三方工具无缝连接__:不用一行代码,即可与Telegraf, Grafana, EMQ, HiveMQ, Prometheus, MATLAB, R等集成。后续将支持OPC, Hadoop, Spark等, BI工具也将无缝连接。 * __零运维成本、零学习成本__:安装集群简单快捷,无需分库分表,实时备份。类似标准SQL,支持RESTful, 支持Python/Java/C/C++/C#/Go/Node.js, 与MySQL相似,零学习成本。 采用TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。但需要指出的是,因充分利用了物联网时序数据的特点,它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM等通用型数据。 diff --git a/documentation20/cn/08.connector/docs.md b/documentation20/cn/08.connector/docs.md index 991c3ce6ce..c74d1ebc3e 100644 --- a/documentation20/cn/08.connector/docs.md +++ b/documentation20/cn/08.connector/docs.md @@ -56,7 +56,7 @@ TDengine提供了丰富的应用程序开发接口,其中包括C/C++、Java、 ​ *taos.tar.gz*:应用驱动安装包 ​ *driver*:TDengine应用驱动driver ​ *connector*: 各种编程语言连接器(go/grafanaplugin/nodejs/python/JDBC) -​ *examples*: 各种编程语言的示例程序(c/C#/go/JDBC/matlab/python/R) +​ *examples*: 各种编程语言的示例程序(c/C#/go/JDBC/MATLAB/python/R) 运行install_client.sh进行安装 diff --git a/documentation20/cn/09.connections/docs.md b/documentation20/cn/09.connections/docs.md index 6a2ead3766..d1dba5a736 100644 --- a/documentation20/cn/09.connections/docs.md +++ b/documentation20/cn/09.connections/docs.md @@ -75,17 +75,17 @@ sudo cp -rf /usr/local/taos/connector/grafanaplugin /var/lib/grafana/plugins/tde ![img](page://images/connections/import_dashboard2.jpg) -## Matlab +## MATLAB -MatLab可以通过安装包内提供的JDBC Driver直接连接到TDengine获取数据到本地工作空间。 +MATLAB可以通过安装包内提供的JDBC Driver直接连接到TDengine获取数据到本地工作空间。 -### MatLab的JDBC接口适配 +### MATLAB的JDBC接口适配 -MatLab的适配有下面几个步骤,下面以Windows10上适配MatLab2017a为例: +MATLAB的适配有下面几个步骤,下面以Windows10上适配MATLAB2017a为例: - 将TDengine安装包内的驱动程序JDBCDriver-1.0.0-dist.jar拷贝到${matlab_root}\MATLAB\R2017a\java\jar\toolbox - 将TDengine安装包内的taos.lib文件拷贝至${matlab_ root _dir}\MATLAB\R2017a\lib\win64 -- 将新添加的驱动jar包加入MatLab的classpath。在${matlab_ root _dir}\MATLAB\R2017a\toolbox\local\classpath.txt文件中添加下面一行 +- 将新添加的驱动jar包加入MATLAB的classpath。在${matlab_ root _dir}\MATLAB\R2017a\toolbox\local\classpath.txt文件中添加下面一行 ​ ``` $matlabroot/java/jar/toolbox/JDBCDriver-1.0.0-dist.jar @@ -96,9 +96,9 @@ $matlabroot/java/jar/toolbox/JDBCDriver-1.0.0-dist.jar C:\Windows\System32 ``` -### 在MatLab中连接TDengine获取数据 +### 在MATLAB中连接TDengine获取数据 -在成功进行了上述配置后,打开MatLab。 +在成功进行了上述配置后,打开MATLAB。 - 创建一个连接: diff --git a/documentation20/en/00.index/docs.md b/documentation20/en/00.index/docs.md index f8ebe8c35b..27f873b704 100644 --- a/documentation20/en/00.index/docs.md +++ b/documentation20/en/00.index/docs.md @@ -82,7 +82,7 @@ TDengine is a highly efficient platform to store, query, and analyze time-series ## [Connections with Other Tools](/connections) - [Grafana](/connections#grafana): query the data saved in TDengine and provide visualization -- [Matlab](/connections#matlab): access data stored in TDengine server via JDBC configured within Matlab +- [MATLAB](/connections#matlab): access data stored in TDengine server via JDBC configured within MATLAB - [R](/connections#r): access data stored in TDengine server via JDBC configured within R - [IDEA Database](https://www.taosdata.com/blog/2020/08/27/1767.html): use TDengine visually through IDEA Database Management Tool diff --git a/documentation20/en/01.evaluation/docs.md b/documentation20/en/01.evaluation/docs.md index 89fb6443cb..50948efbd8 100644 --- a/documentation20/en/01.evaluation/docs.md +++ b/documentation20/en/01.evaluation/docs.md @@ -9,8 +9,8 @@ One of the modules of TDengine is the time-series database. However, in addition - **Performance improvement over 10 times**: An innovative data storage structure is defined, with each single core can process at least 20,000 requests per second, insert millions of data points, and read more than 10 million data points, which is more than 10 times faster than other existing general database. - **Reduce the cost of hardware or cloud services to 1/5**: Due to its ultra-performance, TDengine’s computing resources consumption is less than 1/5 of other common Big Data solutions; through columnar storage and advanced compression algorithms, the storage consumption is less than 1/10 of other general databases. - **Full-stack time-series data processing engine**: Integrate database, message queue, cache, stream computing, and other functions, and the applications do not need to integrate with software such as Kafka/Redis/HBase/Spark/HDFS, thus greatly reducing the complexity cost of application development and maintenance. -- **Powerful analysis functions**: Data from ten years ago or one second ago, can all be queried based on a specified time range. Data can be aggregated on a timeline or multiple devices. Ad-hoc queries can be made at any time through Shell, Python, R, and Matlab. -- **Seamless connection with third-party tools**: Integration with Telegraf, Grafana, EMQ, HiveMQ, Prometheus, Matlab, R, etc. without even one single line of code. OPC, Hadoop, Spark, etc. will be supported in the future, and more BI tools will be seamlessly connected to. +- **Powerful analysis functions**: Data from ten years ago or one second ago, can all be queried based on a specified time range. Data can be aggregated on a timeline or multiple devices. Ad-hoc queries can be made at any time through Shell, Python, R, and MATLAB. +- **Seamless connection with third-party tools**: Integration with Telegraf, Grafana, EMQ, HiveMQ, Prometheus, MATLAB, R, etc. without even one single line of code. OPC, Hadoop, Spark, etc. will be supported in the future, and more BI tools will be seamlessly connected to. - **Zero operation cost & zero learning cost**: Installing clusters is simple and quick, with real-time backup built-in, and no need to split libraries or tables. Similar to standard SQL, TDengine can support RESTful, Python/Java/C/C + +/C#/Go/Node.js, and similar to MySQL with zero learning cost. With TDengine, the total cost of ownership of typical IoT, Internet of Vehicles, and Industrial Internet Big Data platforms can be greatly reduced. However, it should be pointed out that due to making full use of the characteristics of IoT time-series data, TDengine cannot be used to process general data from web crawlers, microblogs, WeChat, e-commerce, ERP, CRM, and other sources. diff --git a/documentation20/en/08.connector/docs.md b/documentation20/en/08.connector/docs.md index 9913a2958f..36dc06a36e 100644 --- a/documentation20/en/08.connector/docs.md +++ b/documentation20/en/08.connector/docs.md @@ -58,7 +58,7 @@ After extracting the package, you will see the following files (directories) in *connector*: Connectors for various programming languages (go/grafanaplugin/nodejs/python/JDBC) -*Examples*: Sample programs for various programming languages (C/C #/go/JDBC/matlab/python/R) +*Examples*: Sample programs for various programming languages (C/C #/go/JDBC/MATLAB/python/R) Run install_client.sh to install. diff --git a/documentation20/en/09.connections/docs.md b/documentation20/en/09.connections/docs.md index 93633ea369..e759da3167 100644 --- a/documentation20/en/09.connections/docs.md +++ b/documentation20/en/09.connections/docs.md @@ -74,17 +74,17 @@ You can see as follows after Dashboard imported. ![img](page://images/connections/import_dashboard2.jpg) -## Matlab +## MATLAB -MatLab can access data to the local workspace by connecting directly to the TDengine via the JDBC Driver provided in the installation package. +MATLAB can access data to the local workspace by connecting directly to the TDengine via the JDBC Driver provided in the installation package. -### JDBC Interface Adaptation of MatLab +### JDBC Interface Adaptation of MATLAB -Several steps are required to adapt Matlab to TDengine. Taking adapting Matlab2017a on Windows10 as an example: +Several steps are required to adapt MATLAB to TDengine. Taking adapting MATLAB2017a on Windows10 as an example: - Copy the file JDBCDriver-1.0.0-dist.ja*r* in TDengine package to the directory ${matlab_root}\MATLAB\R2017a\java\jar\toolbox - Copy the file taos.lib in TDengine package to ${matlab root dir}\MATLAB\R2017a\lib\win64 -- Add the .jar package just copied to the Matlab classpath. Append the line below as the end of the file of ${matlab root dir}\MATLAB\R2017a\toolbox\local\classpath.txt +- Add the .jar package just copied to the MATLAB classpath. Append the line below as the end of the file of ${matlab root dir}\MATLAB\R2017a\toolbox\local\classpath.txt - ``` $matlabroot/java/jar/toolbox/JDBCDriver-1.0.0-dist.jar ``` @@ -94,9 +94,9 @@ Several steps are required to adapt Matlab to TDengine. Taking adapting Matlab20 C:\Windows\System32 ``` -- ### Connect to TDengine in MatLab to get data +- ### Connect to TDengine in MATLAB to get data -After the above configured successfully, open MatLab. +After the above configured successfully, open MATLAB. - Create a connection: -- GitLab