dataCompression.c 25.0 KB
Newer Older
T
tickduan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/**
 *  @file double_compression.c
 *  @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
 *  @date April, 2016
 *  @brief Compression Technique for double array
 *  (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "sz.h"
#include "DynamicByteArray.h"
#include "DynamicIntArray.h"
#include "TightDataPointStorageD.h"
#include "CompressElement.h"
#include "dataCompression.h"

int computeByteSizePerIntValue(long valueRangeSize)
{
	if(valueRangeSize<=256)
		return 1;
	else if(valueRangeSize<=65536)
		return 2;
	else if(valueRangeSize<=4294967296) //2^32
		return 4;
	else
		return 8;
}

long computeRangeSize_int(void* oriData, int dataType, size_t size, int64_t* valueRangeSize)
{
	size_t i = 0;
	long max = 0, min = 0;

	if(dataType==SZ_UINT8)
	{
		unsigned char* data = (unsigned char*)oriData;
		unsigned char data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_INT8)
	{
		char* data = (char*)oriData;
		char data_;
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_UINT16)
	{
		unsigned short* data = (unsigned short*)oriData;
		unsigned short data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_INT16)
	{ 
		short* data = (short*)oriData;
		short data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_UINT32)
	{
		unsigned int* data = (unsigned int*)oriData;
		unsigned int data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_INT32)
	{
		int* data = (int*)oriData;
		int data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_UINT64)
	{
		unsigned long* data = (unsigned long*)oriData;
		unsigned long data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}
	else if(dataType == SZ_INT64)
	{
		long* data = (long *)oriData;
		long data_; 
		min = data[0], max = min;
		computeMinMax(data);
	}

	*valueRangeSize = max - min;
	return min;	
}

float computeRangeSize_float(float* oriData, size_t size, float* valueRangeSize, float* medianValue)
{
	size_t i = 0;
	float min = oriData[0];
	float max = min;
	for(i=1;i<size;i++)
	{
		float data = oriData[i];
		if(min>data)
			min = data;
		else if(max<data)
			max = data;
	}

	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}

float computeRangeSize_float_MSST19(float* oriData, size_t size, float* valueRangeSize, float* medianValue, unsigned char * signs, bool* positive, float* nearZero)
{
    size_t i = 0;
    float min = oriData[0];
    float max = min;
    *nearZero = min;

    for(i=1;i<size;i++)
    {
        float data = oriData[i];
        if(data <0){
            signs[i] = 1;
            *positive = false;
        }
        if(oriData[i] != 0 && fabsf(oriData[i]) < fabsf(*nearZero)){
            *nearZero = oriData[i];
        }
        if(min>data)
            min = data;
        else if(max<data)
            max = data;
    }

    *valueRangeSize = max - min;
    *medianValue = min + *valueRangeSize/2;
    return min;
}

double computeRangeSize_double(double* oriData, size_t size, double* valueRangeSize, double* medianValue)
{
	size_t i = 0;
	double min = oriData[0];
	double max = min;
	for(i=1;i<size;i++)
	{
		double data = oriData[i];
		if(min>data)
			min = data;
		else if(max<data)
			max = data;
	}
	
	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}

double computeRangeSize_double_MSST19(double* oriData, size_t size, double* valueRangeSize, double* medianValue, unsigned char * signs, bool* positive, double* nearZero)
{
    size_t i = 0;
    double min = oriData[0];
    double max = min;
    *nearZero = min;

    for(i=1;i<size;i++)
    {
        double data = oriData[i];
        if(data <0){
            signs[i] = 1;
            *positive = false;
        }
        if(oriData[i] != 0 && fabs(oriData[i]) < fabs(*nearZero)){
            *nearZero = oriData[i];
        }
        if(min>data)
            min = data;
        else if(max<data)
            max = data;
    }

    *valueRangeSize = max - min;
    *medianValue = min + *valueRangeSize/2;
    return min;
}

float computeRangeSize_float_subblock(float* oriData, float* valueRangeSize, float* medianValue,
size_t r5, size_t r4, size_t r3, size_t r2, size_t r1,
size_t s5, size_t s4, size_t s3, size_t s2, size_t s1,
size_t e5, size_t e4, size_t e3, size_t e2, size_t e1)
{
	size_t i1, i2, i3, i4, i5;
	size_t index_start = s5*(r4*r3*r2*r1) + s4*(r3*r2*r1) + s3*(r2*r1) + s2*r1 + s1;
	float min = oriData[index_start];
	float max = min;

	for (i5 = s5; i5 <= e5; i5++)
	for (i4 = s4; i4 <= e4; i4++)
	for (i3 = s3; i3 <= e3; i3++)
	for (i2 = s2; i2 <= e2; i2++)
	for (i1 = s1; i1 <= e1; i1++)
	{
		size_t index = i5*(r4*r3*r2*r1) + i4*(r3*r2*r1) + i3*(r2*r1) + i2*r1 + i1;
		float data = oriData[index];
		if (min>data)
			min = data;
		else if(max<data)
			max = data;
	}

	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}


double computeRangeSize_double_subblock(double* oriData, double* valueRangeSize, double* medianValue,
size_t r5, size_t r4, size_t r3, size_t r2, size_t r1,
size_t s5, size_t s4, size_t s3, size_t s2, size_t s1,
size_t e5, size_t e4, size_t e3, size_t e2, size_t e1)
{
	size_t i1, i2, i3, i4, i5;
	size_t index_start = s5*(r4*r3*r2*r1) + s4*(r3*r2*r1) + s3*(r2*r1) + s2*r1 + s1;
	double min = oriData[index_start];
	double max = min;

	for (i5 = s5; i5 <= e5; i5++)
	for (i4 = s4; i4 <= e4; i4++)
	for (i3 = s3; i3 <= e3; i3++)
	for (i2 = s2; i2 <= e2; i2++)
	for (i1 = s1; i1 <= e1; i1++)
	{
		size_t index = i5*(r4*r3*r2*r1) + i4*(r3*r2*r1) + i3*(r2*r1) + i2*r1 + i1;
		double data = oriData[index];
		if (min>data)
			min = data;
		else if(max<data)
			max = data;
	}

	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}


double min_d(double a, double b)
{
	if(a<b)
		return a;
	else
		return b;
}

double max_d(double a, double b)
{
	if(a>b)
		return a;
	else
		return b;
}

float min_f(float a, float b)
{
	if(a<b)
		return a;
	else
		return b;
}

float max_f(float a, float b)
{
	if(a>b)
		return a;
	else
		return b;
}

double getRealPrecision_double(double valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
287
	int state = SZ_SUCCESS;
T
tickduan 已提交
288
	double precision = 0;
T
tickduan 已提交
289
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
		precision = absErrBound; 
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_d(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_d(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = 0;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

double getRealPrecision_float(float valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
310
	int state = SZ_SUCCESS;
T
tickduan 已提交
311
	double precision = 0;
T
tickduan 已提交
312
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
		precision = absErrBound; 
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = 0;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

double getRealPrecision_int(long valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
333
	int state = SZ_SUCCESS;
T
tickduan 已提交
334
	double precision = 0;
T
tickduan 已提交
335
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		precision = absErrBound; 
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = -1;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

void symTransform_8bytes(unsigned char data[8])
{
	unsigned char tmp = data[0];
	data[0] = data[7];
	data[7] = tmp;

	tmp = data[1];
	data[1] = data[6];
	data[6] = tmp;
	
	tmp = data[2];
	data[2] = data[5];
	data[5] = tmp;
	
	tmp = data[3];
	data[3] = data[4];
	data[4] = tmp;
}

inline void symTransform_2bytes(unsigned char data[2])
{
	unsigned char tmp = data[0];
	data[0] = data[1];
	data[1] = tmp;
}

inline void symTransform_4bytes(unsigned char data[4])
{
	unsigned char tmp = data[0];
	data[0] = data[3];
	data[3] = tmp;

	tmp = data[1];
	data[1] = data[2];
	data[2] = tmp;
}

inline void compressInt8Value(int8_t tgtValue, int8_t minValue, int byteSize, unsigned char* bytes)
{
	uint8_t data = tgtValue - minValue;
	memcpy(bytes, &data, byteSize); //byteSize==1
}

inline void compressInt16Value(int16_t tgtValue, int16_t minValue, int byteSize, unsigned char* bytes)
{
	uint16_t data = tgtValue - minValue;
	unsigned char tmpBytes[2];
	int16ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 2 - byteSize, byteSize);
}

inline void compressInt32Value(int32_t tgtValue, int32_t minValue, int byteSize, unsigned char* bytes)
{
	uint32_t data = tgtValue - minValue;
	unsigned char tmpBytes[4];
	int32ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 4 - byteSize, byteSize);
}

inline void compressInt64Value(int64_t tgtValue, int64_t minValue, int byteSize, unsigned char* bytes)
{
	uint64_t data = tgtValue - minValue;
	unsigned char tmpBytes[8];
	int64ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 8 - byteSize, byteSize);
}

inline void compressUInt8Value(uint8_t tgtValue, uint8_t minValue, int byteSize, unsigned char* bytes)
{
	uint8_t data = tgtValue - minValue;
	memcpy(bytes, &data, byteSize); //byteSize==1
}

inline void compressUInt16Value(uint16_t tgtValue, uint16_t minValue, int byteSize, unsigned char* bytes)
{
	uint16_t data = tgtValue - minValue;
	unsigned char tmpBytes[2];
	int16ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 2 - byteSize, byteSize);
}

inline void compressUInt32Value(uint32_t tgtValue, uint32_t minValue, int byteSize, unsigned char* bytes)
{
	uint32_t data = tgtValue - minValue;
	unsigned char tmpBytes[4];
	int32ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 4 - byteSize, byteSize);
}

inline void compressUInt64Value(uint64_t tgtValue, uint64_t minValue, int byteSize, unsigned char* bytes)
{
	uint64_t data = tgtValue - minValue;
	unsigned char tmpBytes[8];
	int64ToBytes_bigEndian(tmpBytes, data);
	memcpy(bytes, tmpBytes + 8 - byteSize, byteSize);
}

T
tickduan 已提交
451
inline void compressSingleFloatValue(FloatValueCompressElement *vce, float oriValue, float precision, float medianValue, 
T
tickduan 已提交
452 453
		int reqLength, int reqBytesLength, int resiBitsLength)
{		
T
tickduan 已提交
454 455 456 457 458 459 460
	lfloat diffVal;
	diffVal.value = oriValue - medianValue;

	// calc ignore bit count		
	int ignBitCount = 32 - reqLength;
	if(ignBitCount<0)
		ignBitCount = 0;
T
tickduan 已提交
461
	
T
tickduan 已提交
462 463
	int tmp_int = diffVal.ivalue;
	intToBytes_bigEndian(vce->curBytes, diffVal.ivalue);
T
tickduan 已提交
464
	
T
tickduan 已提交
465 466
	// truncate diff value tail bit with ignBitCount	
	diffVal.ivalue = (diffVal.ivalue >> ignBitCount) << ignBitCount;
T
tickduan 已提交
467
	
T
tickduan 已提交
468 469 470
	// save to vce
	vce->data           = diffVal.value + medianValue;
	vce->curValue       = diffVal.ivalue;
T
tickduan 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	vce->reqBytesLength = reqBytesLength;
	vce->resiBitsLength = resiBitsLength;
}

void compressSingleFloatValue_MSST19(FloatValueCompressElement *vce, float tgtValue, float precision, int reqLength, int reqBytesLength, int resiBitsLength)
{
    float normValue = tgtValue;

    lfloat lfBuf;
    lfBuf.value = normValue;

    int ignBytesLength = 32 - reqLength;
    if(ignBytesLength<0)
        ignBytesLength = 0;

    int tmp_int = lfBuf.ivalue;
    intToBytes_bigEndian(vce->curBytes, tmp_int);

    lfBuf.ivalue = (lfBuf.ivalue >> ignBytesLength) << ignBytesLength;

    //float tmpValue = lfBuf.value;

    vce->data = lfBuf.value;
    vce->curValue = tmp_int;
    vce->reqBytesLength = reqBytesLength;
    vce->resiBitsLength = resiBitsLength;
}

void compressSingleDoubleValue_MSST19(DoubleValueCompressElement *vce, double tgtValue, double precision, int reqLength, int reqBytesLength, int resiBitsLength)
{
    ldouble lfBuf;
    lfBuf.value = tgtValue;

    int ignBytesLength = 64 - reqLength;
    if(ignBytesLength<0)
        ignBytesLength = 0;

    long tmp_long = lfBuf.lvalue;
    longToBytes_bigEndian(vce->curBytes, tmp_long);

    lfBuf.lvalue = (lfBuf.lvalue >> ignBytesLength) << ignBytesLength;

    //float tmpValue = lfBuf.value;

    vce->data = lfBuf.value;
    vce->curValue = tmp_long;
    vce->reqBytesLength = reqBytesLength;
    vce->resiBitsLength = resiBitsLength;
}

void compressSingleDoubleValue(DoubleValueCompressElement *vce, double tgtValue, double precision, double medianValue, 
		int reqLength, int reqBytesLength, int resiBitsLength)
{		
	double normValue = tgtValue - medianValue;

	ldouble lfBuf;
	lfBuf.value = normValue;
			
	int ignBytesLength = 64 - reqLength;
	if(ignBytesLength<0)
		ignBytesLength = 0;

	long tmp_long = lfBuf.lvalue;
	longToBytes_bigEndian(vce->curBytes, tmp_long);
				
	lfBuf.lvalue = (lfBuf.lvalue >> ignBytesLength)<<ignBytesLength;
	
	//double tmpValue = lfBuf.value;
	
	vce->data = lfBuf.value+medianValue;
	vce->curValue = tmp_long;
	vce->reqBytesLength = reqBytesLength;
	vce->resiBitsLength = resiBitsLength;
}

int compIdenticalLeadingBytesCount_double(unsigned char* preBytes, unsigned char* curBytes)
{
	int i, n = 0;
	for(i=0;i<8;i++)
		if(preBytes[i]==curBytes[i])
			n++;
		else
			break;
	if(n>3) n = 3;
	return n;
}

inline int compIdenticalLeadingBytesCount_float(unsigned char* preBytes, unsigned char* curBytes)
{
	int i, n = 0;
	for(i=0;i<4;i++)
		if(preBytes[i]==curBytes[i])
			n++;
		else
			break;
	if(n>3) n = 3;
	return n;
}

//TODO double-check the correctness...
inline void addExactData(DynamicByteArray *exactMidByteArray, DynamicIntArray *exactLeadNumArray, 
		DynamicIntArray *resiBitArray, LossyCompressionElement *lce)
{
	int i;
	int leadByteLength = lce->leadingZeroBytes;
	addDIA_Data(exactLeadNumArray, leadByteLength);
	unsigned char* intMidBytes = lce->integerMidBytes;
	int integerMidBytesLength = lce->integerMidBytes_Length;
	int resMidBitsLength = lce->resMidBitsLength;
	if(intMidBytes!=NULL||resMidBitsLength!=0)
	{
		if(intMidBytes!=NULL)
			for(i = 0;i<integerMidBytesLength;i++)
				addDBA_Data(exactMidByteArray, intMidBytes[i]);
		if(resMidBitsLength!=0)
			addDIA_Data(resiBitArray, lce->residualMidBits);
	}
}

/**
 * @deprecated
 * @return: the length of the coefficient array.
 * */
int getPredictionCoefficients(int layers, int dimension, int **coeff_array, int *status)
{
	size_t size = 0;
	switch(dimension)
	{
		case 1:
			switch(layers)
			{
				case 1:
					*coeff_array = (int*)malloc(sizeof(int));
					(*coeff_array)[0] = 1;
					size = 1;
					break;
				case 2:
					*coeff_array = (int*)malloc(2*sizeof(int));
					(*coeff_array)[0] = 2;
					(*coeff_array)[1] = -1;
					size = 2;
					break;
				case 3:
					*coeff_array = (int*)malloc(3*sizeof(int));
					(*coeff_array)[0] = 3;
					(*coeff_array)[1] = -3;
					(*coeff_array)[2] = 1;
					break;
			}	
			break;
		case 2:
			switch(layers)
			{
				case 1:
				
					break;
				case 2:
				
					break;
				case 3:
				
					break;
			}				
			break;
		case 3:
			switch(layers)
			{
				case 1:
				
					break;
				case 2:
				
					break;
				case 3:
				
					break;
			}			
			break;
		default:
			printf("Error: dimension must be no greater than 3 in the current version.\n");
			*status = SZ_DERR;
	}
T
tickduan 已提交
653
	*status = SZ_SUCCESS;
T
tickduan 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	return size;
}

int computeBlockEdgeSize_2D(int segmentSize)
{
	int i = 1;
	for(i=1; i<segmentSize;i++)
	{
		if(i*i>segmentSize)
			break;
	}
	return i;
	//return (int)(sqrt(segmentSize)+1);
}

int computeBlockEdgeSize_3D(int segmentSize)
{
	int i = 1;
	for(i=1; i<segmentSize;i++)
	{
		if(i*i*i>segmentSize)
			break;
	}
	return i;	
	//return (int)(pow(segmentSize, 1.0/3)+1);
}

//The following functions are float-precision version of dealing with the unpredictable data points 
int generateLossyCoefficients_float(float* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, float* medianValue, float* decData)
{
	float valueRangeSize;
	
	computeRangeSize_float(oriData, nbEle, &valueRangeSize, medianValue);
	short radExpo = getExponent_float(valueRangeSize/2);
	
	int reqLength;
	computeReqLength_float(precision, radExpo, &reqLength, medianValue);
	
	*reqBytesLength = reqLength/8;
	*resiBitsLength = reqLength%8;
	
	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		float normValue = oriData[i] - *medianValue;

		lfloat lfBuf;
		lfBuf.value = normValue;
				
		int ignBytesLength = 32 - reqLength;
		if(ignBytesLength<0)
			ignBytesLength = 0;
			
		lfBuf.ivalue = (lfBuf.ivalue >> ignBytesLength) << ignBytesLength;
		
		//float tmpValue = lfBuf.value;
		
		decData[i] = lfBuf.value + *medianValue;
	}
	return reqLength;
}	
		
/**
 * @param float* oriData: inplace argument (input / output)
 * 
 * */		
int compressExactDataArray_float(float* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray, 
int reqLength, int reqBytesLength, int resiBitsLength, float medianValue)
{
	//allocate memory for coefficient compression arrays
	DynamicIntArray *exactLeadNumArray;
	new_DIA(&exactLeadNumArray, DynArrayInitLen);	
	DynamicByteArray *exactMidByteArray;
	new_DBA(&exactMidByteArray, DynArrayInitLen);
	DynamicIntArray *resiBitArray;
	new_DIA(&resiBitArray, DynArrayInitLen);
	unsigned char preDataBytes[4] = {0,0,0,0};	

	//allocate memory for vce and lce
	FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement));
	LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));	

	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		compressSingleFloatValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
		updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
		memcpy(preDataBytes,vce->curBytes,4);
		addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
		oriData[i] = vce->data;
	}
	convertDIAtoInts(exactLeadNumArray, leadArray);
	convertDBAtoBytes(exactMidByteArray,midArray);
	convertDIAtoInts(resiBitArray, resiArray);

	size_t midArraySize = exactMidByteArray->size;
	
	free(vce);
	free(lce);
	
	free_DIA(exactLeadNumArray);
	free_DBA(exactMidByteArray);
	free_DIA(resiBitArray);
	
	return midArraySize;
}

void decompressExactDataArray_float(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, float medianValue, float** decData)
{
	*decData = (float*)malloc(nbEle*sizeof(float));
	size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
	float exactData = 0;
	unsigned char preBytes[4] = {0,0,0,0};
	unsigned char curBytes[4];
	int resiBits; 
	unsigned char leadingNum;		
	
	int reqBytesLength = reqLength/8;
	int resiBitsLength = reqLength%8;
	
	for(i = 0; i<nbEle;i++)
	{
		// compute resiBits
		resiBits = 0;
		if (resiBitsLength != 0) {
			int kMod8 = k % 8;
			int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
			if (rightMovSteps > 0) {
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code) >> rightMovSteps;
			} else if (rightMovSteps < 0) {
				int code1 = getLeftMovingCode(kMod8);
				int code2 = getRightMovingCode(kMod8, resiBitsLength);
				int leftMovSteps = -rightMovSteps;
				rightMovSteps = 8 - leftMovSteps;
				resiBits = (residualMidBits[p] & code1) << leftMovSteps;
				p++;
				resiBits = resiBits
						| ((residualMidBits[p] & code2) >> rightMovSteps);
			} else // rightMovSteps == 0
			{
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code);
				p++;
			}
			k += resiBitsLength;
		}

		// recover the exact data	
		memset(curBytes, 0, 4);
		leadingNum = leadNum[l++];
		memcpy(curBytes, preBytes, leadingNum);
		for (j = leadingNum; j < reqBytesLength; j++)
			curBytes[j] = exactMidBytes[curByteIndex++];
		if (resiBitsLength != 0) {
			unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
			curBytes[reqBytesLength] = resiByte;
		}

		exactData = bytesToFloat(curBytes);
		(*decData)[i] = exactData + medianValue;
		memcpy(preBytes,curBytes,4);
	}	
}

//double-precision version of dealing with unpredictable data points in sz 2.0
int generateLossyCoefficients_double(double* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, double* medianValue, double* decData)
{
	double valueRangeSize;
	
	computeRangeSize_double(oriData, nbEle, &valueRangeSize, medianValue);
	short radExpo = getExponent_double(valueRangeSize/2);
	
	int reqLength;
	computeReqLength_double(precision, radExpo, &reqLength, medianValue);
	
	*reqBytesLength = reqLength/8;
	*resiBitsLength = reqLength%8;
	
	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		double normValue = oriData[i] - *medianValue;

		ldouble ldBuf;
		ldBuf.value = normValue;
				
		int ignBytesLength = 64 - reqLength;
		if(ignBytesLength<0)
			ignBytesLength = 0;
			
		ldBuf.lvalue = (ldBuf.lvalue >> ignBytesLength) << ignBytesLength;
		
		decData[i] = ldBuf.value + *medianValue;
	}
	return reqLength;
}	
		
/**
 * @param double* oriData: inplace argument (input / output)
 * 
 * */		
int compressExactDataArray_double(double* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray, 
int reqLength, int reqBytesLength, int resiBitsLength, double medianValue)
{
	//allocate memory for coefficient compression arrays
	DynamicIntArray *exactLeadNumArray;
	new_DIA(&exactLeadNumArray, DynArrayInitLen);	
	DynamicByteArray *exactMidByteArray;
	new_DBA(&exactMidByteArray, DynArrayInitLen);
	DynamicIntArray *resiBitArray;
	new_DIA(&resiBitArray, DynArrayInitLen);
	unsigned char preDataBytes[8] = {0,0,0,0,0,0,0,0};	

	//allocate memory for vce and lce
	DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement));
	LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));	

	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		compressSingleDoubleValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
		updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
		memcpy(preDataBytes,vce->curBytes,8);
		addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
		oriData[i] = vce->data;
	}
	convertDIAtoInts(exactLeadNumArray, leadArray);
	convertDBAtoBytes(exactMidByteArray,midArray);
	convertDIAtoInts(resiBitArray, resiArray);

	size_t midArraySize = exactMidByteArray->size;
	
	free(vce);
	free(lce);
	
	free_DIA(exactLeadNumArray);
	free_DBA(exactMidByteArray);
	free_DIA(resiBitArray);
	
	return midArraySize;
}

void decompressExactDataArray_double(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, double medianValue, double** decData)
{
	*decData = (double*)malloc(nbEle*sizeof(double));
	size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
	double exactData = 0;
	unsigned char preBytes[8] = {0,0,0,0,0,0,0,0};
	unsigned char curBytes[8];
	int resiBits; 
	unsigned char leadingNum;		
	
	int reqBytesLength = reqLength/8;
	int resiBitsLength = reqLength%8;
	
	for(i = 0; i<nbEle;i++)
	{
		// compute resiBits
		resiBits = 0;
		if (resiBitsLength != 0) {
			int kMod8 = k % 8;
			int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
			if (rightMovSteps > 0) {
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code) >> rightMovSteps;
			} else if (rightMovSteps < 0) {
				int code1 = getLeftMovingCode(kMod8);
				int code2 = getRightMovingCode(kMod8, resiBitsLength);
				int leftMovSteps = -rightMovSteps;
				rightMovSteps = 8 - leftMovSteps;
				resiBits = (residualMidBits[p] & code1) << leftMovSteps;
				p++;
				resiBits = resiBits
						| ((residualMidBits[p] & code2) >> rightMovSteps);
			} else // rightMovSteps == 0
			{
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code);
				p++;
			}
			k += resiBitsLength;
		}

		// recover the exact data	
		memset(curBytes, 0, 8);
		leadingNum = leadNum[l++];
		memcpy(curBytes, preBytes, leadingNum);
		for (j = leadingNum; j < reqBytesLength; j++)
			curBytes[j] = exactMidBytes[curByteIndex++];
		if (resiBitsLength != 0) {
			unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
			curBytes[reqBytesLength] = resiByte;
		}

		exactData = bytesToDouble(curBytes);
		(*decData)[i] = exactData + medianValue;
		memcpy(preBytes,curBytes,8);
	}
}